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Realistic predictions of climate change effects on natural resources are central to

adaptation policies that try to reduce these impacts. However, most current forecasting

approaches do not incorporate species-specific, process-based biological information,

which limits their ability to inform actionable strategies. Mechanistic approaches,

incorporating quantitative information on functional traits, can potentially predict

species- and population-specific responses that result from the cumulative impacts

of small-scale processes acting at the organismal level, and can be used to infer

population-level dynamics and inform natural resources management. Here we present

a proof-of-concept study using the European anchovy as a model species that shows

how a trait-based, mechanistic species distribution model can be used to explore the

vulnerability of marine species to environmental changes, producing quantitative outputs

useful for informing fisheries management. We crossed scenarios of temperature and

food to generate quantitative maps of selected mechanistic model outcomes (e.g.,

Maximum Length and Total Reproductive Output). These results highlight changing

patterns of source and sink spawning areas as well as the incidence of reproductive

failure. This study demonstrates that model predictions based on functional traits

can reduce the degree of uncertainty when forecasting future trends of fish stocks.
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GRAPHICAL ABSTRACT | Climate-informed management at sea.

However, to be effective they must be based on high spatial- and temporal resolution

environmental data. Such a sensitive and spatially explicit predictive approach may be

used to inform more effective adaptive management strategies of resources in novel

climatic conditions.

Keywords: climate-informed management, Dynamic Energy Budget model, Engraulis encrasicolus, life-history

traits, scenarios, temperature increase

INTRODUCTION

Understanding and forecasting how ongoing climate change will
likely alter the structure and functioning of ecosystems is one
of the central challenges facing marine environmental managers
(van de Pol et al., 2017). This task is especially challenging
due to the high levels of spatial and temporal heterogeneity
in climate- and non-climate-related drivers (Lohrer et al.,
2015), the interaction of multiple stressors on organisms
and ecosystems (Crain et al., 2008) and high variability in
the vulnerability of different species to environmental change
(Gunderson et al., 2016).

Specifically, whilst climate change is a global phenomenon,
species respond physiologically and behaviorally to local
environmental conditions (Helmuth et al., 2014; Bates et al.,
2018). Scaling up responses to forecast future responses
of ecosystems and their component species requires an
understanding of how key drivers will individually and
collectively affect ecosystem composition, structure, and function
at local scales; however, large gaps still exist in our basic
knowledge of most marine species (Fulton, 2011; Pecl et al.,
2014, 2017). Tools are needed that, whilst being informed by
knowledge of current distribution patterns, can also account
for organisms’ vulnerability to a broader range of conditions
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than those currently or previously observed (Solow, 2017). To
improve projections of the future status of individual species
and ecosystems, and to effectively support the development
of more sustainable policies that minimize expected impacts
and maximize potential opportunities, as in the case of
fisheries management, novel combinations of modeling and field
and laboratory experimentation are recommended to prevent
mismatch between physical drivers and ecological processes
(Bates et al., 2018; Korell et al., 2019). An integrated approach that
incorporates biological realism is necessary to produce reliable
forecasts at spatiotemporal scales relevant to organisms and
populations (Burrows et al., 2011; Helmuth et al., 2014; Pacifici
et al., 2015; van de Pol et al., 2017; Queirós et al., 2018).

The adoption of a risk-based approach and of process-based
(hereafter mechanistic) models has been recently suggested to
improve such predictions (Pecl et al., 2014; Pacifici et al., 2015;
Fordham et al., 2017). By using functional trait-basedmechanistic
bioenergetics (sensu Sousa et al., 2008, 2010; Kooijman, 2010; Sarà
et al., 2013a, 2018) derived from experimental data, mechanistic
models are able to incorporate the effects of environmental
drivers at levels that exceed the range of values currently
operating in nature (Teal et al., 2018). The spatially and
temporally explicit quantitative predictions generated by these
models are species-specific and based on life-history traits such
as body size and fecundity (Pecquerie et al., 2009; Kearney
et al., 2010; Pethybridge et al., 2013). Model outcomes such as
these are critical to parameterize population-based models and
are required if they are used to inform appropriate, proactive
mitigation and adaptation strategies at scales relevant to spatial
management and national and regional policy decision-making
(van de Pol et al., 2017; Sarà et al., 2018; Mangano et al., 2019).
To date, however, relatively few examples exist of the application
of such approaches over large geographic scales (Montalto et al.,
2016) and they are seldom applied to commercially important
species (Sarà et al., 2018; Mangano et al., 2019).

One of the most critical stumbling blocks when designing
effective marine resources management strategies and plans are
trade-offs among different priorities, for example among fisheries
or between fisheries and other management objectives, such
as conservation. This can be exemplified by the case study
of the European anchovy (Engraulis encrasicolus). Management
objectives, and the relative efficacy of different approaches,
may consider not only the stock availability for fisheries (i.e.,
the economic role), but also the biomass available to sustain
natural predators and species persistence through time (i.e.,
the ecological role). Clearly there is an important contribution
offered by mechanistic approaches to increase predictive
capability with respect to where and when fish stocks will become
more vulnerable to collapse, serving as a sensitive, geographically
explicit, early warning system (Sarà et al., 2018; Teal et al.,
2018; Mangano et al., 2019). For policy-makers it would be
exceptionally difficult, if not impossible, to accurately generate
climate-proof economies, dependent upon exploitable marine
resources, without accounting for changes in the environment in
which a stock/natural population occurs. Notably, these cannot
be based on global trends such as increases in global temperature
and even regional models may be insufficient unless they capture

the coincidence of multiple drivers interacting on local scales
(e.g., Kroeker et al., 2016). Often these drivers are manifest
as mosaics rather than as geographic gradients (e.g., Helmuth
et al., 2006), making the application of spatially explicit models
increasingly important.

Here, through this proof-of-concept modeling exercise, we
explore a mechanistic physiological approach, based on DEB
theory (Kooijman, 2010), with a focus on application to
marine natural resource (specifically fisheries) management, to
quantify the effects of future environmental change on the
potential distribution and vulnerability of an European anchovy
population. By translating environmental change into biological
effects at a fine spatial scale, we compared the current status of
this population in a core area of its Mediterranean distributional
range (i.e., the Strait of Sicily, Southern Mediterranean Sea,
a recognized hotspot for this species; Basilone et al., 2006)
with its future responses to predicted temperature increases.
A sensitivity analysis to simulate both temperature increase and
trophic condition scenarios (food availability, i.e., oligo- and
eutrophic conditions) allowed us to explore the robustness of
the models’ outputs (Pecquerie et al., 2009; Payne et al., 2015;
Kleisner et al., 2017; Sarà et al., 2018). Engraulis encrasicolus
has been selected as a model species because three out of
eight stocks in the Mediterranean Sea are “currently lying
outside safe biological boundaries” (Vasilakopoulos et al., 2014).
Management efforts for European anchovy stocks based on
long-term monitoring coupled with environmental indices and
simulation have proven unsuccessful (Borja et al., 1998; Allain
et al., 2001; Uriarte et al., 2002; De Oliveira et al., 2005).
Management approaches of this species have mainly consisted
of technical measures such as: the establishment of minimum
conservation reference size, catch regulation, limitation of fishing
areas, closed seasons and mandated changes in gear size. The
harvest control rule drives the ICES advice on setting the Total
Allowable Catch (TAC quota; e.g., Subarea 8, Bay of Biscay;
Ruiz et al., 2017).

We developed scenario-specific quantitative maps to show
the different simulation outcomes, which allowed: (1) the
identification of current source and sink areas and the detection
of future temporal and spatial shifts and (2) the predictions
of size-structure shifts and reproductive failure in response to
climate change. By providing critical insights into the effects
of environmental change on this key species, independent of
fishing pressure, our results may be used to inform and integrate
novel policy targets for climate-resilience and to help inform
and develop adaptive management strategies that enable a
more sustainable exploitation of marine resources (Goh, 2012;
Queirós et al., 2018). Importantly, because of a lack of high
spatial and temporal-resolution predictions of weather for this
region, our approach uses a sensitivity analysis based on realistic
representative environmental conditions. The main goal is to
provide a framework that can be used for other species and to
serve as a case study for how high-resolution model predictions
can be used to produce biologically realistic forecasts, when
informed by environmental data and models at appropriate
spatial and temporal scales. For example, managers could use
retrospective environmental data from previous years combined
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with near-term forecasts to estimate short- and medium-range
population vulnerability (Mills et al., 2013).

MATERIALS AND METHODS

The Dynamic Energy Budget (DEB)
Model
DEB theory (Kooijman, 2010) provides a conceptual and
quantitative framework to model metabolism at the whole
organism level encompassing all life-stages. The standard DEB
model (Kooijman, 2010; Sousa et al., 2010; Kearney et al.,
2015) describes the rate at which an organism assimilates
and utilizes energy for maintenance, growth and reproduction
as a function of parameters that characterize the species’
physiology and its response to environmental forcing variables
(e.g., food availability and temperature) taking into account
metabolic trade-offs. The model has three state variables:
reserves (E), structure (V), and maturity (EH) tracking the
development of an individual (see Supplementary Material

S1 and Supplementary Table S1). The dynamics of these
variables are determined by six energy flows formulated in
units of J d−1: assimilation flow (p

.

A), mobilization flow (p
.

C),
somatic maintenance flow (p

.

S), maturity maintenance flow
(p

.

J), growth flow (p
.

G), maturation/reproduction flow (p
.

R) (see
Supplementary Material S1 and Supplementary Figure S1).
The model states that energy is assimilated (p

.

A), from food
and transferred into reserve (E). According to the κ-rule a
fixed energy fraction (κ) is allocated to growth and somatic
maintenance, while the remaining fraction (1-κ) is allocated to
maturity maintenance plus maturation or reproduction. Changes
in environmental conditions (temperature, food availability, etc.)
thus can be translated into effects on growth and reproduction.

In contrast to net-production models (e.g., scope for
growth), which assume assimilated energy is partitioned between
maintenance and both growth and reproduction, DEB theory
assumes assimilated energy is first stored as reserves, and is
then distributed among physiological processes (Filgueira et al.,
2011). This storage effect permits the exploration of time history
effects, specifically those related to energetic status (feeding
history) and vulnerability to factors such as temperature (Kearney
et al., 2010) but in order to do so DEB models require
high temporal resolution (daily or better) environmental data
(Kearney et al., 2012). DEB represents a reliable and powerful tool
to mechanistically describe the whole life cycle of an organism
and to make predictions of life-history traits (Pecquerie et al.,
2009; Kearney et al., 2010; Nisbet et al., 2012; Pethybridge
et al., 2013). DEB theory therefore allows, through the explicit
modeling of energy and mass fluxes through organisms, the
derivation of individual performance in terms of the most
important life-history traits of a species such as maximum length,
Lmax, and Total Reproductive Output, TRO (Pecquerie et al.,
2009; Kearney et al., 2010; Sarà et al., 2011, 2013a,b, 2014, 2018;
Nisbet et al., 2012; Pethybridge et al., 2013; Mangano et al.,
2019). DEB also allows an understanding of the interacting time
histories of exposures to environmental conditions. Thus, for
example, increasing temperature can (up to a point) increase

metabolic rates (Sinclair et al., 2016). These in turn can lead to
faster rates of maturity (higher TRO values) and growth (higher
Lmax values), but only in the presence of sufficient food. In
contrast, increased metabolic demand in the absence of food can
lead to rapid declines in growth (lower Lmax values).

Aside from the basic assumptions of the standard DEB model
(i.e., one reserve and one structure compartment, isomorphic
growth; Kearney et al., 2010) some other supplementary
assumptions are needed to account for the specificity of this
model. Although the von Bertalanffy growth equation, based on
physiological assumptions, is themost commonly used descriptor
of indeterminate growth (Charnov, 1993), it has been often stated
that this equation does not describe larval fish growth unless the
animal is: (i) an isomorph, (ii) living in constant environmental
conditions, (iii) with constant surface-area specific searching
capabilities for food (Kooijman, 2010). Here we assume that the
growth of a larvae departs from isomorphic growth and starts
to grow exponentially with age (V1-morphic) until it reaches
puberty. Pethybridge et al. (2013) found that anchovy larvae have
a different (more cylindrical) shape than juveniles and adults,
and so estimated the respective shape coefficients as a function
of life history stage. In order to simulate exponential growth and
to avoid the effects of abrupt shape changes between life-stages we
followed Pethybridge’s et al. (2013) approach, allowing the shape
coefficient to linearly change with size from day – 0 (δlarva) until
puberty, using the equation:

δ = 0.0025V + δlarva

After puberty, the adult shape (δadult ) was applied.
In our proof-of-concept, we present maps of multiple DEB

outputs, but here focus only on maximum length (Lmax, cm)
and Total Reproductive Output (TRO, the total number of eggs
per life span) among all the modeled life-history traits (mapped
outcomes of “time to catch size,” “eggs,” and “reproductive events”
are reported in Supplementary Material S1, Supplementary

Figures S4–S6 and Supplementary Table S4). Lmax and TRO
were selected because they represent crucial parameters for size-
based management and conservation measures. For example,
minimum size limits can be designed to allow individuals to
reproduce at least once, maximum allowable catch size can ensure
survival of large individuals with disproportionate reproductive
outputs, and temporal or spatial closures (e.g., spawning areas,
spatial allocation, rotating closure areas, and seasonal-area
closures, Stram and Evans, 2009) can be designated based on high
reproductive output. Knowledge of organismal body temperature
(assumed to be similar to Sea Surface Temperature, SST) and
environmental food densities are a prerequisite, together with
the Engraulis encrasicolus species-specific DEB parameters (see
Supplementary Material S1 and Supplementary Table S2), to
run the DEB model (Figure 1).

Forcing Variables: Temperature
Due to the short life span of the anchovy (∼4 years),
we extracted daily Sea Surface Temperatures (SST; 1 km
resolution) from JPL MUR MEaSUREs Project SST data
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FIGURE 1 | Rationale of the proof-of-concept.

JPL MURMEaSUREs Project, 20101 over a time range of 4 years
(2011–2014) for each cell (see Supplementary Material S1 and
Supplementary Figure S2). To simulate increases in temperature
similar in magnitude to those forecasted by COP 21 (sensu
COP 21 Paris Climate Conference Agreement; Hulme, 2016),
we performed a sensitivity analysis by running DEB models,
cell by cell, and by increasing current temperatures from 0.5 to
2.0◦C (0.5◦C step) obtaining four increasing temperature DEB
scenarios (current + 0.5◦C, + 1.0◦C, + 1.5◦C, + 2.0◦C). All
simulations were run on an hourly basis following the approach
of Sarà et al. (2018) and Mangano et al. (2019) (Figure 1).

Forcing Variables: Food Density
Food availability is an important forcing variable of the model
and is expressed as density (wet mass mg m−3), which
for anchovy primarily comprise zooplankton (Tudela and
Palomera, 1997 and references therein). Locally collected data
for zooplankton were spatially and temporally fragmented due
to sampling effort. Due to this gap in the actual food availability
for anchovies throughout the study area (Torri et al., 2018),
we obtained a spatially continuous dataset on the distribution
of food throughout the study area by following the approach
proposed by Strömberg et al. (2009) and applied by Mangano
et al. (2019). This approach involves transforming weekly Net
Primary Productivity (NPP) into wet mass of zooplankton (mg
m−3) using the conversion coefficient provided by the ICES
Committee on Terms and Equivalents (Cushing et al., 1958)
starting from NPP values of carbon per unit volume expressed
as grams of carbon/m3/day. The NPP dataset was obtained
from Oregon State University (2017), and values were extracted

1https://podaac.jpl.nasa.gov/MEaSUREs-MUR?sections=about%2Bdata

for each cell (0.11◦
× 0.11◦ [∼12.5 km2]) over a time span

of 4 years (2011–2014) to reflect the short life span of the
anchovy (see Supplementary Material S1 and Supplementary

Figure S3). To simulate future trophic changes, we carried out
a sensitivity analysis by adding or subtracting (cell by cell) a fixed
amount of 10% generating three future scenarios: oligotrophic
(current NPP – 10%), eutrophic (current + 10%), and no-
change (current NPP) (Figure 1).

Model Outcomes Validation
The DEB Lmax simulation was validated by extracting data from
a literature search using a complex search string combining
prominent or substantial key-words {[(“Engraulis encrasicolus”
OR “European anchovy”) AND (“Total length” OR “Maximum
length” OR “length” OR “size class” OR “length-weight" OR “age”
OR “life stage”) AND “Mediterranean sea”]}. The search string
was entered into the two most extensive scientific databases as:
ISI Web of Sciences and Scopus. A manual search was also
performed on the bibliographies of relevant review articles to
identify any additional references. The “all years” timespan was
selected during the search. Searches were confined to English
language; only titles, abstracts and keywords were searched. Data
were extracted from Basilone et al. (2004, 2006) and fitted on
an observed vs. predicted model regression (Figure 2, upper
panel) allowing a validation for Lmax values off the Southern
Sicilian coasts. DEB TRO simulation outputs were validated
using in situ data collected during ad hoc oceanographic surveys
(the “Bansic” cruise performed off the Southern Sicilian coast).
Anchovy eggs data used to validate the model were collected
during five summer surveys on board the R/V “Urania” for each
year over the period 2006–2010, in approximate correspondence
with the peak of reproductive period for anchovy in the study area
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FIGURE 2 | Model validation. Regression lines between observed and predicted data, equation and significant values are reported. Upper panel, Lmax outputs

simulations validated by using data extracted from literature (Basilone et al., 2004, 2006). Lower panel, TRO outputs simulations validated by using data collected

in situ (ad hoc oceanographic surveys conducted in the framework of various national projects – RITMARE project, FAO MedSudMed GCP/RER/010/ITA – as well as

in the framework of more regional projects funded by Ministero dell’Innovazione, Ministero Ambiente, Regione Sicilia; as from Patti et al., 2018).
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(Tsikliras et al., 2010). The systematic sampling was constituted
by a regular grid of stations (1/10◦

× 1/10◦ along the continental
shelf and 1/5◦

× 1/5◦ further offshore). Plankton sampling was
conducted day-night independently by using oblique tows with
a Bongo 40 net (two mouths of 40 cm inlet diameter, 200 µm
mesh). The plankton oblique tows were carried out from within
5 m of the bottom to the surface in “shallow” stations (bottom
depth < 100 m), or from 100 m depth to the surface in deeper
stations, wherever possible, with a constant speed of 2 knots.
In each mouth, calibrated flow-meters were mounted in order
to calculate the volume of filtered water (m3). Samples were
preserved using a borax-buffered solution of 4% formaldehyde
and seawater. In order to identify eggs of European anchovy, all
samples were observed under amicroscope once in the laboratory
and fish eggs were sorted from the rest of the plankton and
identified according to Whitehead (1985). The number of eggs,
collected at each station, was normalized as:

Yi = (di × xi)/vi,

where Yi is the number of anchovy eggs under one m2 of sea
surface at station i, xi is the number of eggs taken at station i, vi is
the volume of water filtered in m3 and di is the maximum depth
(in meters) reached by the net. A total of 379 stations from 5 years
of surveying were included in the observed vs. predicted model
regression (Figure 2 lower panel). Both model output (Lmax
and TRO) predictions were tested against observations at specific
times and places (ad hoc DEB models have been run for those
same places based on environmental conditions) (Figure 1).

Model Outcomes Mapping
We performed simulations to investigate potential variations in
the maximum length and fecundity of Engraulis encrasicolus
under different temperature and food availability scenarios.
Model outputs are expressed in terms of maximum length (Lmax,
cm) and Total Reproductive Output (TRO, the total number
of eggs per life span) and presented through climate-informed
scenario-based quantitative maps (Figures 3, 4); minimum,
maximum, mean, and median values for each scenario are
reported in Supplementary Table S3. The results for each
temperature and food scenario are mapped and reported for
both Lmax and TRO (Figures 5, 6; minimum, maximum,
mean, and median values for each scenario are reported in
Supplementary Table S5). All spatial analyses were performed
using GIS procedures and tools, specifically ESRI ArcGIS
10.5 (and Spatial Analyst extension) and R software (R Core
Team, 2019), using the ggplot2 package (Wickham, 2016). Our
simulations were restricted to the continental shelf on the
basis of depth (from 0 to 200 m below sea level) identified
through bathymetric data obtained from EMODnet Bathymetry
Consortium (2016). A vector polygon grid feature class of 346
square cells (having a size of 0.11◦

× 0.11◦ [∼12.5 km2]) covering
the study area was used.

To analyze the spatial distributions and trends of both Lmax
and TRO patches, under the selected scenarios, z-score values
and strength of clustering (positive = high clustering; zero no
apparent clustering; negative = low clustering) were estimated

through the Spatial Analyst tool of ArcGIS (Getis and Ord,
1992, 1993) and reported for each scenario and life-history trait
respectively (only significant, p < 0.05, values are reported, see
Supplementary Tables S3–S5). G statistics allow evaluation of
the spatial association of a variable within a specified distance
of a single point. Here, we used a global G statistic G(d), which
measures overall concentration or lack of concentration of all
pairs of (xi, xj) such that i and j are within d (a given distance)
of each other, giving us information about high or low, positive
or negative, spatial clustering of variables. The distance d in km
was set at 25 km, corresponding to twice the minimum distance
between two cells given the resolution of the map, in order to
consider for each cell the two neighboring cells in each direction.
G(d) was chosen as it applies on a non-regular grid (as in this
case). Relating to quantiles of standard normal distribution, high
negative or positive values of the G statistic mean that there is a
clustering tendency of, respectively, low and high values of the
variable. Values of G(d) near to zero indicate a non-significant
clustering tendency, generally visualized as a flat spatial pattern.

RESULTS

DEBmodel outputs based on observed environmental conditions
provided good predictions of the two selected life-history traits
in European anchovy, giving a high level of confidence in
the generated forecasts (Figure 2, model validation). Validated
DEB model outcomes of both the proxy of population size-
structure (Lmax) and of population fecundity (TRO) across the
study area were positively affected by increased temperatures
(see scenario-based quantitative map, Figures 3, 4 central panel,
resulting outputs from current temperature to +2◦C scenario
with +0.5 increment intermediate scenarios) coupled with
increases in food availability (see scenario-based quantitative
maps; Figures 3, 4 right panel, eutrophic condition + 10%
of net primary production). An increase in food availability
had a greater effect on both life-history traits, with the highest
mean values being predicted under the higher food (eutrophic)
scenario (i.e., 10% above current levels of nutrients). Scenario-
based quantitative maps of life-history traits represent the
geographically explicit forecasts across the study area (model
predictions in each cell; Figures 3, 4). The size structure
(Figures 3, 5) and the fecundity (Figures 4, 6) of the anchovy are
predicted to shift under future conditions with scenario specific
response patterns.

Growth Patterns (Lmax)
Generally, increasing temperatures promoted the spatial
extension of the highest Lmax values (Figure 3 and
Supplementary Table S3). Temperature increases under
oligotrophic conditions led to a decrease in the spatial extent of
the largest anchovies, whereas eutrophic conditions facilitated
an increase (Figure 3 and Supplementary Table S3). Anchovies
were predicted to never achieve the maximum size under
temperature increase scenarios coupled with oligotrophic
conditions. Under the highest temperature scenario, +2◦C,
coupled with oligotrophic conditions, the anchovies were
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FIGURE 3 | Scenario-based quantitative maps of Maximum length (Lmax, cm) described by a continuous scale ranging (from 0 to 16) under current conditions of

both temperature and food (central panel) and under four increasing temperature scenarios (+0.5; +1.0; +1.5; +2.0◦C from top line to bottom line, central) coupled

with decreasing (oligotrophic, -10% net primary production, left side) and increasing trophic conditions (eutrophic +10% net primary production, right side).

Minimum, maximum, mean and median values for each scenario have been also reported as well as the global G statistic values at Supplementary Table S3. Total

number of cells = 346, cell resolution of 12.5 × 12.5 km2. Maps were created using R software (ggplot2 package).

forecast to reach the lower value of Lmax (maximum size
13.62 cm, minimum size 11.81 cm; Figure 5 and Supplementary

Table S5). Under eutrophic conditions the species were
predicted to achieve the higher value of Lmax recorded by the
model (15.56 cm) at the highest temperature increase (+ 2◦C;
Figure 5 and Supplementary Table S5).

Fecundity Patterns (TRO)
A similar spatial heterogeneity characterized the TRO
simulated responses. The model identified areas predicted
to be more productive (Figure 3, highest values, darker
colors; Supplementary Table S3) as well as area where
a loss of productivity was forecast (Figure 4, gray color;
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FIGURE 4 | Scenario-based quantitative maps of Total Reproductive Output (TRO, n. eggs/n. of reproductive events) described by a continuous scale ranging (from

0 to 1,400,000) under current conditions of both temperature and food (central panel) and under four increasing temperature scenarios (+0.5; +1.0; +1.5; +2.0◦C

from top line to bottom line, central) coupled with decreasing (oligotrophic, -10% net primary production, left side) and increasing trophic conditions (eutrophic +10%

net primary production, right side). Minimum, maximum, mean and median values for each scenario have been also reported as well as the global G statistic values

at Supplementary Table S3. Total number of cells = 346, cell resolution of 12.5 × 12.5 km2. Maps were created using R software (ggplot2 package).

Supplementary Table S3). The highest percentage of loss was
under oligotrophic food conditions (-10% NPP), ranging from a
loss of 33% under current temperature conditions to a 24% loss
under the maximum temperature scenario, +2◦C. The lowest
percentages of reproductive failure were recorded under the
eutrophic food condition (+10%NPP) ranging from amaximum

loss of 11% under current temperatures to a minimum of 8%
under the maximum temperature scenario, +2◦C (Figure 4,
gray color; Supplementary Table S3). Differences among
crossed scenarios showed increases of TRO under conditions of
increased temperature and food (Figure 6, green color, left panel;
Supplementary Table S3).
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FIGURE 5 | Scenario-based quantitative maps showing differences between Maximum length (Lmax, cm) described by a continuous scale (from -0.48 to 0.46),

respectively, across the examined temperature scenarios (central panel, current temperature vs. all the four temperature increasing scenarios of +0.5◦C increase up

to +2◦C). Differences between current primary production food condition and oligotrophic, −10%, food condition per each temperature scenarios

(+0.5; +1.0; +1.5; +2.0◦C, left side). Differences between current primary production food condition and eutrophic, +10%, food condition per each temperature

scenarios (right side). Minimum, maximum, mean and median values for each scenario have been also reported as well as the global G statistic values at

Supplementary Table S5. Total number of cells = 346, cell resolution of 12.5 × 12.5 km2. Maps were created using R software (ggplot2 package).

According to G statistics and their respective p-values reported
in Supplementary Materials (Supplementary Tables S3, S4),
the spatial analysis of patchiness among all life-history traits of
the European anchovy exhibited a significant tendency to cluster
higher values of TRO and a non-significant tendency to cluster
values of TL, in all trophic and temperature scenarios.

DISCUSSION

Our mechanistic, proof-of-concept approach, using DEB
theory, allowed for a comparison of current baseline conditions
of European anchovy life-history traits distribution against
those that might be expected under future climate scenarios.
The present model provides highly reliable, quantitative,

spatially explicit predictions of how changes in climate-
related environmental conditions can potentially affect
life-history traits of organisms such as growth (Lmax) and
reproduction (TRO). These traits were selected as they drive
population dynamics (Bohner and Diez, 2019) and represent
essential information for managing commercially important
species both currently and in the future (Queirós et al.,
2018). Our approach generates spatial forecast data with a
previously unachievable fine-scale (∼12.5 km) resolution,
allowing the identification of threats and opportunities for
the long-term sustainability of the commercially important
anchovy, with implications for the European anchovy fisheries
sector. The presented approach, when combined with high
spatial- and temporal-resolution temperature and food
data, has a potential wide range of applications to fisheries
stocks globally, assisting in the implementation of existing
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FIGURE 6 | Scenario-based quantitative maps showing differences between Total Reproductive Output (TRO, n. eggs/n. of reproductive events) described by a

continuous scale (from -562,550 to 577,740) respectively across the examined temperature scenarios (central panel, current temperature vs. all the four temperature

increasing scenarios of +0.5◦C increase up to +2◦C). Differences between current primary production food condition and oligotrophic, −10%, food condition per

each temperature scenarios (+0.5; +1.0; +1.5; +2.0◦C, left side). Differences between current primary production food condition and eutrophic, +10%, food

condition per each temperature scenarios (right side). Minimum, maximum, mean and median values for each scenario have been also reported as well as the global

G statistic values at Supplementary Table S5. Total number of cells = 346, cell resolution of 12.5 × 12.5 km2. Maps were created using R software (ggplot2

package).

management evaluation strategies and helping to develop
more climate-resilient, trans-boundary resource management
planning options.

Fecundity as an Early Warning Proxy of
Species Vulnerability: A Baseline Tool to
Formulate Control Measures
As the first input-driver of a species’ population dynamics,
the fecundity output from the model can be coupled with
Lagrangian physical-biological models to predict species local
persistence over time, source areas, dispersal over time, and
sink areas, all at fine spatial resolution (Falcini et al., 2015;
Politikos et al., 2015). Persistence is an essential component
of predictive forecasts of future status of commercial stocks
and one of the most important population traits for the

efficient creation of spatially explicit, climate-driven adaptive
management plans (Munroe et al., 2012; Holsman et al., 2019). In
this context the scenario-based forecasts of size and productivity
shifts for target species, such as the European anchovy, can
be used to address the development of seasonal (or even
higher such as monthly), adaptive Total Allowable Catch (TAC),
proportional to life-history traits. Using this model’s TRO
outcomes may help improve the degree of model accuracy when
evaluating strategies and the robustness of management options.
Interestingly, our approach, although applied in a limited
geographic region, demonstrates new capabilities for predicting
areas of future species’ vulnerability in terms of changes in spatial
connectivity (patchiness) and increase/decrease of reproductive
failure (Montalto et al., 2016). Quantitative information on
fragmentation of spawning areas, i.e., more productive patches,
recognized as Essential Fish Habitat (EFH, sensu Benaka, 1999),
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fills a critical knowledge gap regarding the capacity to implement
spatially explicit management strategies. It also facilitates the
design of tailored temporal and/or spatial mitigation measures
of fisheries pressures, i.e., control provision measures such as
special rules concerning fishing permits in specific areas allowing
to plan the fishing fleet capacity over long temporal scale,
the design of protection areas within or between reproductive
patches of higher productivity that represent source populations
for the neighboring areas (e.g., spawning), which can be
used to increase stock resilience. As a proxy for recruitment
variability, predicted fecundity can represent an effective metric
for defining sustainable exploitation strategies (Shelton et al.,
2014; Kell et al., 2015).

Spatial Explicit Identification of Source
Areas: A Baseline Tool to Address
Protection and Adaptation Measures
The need to increase knowledge of population shifts of this
species is also crucial because anchovy is the most common
forage fish eaten by large predators in the Mediterranean Sea,
including Atlantic Bluefin tuna and European hake (Olson
et al., 2016). Detecting shifts in the anchovy population can
provide a means of foreseeing and disentangling interconnected
responses within the multiple hierarchical levels of the food web
that this species sustains. The scenario-based quantitative maps
resulting from our proof-of-concept clearly identified source
areas (Lewin, 1989) where anchovy might still be capable of
reproducing under even a 2◦C increase in surface temperature,
and therefore serve as “rescue sites” (Assis et al., 2017). The
number, distribution and extent of source areas could provide
the most reliable baseline information for identifying and
prioritizing effective areas for protection (e.g., no-take areas,
Marine Protected Areas; Lehuta et al., 2010; Giannoulaki et al.,
2013). Other sites may in contrast serve as sinks where fish are
able to rapidly grow but may fail to reproduce. The localization
of areas of highest productivity coupled with other factors,
including local and regional oceanography (Falcini et al., 2015;
Politikos et al., 2015), can allow identification of sink areas
forecast under future climatic scenarios and can be useful to
redirect research and management strategies. This knowledge is
essential for an effective and successful adaptive management
of exploitation by fishing activities and for the maintenance
and enhancement of climate-resilience in the context of marine
resources management (Pikitch et al., 2004; Lawler et al., 2010;
Berkes, 2012; Noble et al., 2014; Pinsky and Mantua, 2014; Busch
et al., 2016; Costello et al., 2016).

The scenario-based quantitative maps produced in this study
are expected to improve our ability to cope with expected changes
in fishery practices at sea (e.g., fleet behavior shifts) and to better
manage the relocation of human activities (e.g., fish farms, wind
farms) and the enactment of efficient maritime spatial planning
(Domínguez-Tejo et al., 2016). Fishery-dependent communities
along cross-border coastal areas could be offered the opportunity
to maximize their adaptive capacity and minimize their socio-
economic vulnerability (i.e., climate-proofing for development)
with a general improvement of social-ecological system resilience

to environmental changes (Folke, 2006; Liu et al., 2007; Charles,
2012; Lubchenco et al., 2016; Holsman et al., 2019). Instead
of long-term and fixed solutions, more flexible, tailored and
adaptive tools and strategies would facilitate the implementation
of fisheries management plans that incorporate the recovery of
populations overfished or threatened by stressors with both local
(e.g., pollution) and global origins (Folke, 2006; Halpern et al.,
2008; King et al., 2015; Queirós et al., 2018). Mechanistically
based forecasts can help to promote more flexible management
plans based on a system of year-by-year assessment of marine
resources (i.e., based on seasonal assessments and revision of
benchmarks and protection, adaptation, mitigation management
options) and facilitate more appropriate and specifically tailored
monitoring plans.

Key Model Assumptions
DEB modeling can provide useful information that can inform
spatial management of resources, however, while the high
levels of spatial specificity required by the DEB can provide
insights that cannot be gleaned from coarser approaches, it also
has some drawbacks and limitations. This approach assumes
stationarity in biological parameters (i.e., DEB parameter values
estimated for populations in one location/time are valid for
populations elsewhere; Monaco et al., 2019). Although this
assumption is common to virtually all modeling approaches
in use today, it should be acknowledged that model outcomes
can be affected by the choice of DEB parameters. Here, we
adopted the DEB parameters designed for the Mediterranean
anchovy by Pethybridge et al. (2013), but we are aware that
phenotypic plasticity and/or local adaptation have the potential
to increase the degree of uncertainty of modeling outcomes.
These two factors are crucial, and can lead to a modulation
of responses under different environmental conditions (Monaco
et al., 2019). As a main consequence, when the aim is to design
management measures at local scales under environmental
changes such as those shown here, we suggest the use of
DEB parameters values that, to the extent possible, realistically
match those of local populations rather than global (species-
specific) parameters. The degree of uncertainty of our simulations
was low (model validation Figure 2), which was sufficiently
robust to allow reliable predictions of anchovy life-history traits
under climate change.

The DEB approach also requires a large computational
effort and the application of environmental data at very high
resolutions, sometimes at scales which remote sensing cannot
provide. The high resolution data necessary as inputs to spatially
explicit DEB models require large computational efforts when
the aim is to design resource management measures at local
levels. These two aspects have interlinked implications for DEB
modeling feasibility when runningDEBmodels at regional spatial
scales. For example, in the Mediterranean Basin global climate
models are considered insufficient to represent the complexity
of the geomorphology of the region (Gualdi et al., 2013).
Feasibility must likewise be considered where regional, high
spatial resolution models, forced by high resolution atmospheric
fields, are required to properly reproduce variability (Calafat
et al., 2012) or at larger scales (oceanic, continental or global).
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Here we used a sensitivity analysis to simulate the COP21
predicted changes rather than feeding DEB models with data
from IPCC scenarios. We are aware this approach was not
able to consider inter-annual spatial variability. Such a choice
was driven largely by trade-offs in high spatial and temporal
resolution data from IPCC for the study region. For example, in
order to gain high temporal resolution (daily) data (WordClime)
spatial resolution was insufficient (every pixel was about 1◦, i.e.,
111 × 111 km). In contrast, with high spatial resolution data
(∼44 km pixels for theMediterranean Basin) temporal resolution
was very poor (monthly). We therefore chose an approach
using a sensitivity analysis bounded by realistic parameter values
(informed by COP21) which allowed us to generate a series
of “what if ” scenarios based on recent historical data and
projections for the next years. We argue that, ultimately, this
type of approach may be more useful for some forms of adaptive
management than if we had used predictions of the future where
temporal variability is only accurate when looking at much longer
(climatic) time scales. While projections at this coarse scales
which use climatic data with statistically realistic variation are
certainly informative of overall trends in response to climate,
they may be less reliable as a management tool for enacting
shorter-term strategies, for example in advance of projected
anomalously warm seasons (e.g., Mills et al., 2017). Such process-
based approaches can potentially serve as a new approach in
“data dense” situations. However, when such approaches can
and should be applied vs. when longer-term forecasts that
rely on e.g., IPCC scenarios, remains an open question and
deserves further studies designed for this explicit question
(e.g., Montalto et al., 2016).

CONCLUSION

The approach proposed by this proof-of-concept case study
represents a tool to enhance ecological resilience under climate
change supporting more adaptive fisheries management. The
scenario projections were confirmed as a powerful approach
to scope biological responses. Our model represents a robust
tool (as tested against a wide range of climate scenarios),
that is flexible, integrative and responsive to feedback and
learning (more external drivers may be integrated) and efficient
(output implementation into an adaptive management may
increase management benefits and reduced costs; sensu Noble
et al., 2014). It can thus be used to build a climate-resilient,
adaptive, management strategy (sensu Holsman et al., 2019) that
is designed to support the long-term sustainability of fishery
resources. The future coupling with other analytical tools (e.g.,
physical and topographic barriers; Bacha et al., 2014; or food
web models) could provide a promising approach toward the
implementation of Ecosystem Based Management within the
context of global change.

Waiting for the next “policy window” (sensu Rose et al.,
2017, technically a window of opportunity for policy change
requiring uptake of knowledge, even when it has been previously
ignored) the outcomes from our proof-of-concept reinforces the
growing chorus of scientific literature and scientists calling for

a more “ecologically sound” reframing of management areas
established based on political and statistical considerations by the
Scientific Advisory Committee of the GFCM (General Fisheries
Commission for the Mediterranean [GFCM], 2012), which
otherwise risk being invalidated, threatening the effectiveness
of the enormous efforts which now proliferate in current
management policies.
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