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1 Introduction and summary

AdS/CFT duality is a powerful statement, thanks to the fact that one partner in the dual-

ity is a manifestly well defined quantum system with precise rules for computing correlation

functions of local operators. Conformal field theory is by definition a UV complete frame-

work, in which the rules of local quantum field theory apply at all energy scales. These

statements remain true for relevant or marginal deformations of CFTs that preserve the

existence of a UV fixed point.

This virtue also has a flip side, as it makes AdS/CFT rather special. CFTs, or more

generally, quantum field theories that are connected via RG flow to a UV fixed point, form

a set of measure zero within the space of all effective QFTs. It is then natural to ask: can

holography be extended to effective QFTs for which the UV behavior is not described by

a CFT? In the context of AdS3/CFT2, this question has recently become more opportune,
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due to the discovery of Smirnov and Zamolodchikov [1] of a general class of exactly solvable

irrelevant deformations of 2D CFT. Turning on an irrelevant coupling typically spoils the

existence of a UV fixed point and destroys locality at some high cutoff scale. Properties of

the deformed CFTs uncovered in [1], however, are found to be robust and largely decoupled

from the question of their UV completeness.

In this paper we consider the simplest example of a solvable irrelevant deformation a

2D CFT, obtained by turning on a T T̄ coupling

SQFT = SCFT + µ

∫
d2x T T̄ . (1.1)

Here T T̄ denotes the composite irrelevant (dimension 4) operator given by the product of

the left- and right-moving components T ≡ Tzz and T̄ ≡ Tz̄z̄ of the stress tensor, where we

defined z = x+iτ . Note that because T T̄ = 1
8

(
TαβTαβ − (Tαα )2

)
, the deformation preserves

Lorentz invariance. By finite µ we mean that there is a one parameter family of theories

defined by dS
(µ)
QFT/dµ =

∫
d2x (T T̄ )µ, where the µ subscript of T T̄ emphasizes that in this

equation we have to use the stress tensor of S
(µ)
QFT. The deformation (1.1) is exactly solvable,

in the sense that, even if the original 2D CFT itself has no extra symmetries other than

Virasoro symmetry, the deformed theory possesses an infinite set of conserved charges and

allows for exact computation of interesting physical quantities such as scattering phases,

energy levels, and the thermodynamic equation of state [1–3]. Moreover, as we will see,

there are several indications that the deformed CFT defined by (1.1) represents a consistent

unitary quantum theory, with many interesting properties that are worth exploring.

We are interested in how the deformation (1.1) affects the standard holographic dic-

tionary [4–6] between CFT quantities and corresponding properties in AdS gravity . In

the following we will argue that the coupling µ acts as a geometric cutoff that removes the

asymptotic region of the AdS space-time, and thereby places the QFT at a finite radial dis-

tance r=rc from the center of the bulk. We will test this proposal for the special subclass

of quantities that can be created or measured by the stress tensor, or equivalently, by de-

formations of the metric.1 Examples of such quantities are signal propagation speeds, finite

size effects, thermodynamic properties, and the Euclidean partition function ZQFT(g, µ) in

a general background metric ds2 = gαβdx
αdxβ .

Our concrete proposal is that the deformed CFT (1.1) is dual to the original gravita-

tional theory (i.e. the gravity dual of the original CFT) living on a compact sub-region of

AdS space-time

ds2
AdS =

dr2

r2
+ r2 gαβdx

αdxβ , r < rc , (1.2)

defined by restricting the radial coordinate to the finite interval r < rc, with rc related to

µ via

µ =
16πG

r2
c

=
24π

c

1

r2
c

. (1.3)

1The background metric in the presence of the T T̄ deformation is defined via the relation 〈Tαβ〉 =
2√
g

δ
δgαβ

logZQFT, with Tαβ the unique local conserved current associated with translation symmetry.
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Throughout the paper we set `AdS = 1, hence the Brown-Henneaux relation used in the

above equation is c = 3
2G [7]. At large central charge c, we can identify

ZQFT(gαβ , µ) = exp

(
− 1

16πG Scl

(
r2
c gαβ

))
, (1.4)

where Scl(r
2
cgαβ) is the classical action of the 3D gravity theory restricted to the region

r < rc, with Dirichlet boundary conditions ds2|r=rc = r2
cgαβdx

αdxβ on the metric and

φi|r=rc = 0 on all bulk fields φi. Here we assume that the classical matter fields do not

contribute any stress-energy source.

The proposal has interesting implications for the holographic renormalization group

program. In the formulation of [8] (see also [9–12]) the CFT partition sum ZCFT is identified

with the gravity partition function in which the bulk path integral is cut into an IR and

UV part via

ZCFT(g̃αβ , ε) =

∫
Dgαβ ΨIR

(
r2
c gαβ

)
ΨUV

(
r2
c gαβ , ε

−2g̃αβ
)
. (1.5)

Here ε denotes the short distance cutoff of the CFT. Here we have suppressed the integral

over all matter fields: we assume that their saddle point value can be consistently set to

zero. ΨUV is a path integral over metrics of the form (1.2) over the region rc < r < 1/ε with

prescribed boundary conditions, while ΨIR is an integral over all metrics in the region r < rc
with boundary conditions that match those of ΨUV. The IR wave-function ΨIR satisfies the

Wheeler-DeWitt constraints, and via the holographic dictionary, is to be identified with a

QFT path integral with a UV cutoff of size 1/rc. The UV wave-function ΨUV is related to

the Wilsonian action by an functional Legendre transform, and is local on distance scales

larger than 1/rc.

In this language our proposal states that

ZQFT (gαβ , µ) = ΨIR

(
r2
c gαβ

)
(1.6)

with µ and rc related via (1.3). The full CFT partition function is insensitive to how we

choose our renormalization scale, hence (1.5) is independent of rc. Then the role of ΨUV is

to undo the T T̄ deformation of the CFT to get back the CFT result for the full partition

function. It is also important to note that if the CFT has a large N counting, where

c = O(N2), the T T̄ deformation is an irrelevant double trace deformation. There has been

earlier speculation that the sharp radial cutoff in the bulk could be related to this kind of

deformations [8].

The proposed dictionary is supported by several quantitative agreements between the

two sides. We list three of them below.

1. Deformation of the light cone. The physical consequences of the T T̄ deformation

become most apparent by considering the system at finite temperature or in some eigenstate

with finite energy density. In both cases, the stress-energy tensor has a non-zero expectation

value. As pointed out by Cardy [13], this leads to a renormalization of the propagation
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speed v± of left- and right-moving massless excitations. In Minkowski space (1.1) takes the

form

SQFT = SCFT − µ
∫
d2x T++T−− , (1.7)

where we defined x± = t ± x. Splitting off the expectation value from T++ and T−−, the

deformed action (1.7) acquires a linear term −µ
∫
d2x [〈T++〉T−− + 〈T−−〉T++], which

has the same physical effect as a perturbation of the 2D metric of the form2 ds2
CFT '

−dx+dx−− µ
2 〈T++〉(dx+)2− µ

2 〈T−−〉(dx
−)2 . We see that the deformed CFT behaves like

a gravitational theory in which stress-energy back reacts on the space-time geometry. The

null directions of the effective metric are dx+ = −µ
2 〈T−−〉dx

− or dx− = −µ
2 〈T++〉dx+ ,

and the propagation speed for left- and right-movers thus gets renormalized to

v∓ ' 1 + µ 〈T±±〉 . (1.8)

Note that for µ > 0, the deformation gives rise to superluminal propagation speeds, as the

null energy 〈T±±〉 is non-negative in states to which the above hydrodynamic argument

applies.

This effect has a natural interpretation in the gravity dual. A high energy CFT state

is dual to a BTZ black hole geometry [14]. The propagation speed of metric perturbations

of a BTZ black hole placed with Dirichlet walls at r = rc was analyzed by Marolf and

Rangamani in [15]. Somewhat surprisingly, they found that these perturbations propagate

at superluminal speed relative to the metric at the cutoff surface. Generalizing their deriva-

tion to the rotating case, one finds that the left- and right-moving propagation speeds are

given by v± ' 1 + (r+∓r−)2

2r2c
, with r+ and r− the radius of the outer and inner horizon [16].

Equating the renormalized velocities on both sides of the duality reproduces the standard

result for the holographic stress-energy tensor [17] in the BTZ background, provided that

µ and rc are related via (1.3).

2. Deformed energy spectrum. Another interesting physical quantity is the µ depen-

dence of a given energy level En(µ,L) on a cylinder with circumference L.3 Remarkably,

this quantity can be computed exactly for any energy eigenstate of the perturbed CFT [1–

3]. For a given CFT state with conformal dimension (∆n, ∆̄n) one finds

En(µ,L)L =
2π

µ̃

(
1−

√
1− 2µ̃Mn + µ̃2 J2

n

)
, µ̃ ≡ πµ

L2
, (1.9)

with Mn = ∆n+∆̄n− c
12 , and Jn = ∆n− ∆̄n. Note the right-hand side becomes imaginary

above some critical conformal dimension (for fixed µ̃ > 0) or above some critical value

of µ̃ (for fixed ∆n + ∆̄n >
c

12). This behavior is called the ‘shock singularity’ in [1] and

indicates the presence of a UV cutoff. We will summarize the derivation of the result (1.9)

in section 2.4.

The analogous quantity to En(µ,L) on the gravity side is the quasi-local energy of a

BTZ black hole of mass M and angular momentum J placed in a spatial region r < rc,

2To derive this equation, we used the definition δSQFT = − 1
2

∫
d2x δgαβ Tαβ , and that δg±± = −4δg∓∓.

3In studies of 2D CFT on a cylinder, it is customary to set L = 2π.
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with Dirichlet boundary conditions ds2|r=rc = r2
c dx

+dx−. This quantity was computed

in [18] (shortly before the discovery of AdS/CFT, so without any reliance on or reference

to the holographic dictionary) by integrating the Brown-York stress-energy tensor over the

boundary surface. This gravity result, given in equation (3.6), and the QFT result (1.9)

precisely match, again provided we identify µ = 24π
c

1
r2c

.

The agreement between the energy spectra extends to a precise correspondence between

all thermodynamic quantities, such as the equation of state, pressure, temperature, heat

capacity, etc. Since the equations remain valid for finite values of µ̃, this provides a new

tool for studying bulk physics deep inside AdS. In particular, the ‘shock singularity’ of

the deformed CFT (above which En(µ,L) becomes imaginary) is mapped to the singular

properties (such as a diverging temperature and pressure) of the BTZ black hole inside a

box r < rc as rc approaches the horizon. Studying the nature of this transition may give

new insight into the physics of black hole horizons.

3. Exact RG equation. A key property, on which many of the exact results about the

deformed theory (1.1) are based, is the following relation for the expectation value of the

composite operator T T̄

〈T T̄ 〉 = 〈T 〉〈T̄ 〉 − 〈Θ〉2 . (1.10)

Here Θ = Tzz̄ = 1
4T

α
α denotes the trace of the stress tensor. This remarkable factorization

property was first derived by Zamolodchikov in [19] and holds for any translation invariant,

stationary state in any relativistic 2D QFT. Equation (1.10) in particular implies that

the composite operator T T̄ has exact scaling dimension 4, up to possible total derivative

terms.4 The absence of anomalous dimensions makes it possible that energy spectrum (1.9)

is independent of the UV cutoff. (1.10) can be used to derive an RG equation for the

partition function of the deformed CFT as follows.

The partition function ZQFT(g, µ) of the deformed CFT has a prescribed dependence

on the 2D metric. Using that µ is the only scale in the problem, by taking the functional

derivative of the partition function with respect to the scale factor of the metric to first

order in µ we get

〈Θ〉 = − c

96π
R(g)− µ

2
〈T T̄ 〉 . (1.11)

The first term on the right-hand side is the trace anomaly of the CFT, the second term is

a correction due to the T T̄ deformation. Assuming that the metric is slowly varying, we

combine (1.11) with the Zamolodchikov relation (1.10) to get

〈Θ〉 = − c

96π
R(g)− µ

2

(
〈T 〉〈T̄ 〉 − 〈Θ〉2

)
. (1.12)

The above equations (1.10), (1.11) and (1.12) all hold to leading order in a derivative

expansion.

The result (1.12) can be viewed as an exact RG equation of the T T̄ deformed CFT.

It holds for any 2D CFT, but acquires a special meaning for CFTs with gravity duals.

To make its interpretation more evident, let us insert the holographic dictionary (1.3)

4Typically, a factorization property of this type is only exact in a strict large N limit or for suitable

protected operators in supersymmetric QFTs.
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and (1.4) into (1.12). This leads to a non-linear first order differential equation for the

classical gravity action, given in equation (5.19), which coincides with the Hamilton-Jacobi

(HJ) form of the holographic RG equation [8, 9, 11] that governs the radial evolution of

the classical gravity action in AdS as a function of the cutoff rc.

The results summarized above all have a common geometric origin. The HJ equa-

tion (5.19) is the classical limit of the Wheeler-DeWitt constraint that describes the radial

evolution of a wave-function in 3D gravity. It has been known for some time that the

partition function of a 2D CFT can be mapped, via a simple integral transform [20, 21],

to a wave-function that solves the WDW constraint of 3D gravity. From the CFT per-

spective, this integral transform looks like the T T̄ deformation (1.1), rewritten in terms of

a Gaussian integral over metric fluctuations. This exact result, stated in equations (5.20)

and (5.21) in section 6, provided the initial inspiration for our conjectured interpretation

of the T T̄ deformation as moving the CFT into the bulk.

In the following sections we give some more detailed derivations of the above results. In

section 2, we review the known exact results about the integrable T T̄ deformation, includ-

ing the presence of an infinite set of conserved charges, the energy spectrum (1.9) and the

Zamolodchikov equation (1.10). We also highlight a relationship between the T T̄ deforma-

tion and the Nambu-Goto action. In section 3, we review the computation of the quasi-local

energy and thermodynamical properties of the rotating BTZ black holes with finite radial

cutoff. In section 4 and the appendix, we derive the renormalization of the propagation

speed in CFT states dual to rotating BTZ black holes and a general class of bulk space-times

giving space dependent stress tensor expectation values. In section 5, we look in more detail

at the derivation of the exact RG equation (1.12) and its relation with the WDW equations

of the 3D gravity theory. We end in section 6 with a discussion of various open questions.

2 T T̄ deformed CFT

In this section we will give an overview of some exact properties of the T T̄ deformed CFT.

More details can be found in the original papers [1–3]. These exact results are an important

cornerstone of our general proposal. We will also address the question of UV completeness.

As a concrete piece of evidence in favor, we point out that for the special case that the CFT

has central charge c = 24, the T T̄ deformation is exactly soluble and manifestly consistent

— and in fact equivalent to the worldsheet theory of critical string theory [2, 3].

2.1 Integrability

The T T̄ deformation is a special case of a more general class of irrelevant integrable defor-

mations of CFTs introduced by Smirnov and Zamolodchikov (henceforth SZ) in [1]. For

completeness, we briefly state their main result. More details and derivations can be found

in [1] (see also [2]). Integrable deformations of 2D CFTs are characterized by the existence

of an infinite set of conserved higher spin charges Ps and P̄s of the form

Ps =

∮
C

(
Tsdz + Θsdz̄

)
P̄s =

∮
C

(
T̄sdz̄ + Θ̄sdz

)
(2.1)
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where the current components Ts and Θs are local operators of spin s + 1 and s − 1,

respectively, and satisfy the current conservation identity

∂z̄Ts = ∂zΘs , ∂zT̄s = ∂z̄Θ̄s . (2.2)

The simplest integrals of motion with s = 1 are the total left- and right-moving energy-

momentum P+ =
∮
C(T dz + Θdz̄) and P− =

∮
C(T̄ dz̄ + Θdz). The conserved charges Ps

all commute with each other by virtue of the fact that their commutator with the currents

yields a total derivative.

In the undeformed CFT, all Θs = Θ̄s = 0 and the currents Ts and T̄s are all chirally con-

served. They are given by special composite operators, generically made up from the left- or

right-moving stress tensor, respectively. For irrational CFTs, all currents Ts and T̄s are of

this type. For CFTs with Kac-Moody or W-symmetries, there may be additional currents.

For clarity, we emphasize that our notion of integrability does not automatically imply

exact solvability: irrational CFTs with holographic duals are typically not exactly soluble.

However, thanks to the infinite Virasoro symmetry, they posses and infinite set of conserved

charges, and allow for integrable deformations that preserve an infinite subset of them.

The main results of SZ is that, in the neighborhood of any 2D CFT within the space

of all 2D QFTs, there exists an infinite parameter family of integrable QFTs obtained by

turning on an infinite set of irrelevant deformations of the form

SQFT = SCFT +
∑
s

µs

∫
d2xXs , Xs ≡ TsT̄s −ΘsΘ̄s . (2.3)

Since Xs has scaling dimension 2s+2, these theories all become strongly coupled in the UV.

Nonetheless, one can derive exact results about their symmetries, integrability, scattering

phases and energy spectrum. In particular, SZ show that the conserved charges Ps can be

defined such that ∂Ps/∂µs′ +
[
Ps,
∫
d2xXs′

]
= 0 for all s and s′. This identity implies that

all charges are preserved by the infinite set of deformations (2.3).

Our interest is in the special case that only the least irrelevant coupling µ = µ1 of the

lowest operator X1 = T T̄ − Θ2 is non-zero. The integrability of this deformation will not

be central to our story, except that it helps with some exact computations and gives some

confidence that the deformed theory is well defined. Following SZ we often refer to the

operator X1 simply as T T̄ .

2.2 Zamolodchikov equation

The key result, from which many of the exact properties of the deformed CFT can be

derived, is the Zamolodchikov equation (1.10) for the expectation value of the composite

operator T T̄ , which holds for any translation invariant state in any 2D QFT with a local

stress tensor. Here we briefly summarize its derivation [19]. Consider the difference of two

point functions

Ξ(z, w) ≡
〈
T (z)T̄ (w)

〉
−
〈
Θ(z)Θ(w)

〉
. (2.4)

By taking two opposite limits, this function Ξ(z, w) formally reduces to the expectation

value of the composite operator X1 = T T̄−Θ2, or factorizes into the product of expectation

– 7 –
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values of individual stress tensor components

lim
w→z

Ξ(z, w) =
〈
T T̄
〉
− 〈Θ2

〉
,

lim
w→∞

Ξ(z, w) = 〈T 〉〈T̄ 〉 − 〈Θ〉2 .
(2.5)

The second equality follows from the cluster property of local QFT. The first limit a priori

needs to be taken with care, since the OPE between two operators generally becomes

singular at short distance. The key insight, that relates the two limits and makes the

first limit well behaved, is that the gradient of Ξ(z, w) with respect to z and w identically

vanishes. Using the conservation laws (2.2) and the fact that in a translation invariant

state, the two point functions in (2.4) depend only on the coordinate difference z −w, one

readily derives that〈
∂z̄T (z)T̄ (w)

〉
−
〈
∂z̄Θ(z)Θ(w)

〉
= −

〈
Θ(z)∂wT̄ (w)

〉
+
〈
T̄ (z)∂wΘ(w)

〉
= 0 , (2.6)

which shows that ∂z̄Ξ(z, w) = 0. In a similar way, one derives that ∂zΞ(z, w) = 0. Hence

the function Ξ(z, w) is a constant. This proves that the two right-hand sides in (2.5) are

equal, leading to the relation (1.10).

Let us make two cautionary comments. First, as mentioned in the introduction, the

relation (1.10) suggests that the composite operator T T̄ has exact scale dimension 4. This

seems a surprisingly strong statement. However, since the derivation of (1.10) makes

essential use of translation invariance, this property only holds at zero momentum. A

more cautious and correct statement is that T T̄ behaves as a local scaling operator with

scale dimension 4 up to total derivative terms [19]. In later sections, we will also make

use of (1.10) as a property that describes the behavior of more general states to leading

order in a derivative expansion. A second related point is that in what follows, we will

assume the result (1.10) remains valid for the T T̄ deformed CFT at finite coupling µ.

Since the derivation outlined above applies to any QFT, this seems reasonable. However,

as explained in [19], to avoid possible ambiguities related to the total derivative terms may

require extra assumptions about the UV behavior of the QFT, which may not obviously

hold for the T T̄ deformed theory. We will ignore this subtlety in what follows.

2.3 2 particle S-matrix

A useful perspective on the general class (2.3) of integrable deformations of a 2D CFT is to

view them as a limit of integrable deformations of a massive 2D QFT. Massive 2D QFTs are

uniquely characterized by the spectrum of stable particles and their S-matrix. The presence

of an infinite set of higher spin charges Ps implies that the S-matrix factorizes into 2-particle

S-matrices Sab(θ), which depend on the difference θ = θa−θb between the rapidities of par-

ticles a and b. Any integrable 2D QFT admits an infinite parameter family of deformations,

defined by multiplying each 2 particle S-matrix Sab(θ) with a so-called CDD phase factor

Sab(θ)→ eiδab(θ)Sab(θ) . (2.7)

The most general allowed phase takes the form of a sum δab(θ) =
∑

s∈N αs sinh(sθ) of

integer spin contributions. The deformation parameters αs of the 2-particle S-matrix are

– 8 –
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in one-to-one correspondence with the deformation parameters µs of the CFT action (2.3).

In case only the lowest spin deformation is turned on, the CDD phase factor simplifies to

δab(θ) = −µ
4mamb sinh(θ), with ma and mb the mass of each particle. CFTs have only

massless left- and right-moving excitations. To take the CFT limit, we thus boost particle

a and b in opposite directions to the speed of light, while sending ma and mb to zero. In

this limit the phase reduces to the product of the light-cone momenta of the two particles

δab(θ) = −µ
8
mambe

θa−θb = −µ
4
p+
a p
−
b . (2.8)

In the unperturbed CFT left- and right-moving excitations pass through each other. The

2-particle S-matrix of the T T̄ deformed CFT thus takes the simple form

Sab = e−iµp
+
a p
−
b /4 . (2.9)

This scattering phase (2.9) is a toy version of the forward scattering amplitude of two

highly boosted particles in 3+1-D Einstein gravity, as first studied by ’t Hooft [22]. It

describes the effect of a gravitational shockwave caused by the stress-energy of one particle

on the trajectory of the other particle. To make this physical interpretation explicit,

consider a localized right-moving excitation A(x+) with small light-cone momentum p+

and a left-moving mode Bp− in a momentum eigenstate with large light-cone momentum

p−. The 2-particle S-matrix (2.9) expresses the property that the operators A and B do

not commute, as they would in the undeformed CFT, but satisfy a non-trivial exchange

relation of the form

A(x+)Bp− = Bp−A
(
x+ − µp−

4

)
. (2.10)

This exchange relation exhibits the effect of a gravitational shockwave created by the

energetic left-moving mode B on the position of the right-moving mode A.

Introducing the scattering phase (2.9) has many interesting consequences. We briefly

mention two of these.

Ground state energy. Via the thermodynamic Bethe ansatz, one can derive the ground

state energy on a spatial circle with period L as a function of µ. One finds that [3]

E0 =
2L

µ

(
1−

√
1 +

πcµ

6L2

)
. (2.11)

Note that this formula has a square root singularity and becomes imaginary for −πcµ
6 > L2.5

Since we may interpret the period of the circle as an inverse temperature L, this indicates

that for µ < 0, the theory breaks down above a critical temperature TH =
√
−6
πcµ . This

breakdown is called the Hagedorn transition in [2, 3]. As we will see shortly, for the

connection with holography we are interested in the opposite regime µ > 0.

Lyapunov behavior. Equation (2.10) is similar to the shockwave interaction that gives

rise to the chaotic dynamics of black hole horizons. It seems plausible, therefore, that the

T T̄ perturbation can be used to make the Lyapunov growth of out of time ordered (OTO)

correlation functions [24, 25] at finite temperature more manifest.

5See [23] for early work exploring this singularity in the thermodynamic Bethe ansatz.
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2.4 Energy spectrum

The generalization of the exact result (2.11) to arbitrary energy eigenstates, quoted in

the introduction, can easily be derived from the Zamolodchikov relation (1.10) as follows.

Consider the deformed CFT on a spatial circle parametrized by a angular coordinate θ

with period L. Let |n〉 denote an energy and momentum eigenstate in CFT. Its energy En
and momentum Pn take the general form

En =
En
(
µ/L2

)
L

, Pn =
2πJn
L

, Jn ∈ Z . (2.12)

In the CFT limit, we have E
(CFT)
n L = 2π

(
∆n + ∆̄n − c

12

)
and Jn = ∆n − ∆̄n ∈ Z. Since

energy and momentum eigenstates are stationary and translation invariant, the Zamolod-

chikov relation (1.10) applies. It is useful to rewrite it as

〈n|T T̄ |n〉 = 〈n|T |n〉〈n|T̄ |n〉 − 〈n|Θ|n〉〈n|Θ|n〉

= −1

4

(
〈n|Tττ |n〉〈n|Txx|n〉 − 〈n|Tτx|n〉〈n|Tτx|n〉

)
,

(2.13)

where we used the definitions and simple algebra. The stress tensor components have

physical meaning as the energy density, pressure and momentum density. Hence we can

express the right hand side in terms of physical properties of the spectrum:

〈n|Tττ |n〉 =
En
L
, 〈n|Txx|n〉 =

∂En
∂L

, 〈n|Tτx|n〉 =
iPn
L

. (2.14)

The i in the last formula follows from Tτx = i(T−T̄ ). The left-hand side of (2.13) represents

the µ dependence of the energy En, via the relation6

∂En
∂µ

= L 〈n|T T̄ |n〉 . (2.15)

The relation (2.13) thus combines into the following differential equation for En

0 = 4
∂En
∂µ

+ En
∂En
∂L

+
P 2
n

L
. (2.16)

As remarked in [1, 2], this equation is formally identical to the forced inviscid Burgers

equation. Given that En and Pn have the form (2.12) and using the CFT value as initial

condition, it is not hard to check that the solution to (2.16) is given by

En(µ,L)L ≡ E(µ̃) =
2π

µ̃

[
1−

√
1 − 2µ̃Mn + µ̃2J2

n

]
Mn = ∆n+ ∆̄n−

c

12
, Jn = ∆n− ∆̄n , µ̃ ≡ πµ

L2
.

(2.17)

This relation reduces to the usual CFT value at µ̃ → 0, and to the formula (2.11) for

∆n = ∆̄n = 0.

The spectrum as a function of µ̃ takes the form plotted in figure 1 for ∆n = ∆̄n. With

an eye towards large c CFTs, we have scaled the energies and µ̃ by c. The lowest energy

level plotted is the ground state. The state with ∆n + ∆̄n = c
12 (corresponding to the

M = 0 BTZ black hole) has zero energy independent of µ.

6To see this, note that in euclidean signature Hint =
∫
dθLint . This gives ∂

∂µ
〈H〉 =

∫
dθ 〈T T̄ 〉 = L 〈T T̄ 〉.
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Figure 1. The energy levels En at L = 2π and J = 0 as a function of µ for different values of

E(0) = ∆n + ∆̄n − c
12 . States with E(0) > 0 that correspond to black holes in holographic CFTs

are plotted in blue, while low-lying states are plotted in orange. For µ > 0 that is the relevant

regime in our study we used solid lines, while for µ < 0 the spectrum is plotted with dotted lines.

The levels exhibit a square root singularity at the critical value µE(0) = 2π. This indicates that,

for given µ, the energy spectrum of the deformed CFT is bounded by E < 8
µ , indicated on the plot

by a dashed black line.

2.5 Thermodynamics

The formula (2.17) has a nice scaling form and does not depend on the UV cutoff. It

can be read as describing the µ dependence of an energy level En at fixed L, or as the

variation of the energy under an adiabatic change in the circumference L at fixed µ. Note

that En(µ,L,∆n, ∆̄n) is a monotonic function of ∆n and ∆̄n, so energy levels indeed do

no cross as we vary µ or L. Hence the entropy remains µ independent and at high energy

is given by the Cardy formula S = 2π
√

c
6(∆n− c

24) + 2π
√

c
6(∆̄n− c

24) [26].

Equation (2.17) exhibits a square root singularity for some critical value of µ̃, called

the ‘shock singularity’ in [1].7 When ∆n+∆̄n >
c

12 , the singularity occurs for positive value

of µ. Its appearance indicates the presence of a high energy cutoff, and seems to suggest

that for given µ̃ the spectrum of the T T̄ QFT truncates above a critical value for the

conformal dimension. The scale at which the spectrum truncates is where a naive analysis

would have predicted locality to break down.8 Hence the deformed CFT on a cylinder has

only a finite number of quantum states. Since the Cardy entropy monotonically grows with

energy, we can also interpret this truncation as a bound on the total entropy of the system.

7In the application of the Burgers equation to fluid mechanics, E(µ,L) represents the fluid velocity, with

µ = time and L = position. The square root singularity then corresponds to the formation of a shock wave.
8The dimensionless coupling constant, that indicates the scale at which the theory may break down,

is the product of µ and the energy density, µ̃M . This becomes O(1) where (2.17) has the square root

singularity.
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The energy and entropy bound take the form

E < Emax =
2L

µ
, S < Smax = L

√
c

6πµ
. (2.18)

We will see that, on the gravity side, the state with maximal energy and entropy that

saturates this bound corresponds to a maximal size black hole, that still fits inside the

cutoff AdS space-time.

From now on we specialize to the non-rotating case J = 0. The equation of state of

the deformed CFT defines a relation between the energy E, the circumference L, and the

entropy S

EL− µ

4
E2 =

3S2

2πc
. (2.19)

For µ = 0, this reduces to the usual Cardy formula. From (2.19) we can derive other

thermodynamic quantities, such as temperature and pressure, via the first law

dE = TdS − pdL (2.20)

where the derivatives are taken while keeping the dimensionful coupling constant µ fixed.

We thus obtain the following relations between the entropy density s = S/L, energy density

ρ = E/L, pressure p, and temperature T

ρ/ρH = 1−
√

1− s2/s2
H , p =

ρ

1− ρ/ρH

,

p/ρH =
√

1 + T 2/T 2
H − 1 , T/TH =

s/sH√
1− s2/s2

H

.
(2.21)

Here we introduced the critical values

ρH =
2

µ
, sH =

√
2πc

3µ
, TH =

ρH

sH
=

√
6

πcµ
. (2.22)

Note that all these critical values diverge for µ→ 0. One easily verifies that (2.21) reduces

to the standard CFT relations in this limit. From equation (2.21) we verify the standard

relation p = −ρ+ sT , and obtain the free energy as a function of the temperature [3]

F = E − TS =
2L

µ

(
1 −

√
1 + T 2/T 2

H

)
. (2.23)

The propagation speed vs of sound waves will play a central role in the comparison

between the deformed CFT and gravity. For the non-rotating case J = 0, we can compute

vs via

vs =

√
∂p

∂ρ
=

1

1− ρ/ρH

=
1√

1 − 2µ̃M
. (2.24)

with µ̃ = πµ
L2 . We observe that for µ > 0 sound waves propagate at superluminal speeds,

and moreover that the temperature, pressure, and the sound speed all diverge at a critical

values for the energy and entropy density. Near this critical value, the compressibility

and the heat capacity of the system both go to zero. This singular behavior is another

indication that the deformed CFT has a UV cutoff. As we will see in the following sections,

the superluminal sound speed and the divergence of pressure and temperature all have a

direct physical interpretation in the gravity dual description.
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2.6 Equivalence to Nambu-Goto

There exists an instructive relationship between the deformed CFT and the Nambu-Goto

(NG) string. This relationship is most explicitly understood for the case that the CFT has

central charge c = 24, where it can be shown to be a direct equivalence with the worldsheet

theory of critical string theory. Moreover, this reformulation makes manifest that, in this

special case, the T T̄ deformed CFT represents a well defined, unitary and exactly soluble

quantum system. This observation could help alleviate some possible worries the reader

may have about the UV completeness of the theory.

Starting with some general CFT with c = 24, we define the deformed theory by adding

two free massless scalar fields X+ and X−. The total action reads

SQFT = SCFT +
1

2µ

∫
d2x ∂αX

+∂αX− . (2.25)

In the analogy with a string worldsheet theory, the free fields play the role of light-cone tar-

get space coordinates, whereas the CFT represents some general (abstract) 24-dimensional

target space. Note that the kinetic term of the scalars X± has the opposite sign to the

usual NG string. Just like one would in the NG formulation of string theory, we supplement

the free field equation of motion ∂u∂vX
± = 0 with the Virasoro conditions9

− ∂uX+∂uX
− + µT CFT

uu = 0 , −∂vX+∂vX
− + µT CFT

vv = 0 . (2.26)

Here u and v denote the light-cone coordinates on the worldsheet. The con-

straints (2.26) implement gauge invariance under arbitrary conformal transformations

(u, v) → (ũ(u), ṽ(v)). We can use this invariance to choose special worldsheet coordinate

(x+, x−) such that10

∂+X
+ = ∂−X

− = 1 . (2.27)

This gauge choice is analogous to the light-cone gauge in string theory. It identifies the

worldsheet light-cone coordinates with the respective chiral halves of the target space light-

cone coordinate fields: X+(x+, x−) = x+ + X̃+(x−) and X−(x+, x−) = x− + X̃−(x+).

The other chiral halves of the light-cone fields are determined by integrating the Virasoro

conditions

−∂−X++ µT CFT
−− = 0 , X+ = x+ + µ

∫ x−

T CFT
−− ,

=⇒
−∂+X

−+ µT CFT
++ = 0 , X−= x− + µ

∫ x+

T CFT
++ .

(2.28)

9Here we use the terminology Nambu-Goto CFT somewhat loosely. In case the c = 24 CFT is described

by 24 massless free scalars, the action (2.25) combined with the Virasoro constraints (2.26) yield, via the

usual Goddard-Goldstone-Rebbi-Thorn treatment, the standard Nambu-Goto action for a critical string in

D = 26 dimensions. We can consider a more general case, however, in which 24 of the 26 target space

dimensions are replaced by a general target space, described by a general CFT with central charge c = 24.

This is still a critical string theory, with a well defined world sheet theory. We call the world sheet theory

of this more general string theory, defined by (2.25) and (2.26), a Nambu-Goto CFT.
10We thank Juan Maldacena for a helpful discussion on the usefulness of this particular light-cone gauge.
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Following the GGRT treatment of the NG string [27], equations (2.28) provide the quantum

definition of the light-cone coordinate fields. The self-consistency of this identification at

the full quantum level is well established for c = 24, and forms the basis of the no ghost

theorem for the critical NG string [28, 29]. For our context, this theorem provides a direct

proof that the T T̄ deformed CFT with c = 24 is a well defined unitary quantum theory, in

which all Hilbert states have positive norm.

The above reformulation provides an exact non-perturbative definition of the T T̄ de-

formation of a CFT with c = 24. There are several ways to see that the two systems

are indeed equivalent. A first simple check is that the leading order interaction term in

the NG action indeed takes the form of a T T̄ interaction [2, 3]. Conversely, if we insert

equations (2.27) and (2.28) into (2.25), it becomes equal to the action (1.7). Note that

the mapping between the two actions involves a coordinate transformation from the world-

sheet coordinates (u, v) to dynamical target space coordinates (X+, X−) that back react

to stress-energy. From equation (2.28) it is also clear why the above coupling of the CFT

to the dynamical light-cone coordinates leads to non-trivial scattering phase and exchange

relations between left and right-movers of the form (2.9) and (2.10) [30]. Another direct

check is that the energy levels in Nambu-Goto theory are precisely of the form (2.17).11

3 Gravitational energy and thermodynamics

In this section we will make a comparison between the thermodynamic quantities of the T T̄

deformed CFT and those of a BTZ black hole in a region of AdS with finite radial cutoff

r = rc. We will summarize the derivation of the total quasi-local gravitational energy of

the black hole as a function rc [18], and show that it agrees with the QFT result (2.17).

The metric of a BTZ black hole with mass M and angular moment J (with left- and right

inverse temperature β±) can be written as

ds2 = −f2(r)dt2 + f−2(r)dr2 + r2 (dθ − ω(r) dt)2

f2(r) = r2 − 8GM +
16G2J2

r2
, ω(r) =

4GJ

r2
,

M =
r2

+ + r2
−

8G
, J =

r+r−
4G

, β± =
2π

r+ ∓ r−
.

(3.1)

The gravitational action for a 3D space-time with negative cosmological constant Λ =

−1 and with a time-like boundary B is

S =
1

16πG

∫
d3x
√
−g3

(
R+ 2

)
− 1

8πG

∫
B
d2x
√
−g(K + 1) , (3.2)

11As we will see, however, the sign of µ required for our holographic interpretation is opposite to the

standard sign in the Nambu-Goto string. This seems puzzling in view of the result of [31] that in non-linear

QFTs with NG or DBI actions, only one sign of the higher derivative coupling leads to a consistent, causal

theory. Our proposed resolution is that the notion of causality depends on how one defines the detectors

that measure signals. There are two types: a) detectors anchored to the fixed coordinates (u, v), or b)

detectors attached to the dynamical coordinates (X+, X−). Standard NG theory is causal with respect to

detectors of type a), while the holographic theory is causal for detectors of type b). We’ll return to this

point in the next sections.
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where K denotes the extrinsic curvature of the boundary. For simplicity, we omit all

contributions due to matter fields: we assume that the classical matter sources can all be

self-consistently turned off. The classical solutions of (3.2) are therefore locally pure AdS3.

We are interested in all solutions in the neighborhood of a general rotating BTZ black hole

solution with a static boundary B = {r = rc}. We impose Dirichlet boundary conditions,

by fixing the form of the boundary metric

ds2
∣∣
B

= gαβdx
αdxβ = −N2dt2 + e2ϕ(dθ − ωdt)2 . (3.3)

By solving the bulk equation of motion with given boundary condition, the action (3.2)

becomes a functional S[g] of the boundary metric. Note that in (3.2) we have included a

boundary cosmological constant, tuned such that it cancels the leading volume divergence

of the bulk action.

The gravitational energy of the black hole space-time is defined in terms of the variation

of the action functional S[g]. In the parametrization (3.3), this variation takes the general

form [18]

δS =

∫
B
d2xπαβδgαβ =

∫
B
d2x
√
−g
(
−εδN − jδω + pδϕ

)
. (3.4)

The quantities ε, j and p can respectively be interpreted as gravitational energy density,

momentum density, and pressure, as measured on the boundary B. The total energy is

thus obtained by integrating the energy density over the spatial section of B

E =

∮
dθ eϕε . (3.5)

We now want to apply this formalism to compute the quasi-local energy of a rotating

BTZ black hole (3.1) with mass M and angular momentum J inside a Dirichlet wall at rc.

Following [18] we get

E =
rc
4G

[
1−

√
1− 8GM

r2
c

+
16G2J2

r4
c

]
. (3.6)

In the limit rc →∞, this formula reduces to E = M . If we multiply (3.6) by the circumfer-

ence of the circle 2πrc, we obtain a formula for the dimensionless quantity E = 2πrcE, which

perfectly matches with the result (2.17) obtained on the QFT side, provided we identify

M = Mn = ∆n + ∆̄n −
c

12
, J = Jn = ∆n − ∆̄n , µ̃ =

4G

r2
c

=
6

c

1

r2
c

. (3.7)

The first two identifications are completely standard in AdS/CFT. We again recover our

proposed identification between the deformation parameter µ̃ the cutoff radius rc (see

footnote 3).

Note that the definition of the quasi-local energy only makes use of the intrinsic geo-

metric properties of the cutoff space time and its boundary metric, and does not make any

reference to the coordinate system of the asymptotic AdS observer. The thermodynamic

quantities do not change under the change of coordinates in (3.3), t′ = at, θ′ = θ + bt,
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which respects the periodicity θ ∼ θ + 2π. In other words, the formula (3.6) represents

the total energy as measured in the canonical time coordinate of an observer living on the

boundary B, in which the boundary metric has the form (3.3) with lapse N = 1. This is

the right definition for comparison with the definition of energy in the deformed CFT. As

explained in the previous section, due to the combined effect of the T T̄ interaction and

turning on a finite temperature, the metric (as defined as in footnote 1) gets renormalized

relative to the metric of the undeformed CFT. The total energy of the QFT is defined as

the integral of 〈T00〉 = 2i√
g

δ
δg00

logZQFT, defined using the renormalized metric. This is

the quantity that matches between both sides. Combined with the known correspondence

between the Bekenstein-Hawking entropy

S =
πr+

2G
(3.8)

and the Cardy entropy of the CFT, this match between the energy spectra establishes a

complete correspondence between the thermodynamical properties of the deformed CFT

and the BTZ black hole with a sharp radial cutoff.

The holographic duality gives a new physical perspective on the square root singular-

ity (1.9) in the energy levels of the T T̄ deformed CFT. On the AdS side, this singularity in

the gravitational energy (3.6) occurs when the Dirichlet wall approaches the event horizon

of the BTZ black hole. For given µ and rc, the critical behavior indicates an upper bound

on the total energy and entropy

E < Emax =
rc
4G

, S < Smax =
πrc
2G

, (3.9)

which are saturated in the limit that the BTZ black hole completely fills out the space-time

inside the wall at r = rc. While E and S both remain finite in the limit, the temperature

T and pressure p both diverge at this critical value. To compute both quantities, let us

rewrite the QFT equation of state (2.19) in bulk notation

Erc − 2GE2 =
GS2

2π2
. (3.10)

Using the first law (2.20), and the fact that the length of the Dirichlet wall is 2πrc, we

derive that
T =

r+

2π(rc − 4GE)
=

r+

2π
√
r2
c − r2

+

,

p =
E

2π(rc − 4GE)
=

E

2π
√
r2
c − r2

+

.
(3.11)

The divergence in the temperature is explained by the usual Tolman relation, or equiva-

lently, by the fact that a static observer at the boundary must in fact undergo a uniform

acceleration equal to a = r+/
√
g00, with g00 = r2

c − r2
+, in order to stay at constant radius

r = rc. This acceleration diverges at the horizon, and via the Unruh effect, the static

observer thus sees a black hole atmosphere as an incompressible fluid with a diverging

temperature and pressure at the horizon.
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From second equation in (3.11) we directly compute the sound speed via

vs =

√
∂p

∂ρ
=

1

1− 4GE/rc
=

1√
1− r2

+/r
2
c

, (3.12)

which should be compared with the QFT result (2.24) obtained earlier. We now see more

directly that the divergent sound propagation speed for rc = r+ arises from the incompress-

ibility of the near horizon black hole atmosphere. We will study the propagation speed

more closely in the next section.

4 Signal propagation speed

In this section we review Cardy’s argument [13] that in the T T̄ deformed CFT at finite

temperature signals propagate faster or slower than the speed of light. We then consider

the rotating state, and in the appendix the case in which the expectation values of the

stress tensor are arbitrary functions of the light-cone coordinate. We then compare with

the prediction from our proposed holographic dictionary, and find a precise match.

4.1 Propagation speed from QFT

To linear order in the deformation parameter µ, one can regard the deformed CFT (1.1)

as an undeformed CFT coupled to a Gaussian random background metric. The metric

fluctuations represent two spin 2 Hubbard-Stratonovich (HS) fields f, f̄ :

SQFT = SCFT +

∫
d2x

[
−ff̄
µ

+ f̄ T + f T̄

]
. (4.1)

This HS representation can be extended to finite values of the deformation parameter µ

via the more exact formula (5.20) quoted in the introduction. In this section we restrict

ourselves to the linearized regime of small µ. The action (4.1) describes the CFT in the

random metric ds2 = dzdz̄ + f̄
2dz

2 + f
2dz̄

2, or after analytic continuation to Lorentzian

signature via z → x−, z̄ → −x+,

ds2 = −dx+dx− +
f

2
(dx+)2 +

f̄

2
(dx−)2 . (4.2)

For later reference, note that to linearized order we may write this metric as ds2 =

gαβdx
αdxβ with

gαβ = ηabv
a
αv

b
β , v±α ≡ e±α + f±α , (4.3)

where e±αdx
α = dx± specifies the background metric and f+

α dx
α = −1

2 f̄dx
− and f−α dx

α =

−1
2fdx

+ denotes the Gaussian fluctuation. The notation (4.3) will be useful later on,

as it will allow us to vary the background metric gαβ = ηabe
a
αe
b
β independently from the

fluctuating metric (4.3). Indeed, it will be important to keep track of the distinction

between the two metrics and their corresponding light cones. The null geodesics of the

fluctuating metric are specified by

v+
α dx

α ≡ dx+ − f

2
dx− = 0 , or v−α dx

α ≡ dx− − f̄

2
dx+ = 0 . (4.4)
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Let us consider a class of quantum states with non-zero expectation value of the stress

tensor. Examples of such states are a thermal density matrix with finite inverse temperature

β, or a semi-classical coherent state, in which the left- and right-moving component of

the stress tensor have some general position dependent expectation value 〈T++(x+)〉 and

〈T−−(x−)〉. In the above HS representation of the deformed CFT, the fluctuating fields

f, f̄ attain the saddle point value12

〈f 〉 = −µ〈T++〉 , 〈f̄ 〉 = −µ〈T−−〉 . (4.5)

Again we see that the presence of stress-energy affects the effective space-time geometry

of the deformed CFT. This leads to a renormalization of the propagation speed of the

left- and right-moving degrees of freedom. We can compute this effect using the null

geodesics (4.4). At the stationary point of the random metric (4.2), the propagation

speeds are renormalized to

v+ ' 1 + µ 〈T++〉 , v− ' 1 + µ 〈T−−〉 . (4.6)

This is the result that we argued for in the introduction (1.8). For the special case of a

thermal state with left and right-moving inverse temperature β± we have (cf. [13])

〈T±±〉 =
π c

12β2
±

=⇒ v± ' 1 +
πcµ

12β2
±
. (4.7)

For µ > 0, equation (4.7) and (2.24) represent superluminal speeds, while for µ < 0

the renormalized speed is subluminal. The microscopic explanation of this effect is as

follows [13]. The T T̄ term for µ < 0 leads to an attractive interaction and a positive time

delay whenever a left- and right-moving particle collide. At finite temperature, the particles

scatter off of a sea of quasi-particles, and the resulting time delay reduces the propagation

speed. For µ > 0, on the other hand, the repulsive inter-particle interaction leads to a time

advance, and the accumulative effect of the scattering enhances the propagation speed.

It is important to emphasize, however, that this speed is superluminal only relative to

the fixed background metric, and that physics remains causal relative to the fluctuating

metric (4.2). The UV limit of the T T̄ deformed theory with µ > 0 does not define a usual

local CFT, but nonetheless behaves like a causal theory similar to 2D quantum gravity.

4.2 Propagation speed from thermodynamics

We can also compute the propagation speed using the thermodynamic equation of state. As

we have seen in subsection 2.5, by combining the exact formula (2.17) for the µ dependence

of the energy eigenvalues with the Cardy entropy formula of the CFT, we can derive the

exact µ dependence of all thermodynamic quantities, including the speed of sound (2.24).

Here we generalize the discussion to the rotating case.

In the rotating system, the equation of state (3.10) extends to a relation between the

energy E, entropy S, radius L, and angular momentum J of the form

EL− µ

4

(
E2 − 4π2J2

L2

)
=

3S2

2πc
+

π2cJ2

3S2
. (4.8)

12Note that by going to Lorentzian signature we introduce a sign, 〈T 〉 = −〈T−−〉 , 〈T̄ 〉 = −〈T++〉 .
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The first law of thermodynamics generalizes to

dE = TdS − pdL+ ΩdJ (4.9)

where Ω is to be identified with the angular rotation speed, possibly up to a constant shift.

Here the derivatives are taken with µ fixed.

Let us first consider the system in the large L limit, while keeping the energy density

ρ = E/L, (angular) momentum density j = J/L and entropy density s = S/L fixed. We

can then drop the term proportional to J2/L2 in (4.8), since it becomes small relative to

the other terms. In this sense, we can think of this term as a finite size correction. The

pressure and angular chemical potential Ω in the large L limit can be expressed as

p̄ =
ρ

1− µρ/2
, Ω̄ =

2π2cj

3s2(1− µρ/2)
. (4.10)

We notice that the relationship between p and ρ is identical to the non-rotating case. In

particular, we deduce that the speed of sound in this limit is still equal to v̄ =
√

∂p̄
∂ρ =

1
1−µρ/2 . This speed is the same in both directions. This seems surprising, since a priori one

would be inclined to interpret Ω̄ as the angular rotation speed of the QFT fluid. However,

the corresponding linear speed ū = L
2π Ω̄ diverges in the large L limit. So we will instead

interpret Ω̄ as an off-set that has to be subtracted from Ω in order to get the physical

angular velocity. So we will apply the redefinition Ωnew = Ωold − Ω̄.

With this new definition, let us include the finite size term J2/L2. The pressure p and

angular velocity Ω at finite L are given by

p =
ρ− 2π2µ j2/L2

1− µρ/2
, Ω = − 2π2µj

L2(1− µρ/2)
. (4.11)

The first relation reduces to p = ρ at µ = 0, as it should.

We would like to extract the propagation speeds from the two formulas (4.11). First

we note that (
∂p

∂ρ

)
L

=
1− π2µ2j2/L2

(1− µρ/2)2
= v+v− (4.12)

with

v± =
1± πµj/L
1− µρ/2

=
1± µ̃J√

1 − 2µ̃M + µ̃2J2
, (4.13)

where µ̃ = πµ
L2 . Here in the second step we used equation (2.17).

It is reasonable to interpret the quantities v± as the left- and right-moving signal prop-

agation speeds in the rotating deformed CFT. This interpretation is supported by the fact

that the angular rotation frequency Ω and the left- and right velocities v± are related via

v± = v̄ ∓ ΩL

2π
(4.14)

with v̄ = 1/
√

1 − 2µ̃M + µ̃2J2. As we will see shortly, the formula (4.13) for the

propagation speeds agrees with the renormalized velocity computed via the gravity dual.
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4.3 Propagation speed from gravity

The renormalization of the propagation speed has a direct interpretation in the dual gravity

theory as the statement that metric perturbations of a BTZ black hole with Dirichlet

boundary conditions at the fixed r = rc surface travel at superluminal speeds relative to

the fixed boundary metric. The idea of the following calculation was introduced by Marolf

and Rangamani in [15].

Consider a BTZ black hole of mass M and angular momentum J , with the space-time

metric is given in equation (3.1), surrounded by a Dirichlet wall at r = rc. Now consider

a fluctuation in the location of the boundary surface of the form rc → rc + δr(t, θ). The

Dirichlet boundary condition requires that the induced metric on the perturbed boundary

surface remains flat. Computing the Ricci scalar of the induced metric on the perturbed

boundary surface and expanding to linear order in the perturbation, one deduces that

δr(t, θ) satisfies the linear wave equation

R (rc + δr(t, θ)) = − 2

rcf2(rc)

[
−∂2

t + ∂2
θ

]
δr(t, θ) = 0 . (4.15)

We see that, perhaps somewhat expectedly, the fluctuation δr(t, θ) describes a wave propa-

gating along light-like trajectories dt = ±dθ, as measured in the coordinate system anchored

to asymptotic infinity. These light-like trajectories are superluminal relative to the metric

on the cutoff surface itself. To compute their speed as seen by an observer on the cutoff

surface r = rc, let us introduce coordinates tc, θc, so that the induced metric on surface is

proportional to the standard flat metric ds2|r=rc = −dt2c + dθ2
c . In the t, θ coordinates the

induced metric on the wall is

ds2|r=rc = −f2(rc)dt
2 + r2

c (dθ − ω(rc) dt)
2 = r2

c

(
−dt2c + dθ2

c

)
. (4.16)

The change of coordinates that preserves the 2π periodicity of θ is:

dt =
rc

f(rc)
dtc , dθ = dθc − Ω(rc)dtc , Ω(rc) ≡ −

rcω(rc)

f(rc)
. (4.17)

The quantity Ω(rc) is the rotation speed due to the frame dragging effect of the rotating

black hole as experienced at the cutoff surface r = rc. It should be compared with the

thermodynamic quantity Ω given in equation (4.11). The propagation trajectories are

dt = ±dθ =⇒ rc
f(rc)

dtc = ± (dθc − Ω(rc)dtc) . (4.18)

We read off that the left- and right-moving parts of the wave δr(tc, θc) propagate with

velocity

v± =
rc

f(rc)
∓ Ω(rc) =

1± 4GJ
r2c√

1− 8GM
r2c

+ 16G2J2

r4c

. (4.19)

This result precisely matches with the signal propagation speed (4.13) computed from

the thermodynamics of the deformed QFT, provided we identify µ̃ = 4G
r2c

, which via the

relations µ̃ = πµ
L2 = µ

4π (setting L = 2π) and G = 3
2c reproduces the identification µ = 24π

c
1
r2c
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announced in the introduction. Specializing to the J = 0 case, equation (4.19) matches

with (2.24). In the limit of large rc, from (4.19) we obtain v± ' 1 + 2π2/r2
cβ

2
± , which

coincides with the field theory result (4.7).

We generalize the analysis of signal propagation speed to a more general class of states

in which the expectation value of the stress tensor has some arbitrary position dependence.

The computation is presented in the appendix, and we get the following linearized result

v± ' 1 +
16πG

r2
c

〈
T±±(x±)

〉
. (4.20)

The agreement between this result and the propagation speed (4.6) computed in the de-

formed CFT is evidence that our proposed holographic dictionary extends to localized

stress-energy perturbations.

From the gravity side, it still seems somewhat unsettling that the fluctuations of the

boundary surface propagate at speeds that appear to violate boundary causality. So some

clarifying comments may be in order. First we note that the speed (4.19) is equal to

the inverse of the blackening factor, that relates the light-cone at r = rc to light-cone

at asymptotic infinity in AdS. In other words, the speed (4.19) coincides with the light

propagation speed at the asymptotic AdS-boundary. Somehow, the cutoff AdS space-

time inside the Dirichlet wall has memory of the asymptotic light-cone, even though the

asymptotic region is no longer there. A partial explanation for this phenomenon is that

the propagating fluctuation described by (4.15) represents a boundary graviton mode. In

spite of its name, a boundary graviton is not literally localized at the boundary of AdS, but

instead represents a non-local geometric degree of freedom, encoded in the diffeomorphism

that relates the uniformizing coordinate systems at the UV and IR boundaries of the

AdS space-time. This diffeomorphism and the boundary graviton modes are topological

excitations, in the sense that their propagation speed is insensitive to the introduction of

the Dirichlet wall. Hence a bulk observer in AdS can not detect these graviton modes as

superluminal localized excitations that violate local micro-causality constraints.

To gain further insight, it is instructive to view the propagation velocity from the per-

spective of information spreading in the QFT, as the speed by which a small perturbation

in an equilibrium thermal state delocalizes throughout the system [32]. Suppose we act

with a light local operator O(x, t = 0) on the thermal state. The strongly coupled QFT

dynamics delocalizes the perturbation over a region Σ(t) with radius R(t) that grows lin-

early with time with the butterfly velocity vB [24, 33]. To determine vB we look for the

smallest region that contains sufficient information to reconstruct O(x, 0). In the grav-

ity dual, we can evaluate vB via the holographic postulate that the QFT state inside the

boundary subregion Σ(t) completely describes the bulk subregion BΣ contained within the

Ryu-Takayanagi (RT) [34, 35] minimal surface associated with Σ(t). The thermal state

after acting with O(x, 0) is described by a BTZ black hole with a small particle that falls

towards the horizon. The smallest boundary subregion Σ(t) that contains the information

created by O(x, 0) after time t is simply the smallest region such that the corresponding

RT surface still contains the bulk particle [32].
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Figure 2. As a localized wave approaches the horizon, the minimal RT surface that contains the

excitation at time t extends along the horizon over a distance R(t) that grows linearly in time.

This situation is depicted in figure 2. As time passes, the particle falls exponentially

slowly towards the horizon. The minimal RT surface that contains the particle at some

late time t must follow a path that stays exponentially close to the horizon over a distance

R(t), that is roughly equal to the size of the associated boundary subregion. The size of the

boundary subregion grows linearly in time as R(t) ∼ vBt. The butterfly velocity vB is equal

to the speed of light as measured on the asymptotic AdS boundary at r =∞. This means

that the subregion on the cutoff surface at r = rc grows with superluminal speed compared

to the light speed measured at r = rc. This speed is equal to the signal propagation speed

found in (4.19).13 This is further holographic evidence that the effective signal propagation

speed in the finite temperature QFT on the cutoff surface is superluminal.

5 Exact holographic RG

In this section we present some more details about the relationship between the T T̄ de-

formed theory and the holographic RG. On the QFT side, we use the Zamolodchikov equa-

tion to derive an exact RG equation for the scale dependence of the partition function.

We then show that this RG equation is identical to the Hamilton-Jacobi equation that ex-

presses the dependence of the bulk gravity action with a radial cutoff on the radial location

of the boundary. Finally, we present a more precise definition of the T T̄ deformed theory in

terms of a suitable Hubbard-Stratonovich transformation, which has been shown to act as

an intertwining map between the Weyl anomaly equation of a 2D CFT partition function

and the Wheeler-DeWitt equation in 3D gravity [20, 21]. This correspondence further sub-

stantiates our interpretation of the coupling constant µ as the radial location in the bulk.

5.1 Zamolodchikov and Wilson-Polchinski

The T T̄ deformed conformal field theories are interesting and special, because they allow

for an exact study of their renormalization group flow. The T T̄ interaction term introduces

an effective UV cutoff scale, parametrized by the irrelevant coupling µ. Hence if we con-

sider the deformed CFT on a 2D space-time with arbitrary metric ds2 = gαβdx
αdxβ , the

13This result comes from comparing the opening angle of the light cone on the cutoff surface and asymp-

totically in the coordinates (3.1). The computation is logically different from the one used to derive (4.19),

but they give the same result.
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partition function and all other quantities will acquire a non-trivial dependence under Weyl

rescalings. The goal of the exact renormalization group is to give a complete description

of this scale dependence.

Metric variations of QFT quantities are governed by the action of the stress-energy

tensor. Variations of the Weyl factor are generated, on the one hand, by inserting the

trace of the stress tensor Θ = 1
4T

α
α , and on the other hand by varying the T T̄ coupling

µ, which amounts to an insertion of the composite operator T T̄ . Our strategy is to write

this relation, in combination with the Zamolodchikov equation, in the form of an exact RG

equation. Here we will work to leading order in a derivative expansion, a more complete

presentation is given in subsection 5.3.

To extract the behavior of the partition function under Weyl transformations, we

separate out the scale factor, and parametrize the 2D metric via

ds2 = e2ϕ(x) ĝαβdx
αdxβ , (5.1)

where ĝαβ specifies a unit determinant metric. By definition we have

〈Θ〉 ≡ −e
−2ϕ

4

δ logZQFT

δϕ
. (5.2)

The undeformed CFT partition function transforms as ZCFT(g) = eA(ϕ,ĝ)ZCFT(ĝ) where

the prefactor eA(ϕ,ĝ) accounts for the scale dependence due to the trace anomaly

δA(ϕ, ĝ)

δϕ
= − c

24π
e−2ϕR(ϕ, ĝ) , (5.3)

where c is the central charge of the CFT. Putting this together with (5.2), the trace anomaly〈
Θ
〉

= − c
96π R(ϕ, ĝ) in a CFT follows.

One can easily establish to first order in conformal perturbation theory that in flat

space in the deformed theory: 〈
Θ
〉

= −µ
2

〈
T T̄
〉
. (5.4)

It was found in [2], for the special case of free scalars treated as a classical field theory, that

this equation holds to all orders in µ. We will assume that this is true for any deformed

CFT.

Motivated by combining the trace anomaly (5.3) and (5.4), we conjecture that for

holographic CFTs 〈
Θ
〉

= − c

96π
R(ϕ, ĝ)− µ

2

〈
T T̄
〉
, (5.5)

where T T̄ is short-hand for the combination

T T̄ =
1

8

√
g gαγgβδ

(
TαβTγδ − TαγTβδ

)
, (5.6)

together with the Zamolodchikov relation (1.10) holds for an arbitrary ϕ. Then we can

factorize 〈T T̄
〉

to obtain for ĝαβ = ηαβ ,

〈Θ〉 = − c

96π
R(ϕ)− µ

2

(
〈T 〉

〈
T̄
〉
− 〈Θ〉 〈Θ〉

)
. (5.7)
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This is our proposed form of the exact renormalization group equation of the T T̄ deformed

CFT. It can be shown to hold exactly for hyperbolic (and flat) space, hence for slowly

varying ϕ it should be regarded as the leading term in a derivative expansion. Below,

we will provide concrete evidence that for holographic CFTs, the subleading terms in the

derivative expansion are negligible, and (5.7) continues to hold at finite values of µ and

arbitrary ĝαβ . This is the main result of this section.

Suppose we define an effective action Scl(g, µ) via14

ZQFT(g, µ) ≡ exp
(
− c

24π
Scl(g, µ)

)
. (5.8)

With this definition, we can rewrite equation (5.7) as15

δScl

δϕ
= −e2ϕR(ϕ, ĝ)− cµ

24π
e−2ϕ

(
ĝαγ ĝβδ

δScl

δĝαβ
δScl

δĝγδ
− 1

8

(
δScl

δϕ

)2
)
. (5.9)

This an exact flow equation for the effective action Scl(g, µ) analogous to the Wilson-

Polchinski exact RG equation. It has been recognized for some time [9] as we will now

show, this equation precisely agrees the Hamilton-Jacobi equation that describes the radial

dependence of the classical action in 3D gravity on an AdS space-time with a radial cutoff,

provided we set µ = 24π
c .

5.2 WDW and Hamilton-Jacobi

We give a brief review of the holographic RG and its relation with the Wheeler-DeWitt and

Hamilton-Jacobi equations. As we have done throughout this paper, we will concentrate

on the dynamics of the bulk metric only, and assume that all other bulk matter fields are

in their vacuum configuration and do not contribute any stress-energy or higher curvature

corrections. Hence we will assume that the bulk is describe by pure Einstein gravity.

The holographic correspondence relates renormalization group flow in the CFT to

radial evolution in the AdS space-time. The idea is to describe this evolution via a Hamil-

tonian formalism in which the radial direction plays the role of a euclidean time. We start

by writing the 3D metric in the ADM parametrization corresponding to a foliation of the

3D manifold by constant r slices

ds2 = N2dr2
c + gαβ

(
dxα +Nαdr

)(
dxβ +Nβdr

)
(5.10)

14Here the normalization is chosen with an eye towards gravity where the prefactor would equal 1/16πG.
15We start the rewriting of (5.7) by decomposing the stress tensor and metric variations into traceless

and trace parts Tαβ = T̂αβ +
gαβ
2
T γγ , and δgαβ = e−2ϕ

(
δĝαβ − 2ĝαβ δϕ

)
. This leads to the relation:

δ logZQFT =

∫
d2x
√
g

[
1

2
e−2ϕ T̂αβ δĝ

αβ − Tαα δϕ
]
.

Equation (5.9) follows by combining this relation with the fact that

〈T 〉
〈
T̄
〉

=
1

8
gαγgβδ

〈
T̂αβ

〉〈
T̂γδ
〉
.
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Here N denotes the lapse, gαβ the metric on a radial slice, and Nα the shift vector. Next

we write the 3D Einstein action, including the boundary action given in (3.2), in the ADM

decomposition

Sgrav =

∫
d3x

(
παβ ġαβ −NαHα −NH

)
. (5.11)

where the dot indicates derivative with respect to the radial coordinate r, Hβ = 2∇απαβ
are the generators of 2D diffeomorphisms along the slice,

H = 2παα +
1
√
g

(
παβπαβ − (παα)2

)
−√gR (5.12)

denotes the ADM Hamiltonian, and R is the two dimensional Ricci scalar of gαβ .16 Here

the variable παβ denotes the canonically conjugate variable to the metric gαβ , and R is the

scalar curvature on the radial slice. The shift and lapse functions are Lagrange multipliers

enforcing the momentum and Hamiltonian constraints Hα = H = 0.

Now let us define Scl(g) as the value of the total 3D action Sgrav evaluated on the

classical background geometry with boundary values at r = rc given by

ds2|r=rc = gαβ(x)dxαdxβ . (5.14)

The boundary values of all other bulk fields besides the metric are set to zero. We assume

that their bulk dynamics can be consistently decoupled from the bulk dynamics of the

metric.17

The Hamilton-Jacobi equation is a functional differential equation that governs how

the on-shell value of the bulk action Scl(g), defined as in (3.2), depends on the boundary

value of the metric. It can most easily be derived by first consideingr the semi-classical

partition function of the bulk theory with the same given boundary conditions. In the

saddle point approximation

Zgrav(g) = exp

(
− 1

16πG
Scl(g)

)
. (5.15)

By letting the radial direction play the role of time, we are led to interpret this partition

function as a wave-functional of the boundary metric g. Accordingly, it must solve the

gravitational analogue of the Schrödinger equation, commonly known as the Wheeler-

DeWitt constraint

HwdwZgrav(g) = 0 , (5.16)

16This form of the ADM Hamiltonian follows from the more standard expression

HADM =
1
√
g

(
π̃αγ π̃αβ − (π̃αα)2

)
−√g (R+ 2) (5.13)

via the replacement π̃αβ = παβ−
√
ggαβ . This shift incorporates the extra boundary cosmological constant

in (3.2), and is designed to cancel out the constant vacuum energy term while replacing it by a linear term

proportional to παα . This is a key step in the holographic renormalization procedure and for rewriting the

radial evolution as an RG flow.
17Note that, without loss of generality, we have set rc = 1 compared to equation (1.2). The radial AdS

direction is uniquely parametrized by the Weyl factor of the metric.
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where Hwdw defines a functional differential operator, given by replacing in the classical

ADM Hamilton (5.12) the momentum variables παβ by the functional derivative with

respect to the metric

παβ = −1

κ

δ

δgαβ
, κ ≡ 1

16πG
. (5.17)

The WDW constraint (5.16) reduces to the Hamilton-Jacobi equation upon inserting (5.15)

and taking the limit κ→∞.

Let us again separate out the scale factor and parametrize the 2D metric as in (5.1).

Since ϕ is a monotonic function of the radial coordinate r, it serves as a good parametriza-

tion for the bulk radial direction. In terms of these variables, the WDW Hamiltonian (5.12)

takes the form18

Hwdw = 2π + e−2ϕ

(
π̂αβπ̂αβ −

1

2
π2

)
− e2ϕR ,

π̂αβ = −1

κ

δ

δĝαβ
π =

1

2κ

δ

δϕ
,

(5.18)

where indices are now contracted with ĝ. Note the factor of −1/2 in the equation re-

lating π to δ/δϕ, which can be easily determined by acting on
√
g with both operators.

Inserting (5.15) into (5.16) and taking the κ→ 0 limit yields the HJ-equation

δScl

δϕ
+ e−2ϕ

(
ĝαγ ĝβδ

δScl

δĝαβ
δScl

δĝγδ
− 1

8

(
δScl

δϕ

)2
)

+ e2ϕR(ĝ, ϕ) = 0 . (5.19)

Via holography, this equation acquires the meaning of an exact RG equation for the effective

action of a CFT with a UV cutoff, defined by integrating out all CFT degrees of freedom

above a scale associated to the value of the Weyl factor eϕ. Up to now, however, it has not

been clear what this holographic UV cutoff exactly looks like from the QFT perspective.

The precise match with the exact RG equation (5.7)–(5.9) is strong evidence that this

preferred holographic UV cutoff is given by the T T̄ deformation.

5.3 WDW from Hubbard-Stratonovich

The above results all have the following common geometric origin. Early studies of the

modular geometry of the conformal block in 2D CFT revealed a deep connection with

quantum states of 3D gravity. Based on this, it has been known for some time that the

partition function of a 2D CFT can be mapped to a solution of the WDW equation of 3D

gravity via an integral transform [20, 21]. From the CFT perspective, this transform looks

like a T T̄ deformation, rewritten in terms of a Gaussian integral over metric fluctuations.

To write the integral transform, it is convenient to parametrize the metric by means

of a zweibein ea = eaαdx
α via gαβ = δabe

a
αe
b
β . The CFT partition function ZCFT(e) is a

reparametrization and local Lorentz invariant functional, with scale dependence fixed by

the trace anomaly. Suppose we now define the T T̄ deformed theory such that its partition

function ZQFT(e) is obtained from the CFT partition function via (cf. equation (4.3))

ZQFT(e) =

∫
Df e

2
µ

∫
f+∧f−

ZCFT(e+f) . (5.20)

18Here we use the decomposition παβ = e2ϕ
(
π̂αβ + 1

2
ĝαβπ

)
with π = παα .
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It is not self-evident that this definition of the deformed CFT is equivalent to the one we

used so far, dS
(µ)
QFT/dµ =

∫
d2x (T T̄ )µ,. However, as we show below, they both lead to the

same detailed match with 3D gravity, which suggests that the two definitions do coincide

for holographic CFTs with large central charge. It was shown by Freidel in [21], based on

earlier work [20], that this integral transform acts like an intertwining map between the

trace anomaly and the WDW equation(
δ

δϕ
− c

24π
e−2ϕR(g)

)
ZCFT(g) = 0 =⇒ Hwdw ZQFT(g) = 0 , (5.21)

where Hwdw given in equation (5.12) and (5.17), and where the central charge c and the

Newton constant are related to µ via [21]

c = 1 +
24π

µ
,

1

16πG
≡ κ = µ−1 . (5.22)

The constraint equations (5.21) both hold locally at every point in 2D space-time.

The integral transform (5.20) can be transferred to inside the CFT functional integral.

This yields the following formula for the action of the deformed theory

SQFT(e) = min
f

(
SCFT(e+ f) − 2

µ

∫
f+∧ f−

)
. (5.23)

Given that for small fluctuations SCFT(e+ f) = SCFT(e)−
∫ (
f+
α T

α
+ + f−α T

α
−
)

with T α± =

Tαβe
β
± = −1

e
δSCFT

δe±α
, this looks like a Hubbard-Stratonovich representation described in

section 4.1 of the T T̄ deformed theory (1.1) as a Gaussian integral over a fluctuating

metric with deformation parameter µ. In the large c limit, the integral transform (5.20)

can be performed via a semi-classical approximation, and thus amounts to performing a

Legendre transformation. For small stress-energy fluctuations, the formula (5.23) for the

QFT action then reduces to SQFT = SCFT + µ
∫
d2xT T̄ .

In the semi-classical large c limit, Freidel’s result amounts to the statement that

Sgrav(e) = min
f

(
SCFT(e+ f) − 2κ

∫
f+∧ f−

)
. (5.24)

where Sgrav(e) = κScl(e) is the classical bulk gravity action with boundary conditions

gαβ = δabe
a
αe
b
β at the cutoff surface r = rc. The derivation of this universal result relies on

the fact that the metric dependence of the CFT action is fixed by the conformal anomaly

and given by the Polyakov action

SCFT(e) =
c

192π

∫
d2xR�−1R . (5.25)

The precise equality

Sgrav(g) = SQFT(g) (5.26)

between the bulk gravity action (5.24) and the metric dependence of the effective ac-

tion (5.23) of the deformed CFT guarantees that all correlation functions of the stress-

energy tensor in the deformed 2D CFT exactly match with those obtained from hologra-

phy. The result (5.26) generalizes the known match between the holographic and CFT
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conformal anomalies [36] to the new situation, where the boundary is placed at a finite

distance from the center of the bulk.

We refer to [21] for a detailed derivation of the result (5.21). Here we just add a short

comment about its underlying intuition. The integral transform (5.21) has a geometrical

significance as an gluing operation that combines together the wave-functions of two chiral

gravity theories (given by the chiral conformal blocks of the CFT) into a single non-chiral

wave-function (given by the partition function ZQFT). It has long been known [20] that

the conformal Ward identities satisfied by a chiral conformal block in 2D CFT are identical

to the physical state conditions on wave-functions of chiral gravity, provided one uses a

holomorphic polarization on its phase space — that is, provided one writes the chiral

wave-function in terms of complex variables analogous to the coherent state basis of a

harmonic oscillator. In short, CFT conformal blocks, when viewed as functionals of the

corresponding chiral zweibein e+ (or e−) are coherent states of chiral 3D gravity [20].

Gluing the chiral coherent state wave-functions together into a real solution of the non-

chiral WDW equation requires performing an integral transform, analogous to the integral

transform that rewrites the coherent state basis of a harmonic oscillator into a wave-

function in the position representation. In the first order formulation of 3D gravity, this

integral takes the form of a Gaussian integral given in (5.21).

The integral transform (5.21) gives a well-controlled definition of the T T̄ deformed CFT

at large central charge. With this definition, the result by Freidel provides an independent

derivation of the Zamolodchikov formula (1.10) and the corresponding exact RG equation.

Moreover, it implies that for large c, the all n-point connected correlation functions of the

stress tensor computed in the QFT are identical to the correlation functions computed via

pure 3D gravity

(−2)n
√
g1
√
g2 . . .

√
gn

δSgrav(g)

δgαβ1 δgβγ2 . . . δgρσ2

=
〈
Tαβ(x1)Tβγ(x2) . . . Tρσ(xn)

〉conn

QFT(g)

with gαβi = gαβ(xi), etc. This relation looks perhaps more miraculous than it really is.

The right-hand side is fixed by the conformal anomaly and Ward identities, and depends

only on one single dimensionless number, the central charge c. Similarly, the correlation

functions of boundary gravitons in 3D gravity are fixed by the AdS analogue of soft-graviton

theorems and only depend on the ratio of the AdS scale and the Planck scale. Still, this

result is a useful extension of the standard AdS/CFT dictionary, that may open up new

ways of probing the gravitational bulk physics.

6 Conclusion

In this paper, we studied the class of 2D effective QFTs defined by turning on an irrelevant

T T̄ deformation in a general 2D CFT. We proposed that in the holographic dual, the defor-

mation corresponds to introducing a rigid cutoff surface that imposes Dirichlet boundary

conditions at a finite radial location r = rc in the bulk. As a check of the duality, we have

shown that the energy spectrum, thermodynamic properties, propagation speeds, and the

metric dependence of the partition function agree on both sides. This correspondence is
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largely explained by the precise identification between the 2D conformal Ward identities

and the physical state conditions in 3D gravity.

There are many open questions. It will be important to establish whether the T T̄

deformation indeed produces a well defined unitary quantum system. We have seen that

for CFTs with c = 24, the deformation is equivalent to the Nambu-Goto formulation of

the string worldsheet theory on some general target space. The NG theory is soluble and

appears to be a well defined deformation of the CFT for both choices of sign, including

the one that leads to superluminal propagation speeds relative to the non-dynamical back-

ground metric. This indicates that the T T̄ deformation is also consistent for large c CFTs,

but a general proof is not yet available.

It is natural to ask whether some of our results can be extended to higher dimension.

The main catalyst our story, the Zamolodchikov equation (1.10), looks like a large N

factorization property. So it seems plausible that an analogous equation can be derived in

large N CFTs in higher dimensions. However, since conformal symmetry is less restrictive

for d > 2, it is not clear if such an equation can be used to derive analogous unique flow

equations for the energy levels and the partition function. Even so, it would be instructive

to explore what double trace technology can teach us about the T T̄ deformed theory.

Because the stress tensor is normalized such that its two-point function is 〈T T 〉CFT =

O(N2), in order for the double trace coupling µ to appreciably influence the dynamics,

and to preserve the structure of the large-N expansion, it has to be µ = O(1/N2) or

parametrically larger. In the regime where rc/`AdS = O(1), µ is indeed of this order. To

explore sub-`AdS scale physics we cannot rely on a perturbative expansion in 1/N , and non-

perturbative methods are needed. We have seen that, in two dimensions and for correlation

functions of the stress tensor, such non-perturbative methods are indeed available.

It was suggested in [37] based on the Hubbard-Stratonovich presentation of the T T̄

deformed theory (4.1) that the µ → ∞ limit of large N CFTs is the CFT coupled to

(emergent) quantum gravity. Our interpretation of the evolution of the spectrum with µ

given in (2.17) implies that this theory has only very few states, which would be interesting

to understand from the emergent gravity perspective.

For most of our computations, we have restricted our attention to long distance prop-

erties of the T T̄ QFT. Indeed, it is not clear whether it is possible to define true local

operators, that probe or excite the QFT at arbitrarily short distance scales. We have seen

that turning on the T T̄ interaction leads to fluctuations in the effective metric that grow

large in the UV. The randomness of the dynamical UV metric complicates the task of

finding a precise holographic map analogous to the standard GKPW dictionary QFT and

gravity observables. Still, it would be worthwhile to study the properties of localized probes

in the QFT, other than stress tensors, and investigate whether is it possible to compute

correlation function at sub-AdS distances, as measured at the cutoff surface. If we define

the dimensionless coupling as the ratio

µ̄ ≡ dimensionless coupling =
µ

∆θ2
=

24π

cr2
c

1

∆θ2
=

24π

c

1

d2

d ≡ distance scale in AdS units = rc∆θ ,
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we see that the T T̄ interaction and the associated metric fluctuations remain small all the

way down to the short distance scale dplanck =
√

24π
c `AdS. So in this sense, we should

be able to use the T T̄ QFT to probe bulk physics at sub-AdS distance scales. The key

questions, however, are how to extend our calculations to general operators O and how the

bulk physics in this regime is affected by the presence of the cutoff surface. Assuming that

the cutoff surface continues to behave like a Dirichlet wall, correlation functions at this

short distance scale should behave similar correlation functions in a gravitational theory

in flat space.
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A Propagation speed in general backgrounds

In this appendix we generalize the analysis of signal propagation speed presented in sec-

tion 4.3 to a more general class of states. These resemble Bañados geometries, except that

the induced metric is flat on the Dirichlet wall at ρ = ρc. To impose this, we start with

the metric Ansatz:

ds2 =
dρ2

ρ2
− ρ2

cdx
+dx−

+ (ρ2 − ρ2
c)h

(1)(x+, x−)αβdx
αdxβ +

(
ρ4
c

ρ2
− ρ2

c

)
h(2)(x+, x−)αβdx

αdxβ ,

(A.1)

where we used the property of 3D gravity that expansions in ρ terminate after a couple

of orders. Note that setting ρ = ρc eliminates the second line in (A.1) and the metric on

the Dirichlet wall is ds2|ρc = −ρ2
cdx

+dx−. Plugging into Einstein’s equations, we get that

h
(1,2)
αβ can be parametrized by two functions:

h
(1)
αβ =

c− 1

4
Mαβ , h

(2)
αβ =

c+ 1

4
Mαβ , Mαβ ≡

(
a −c
−c b

)
, c ≡

√
ab+ 1 , (A.2)

where the functions a(x+, x−), b(x+, x−) satisfy

∂−a+ ∂+c = 0 , ∂+b+ ∂−c = 0 , c =
√
ab+ 1 , (A.3)
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which is a set of coupled nonlinear PDEs.19 These can be solved in a series form:

a(x+, x−) = εA′(x+)− ε2

2
A′′(x+)B(x−) +O(ε3)

b(x+, x−) = εB′(x−)− ε2

2
A(x+)B′′(x−) +O(ε3) ,

(A.6)

hence c = O(ε2). Of course, this is locally just AdS3 in complicated coordinates.

Now consider a fluctuation in the location of the Dirichlet wall ρc → ρc + δρ(x+, x−),

and require that the resulting metric stays flat

0 = R (ρc + δρ(t, θ)) = − 8

r3
c

[
∂+∂− +

ε

2

(
A′(x+)∂2

− +B′(x−)∂2
+

)]
δρ(x+, x−) +O(ε2, δρ2) .

(A.7)

Assuming that A′(x+) and B′(x−) are slowly varying, we get the corrected propagation

speeds to be:

v+ = 1− εB′(x−) , v− = 1− εA′(x+) . (A.8)

To O(ε) the metric (A.1) takes the form

ds2 =
dρ2

ρ2
−ρ2

cdx
+dx−+

(
ρ4
c

ρ2
− ρ2

c

) ( ε
2
A′(x+)(dx+)2 +

ε

2
B′(x−)(dx−)2

)
+O(ε2) . (A.9)

From the behavior of the metric near r = rc and the usual definition of the holographic

stress tensor [17], we deduce the following expectation values in the dual field theory:

〈
T++(x+)

〉
= − ρ2

c

16πG
εA′(x+),

〈
T−−(x−)

〉
= − ρ2

c

16πG
εB′(x−) . (A.10)

We combine this equation with (A.8) to obtain (4.20). We note that there is an in-

triguing connection between this equation and the Nambu-Goto string: if we rename

X− ≡ −εB, X− ≡ −εA, we obtain the Virasoro conditions (2.28).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

19It is instructive to write down the planar BTZ black hole in this parametrization, which takes the form:

ds2 =
dρ2

ρ2
− ρ2cdx+dx− −

2ρ6c
(ρ4c − 1)2

[
(ρ2 − ρ2c) +

(
1

ρ2
− 1

ρ2c

)](
dx+ dx−

) d
ρ4c+1

2ρ2c
ρ4c+1

2ρ2c

1
d

(dx+
dx−

)
(A.4)

where we chose ρc > 1, and d > 0 is a parameter characterizing the solution. In the parametrization (A.2)

the solution corresponds to

a = − 2ρ2c
ρ4c − 1

d , b = − 2ρ2c
ρ4c − 1

1

d
. (A.5)
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