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Abstract Testing hundreds of thousands of DNA markers

in human, mouse, and other species for association to

complex traits like disease is now a reality. However,

information on how variations in DNA impact complex

physiologic processes flows through transcriptional and

other molecular networks. In other words, DNA variations

impact complex diseases through the perturbations they

cause to transcriptional and other biological networks, and

these molecular phenotypes are intermediate to clinically

defined disease. Because it is also now possible to monitor

transcript levels in a comprehensive fashion, integrating

DNA variation, transcription, and phenotypic data has the

potential to enhance identification of the associations be-

tween DNA variation and diseases like obesity and dia-

betes, as well as characterize those parts of the molecular

networks that drive these diseases. Toward that end, we

review methods for integrating expression quantitative trait

loci (eQTLs), gene expression, and clinical data to infer

causal relationships among gene expression traits and be-

tween expression and clinical traits. We further describe

methods to integrate these data in a more comprehensive

manner by constructing coexpression gene networks that

leverage pairwise gene interaction data to represent more

general relationships. To infer gene networks that capture

causal information, we describe a Bayesian algorithm that

further integrates eQTLs, expression, and clinical pheno-

type data to reconstruct whole-gene networks capable of

representing causal relationships among genes and traits in

the network. These emerging network approaches, aimed at

processing high-dimensional biological data by integrating

data from multiple sources, represent some of the first steps

in statistical genetics to identify multiple genetic pertur-

bations that alter the states of molecular networks and that

in turn push systems into disease states. Evolving statistical

procedures that operate on networks will be critical to

extracting information related to complex phenotypes like

disease, as research goes beyond a single-gene focus. The

early successes achieved with the methods described herein

suggest that these more integrative genomics approaches to

dissecting disease traits will significantly enhance the

identification of key drivers of disease beyond what could

be achieved by genetic association studies alone.

Introduction

Genetics is at the dawn of a new era with maturing tech-

nologies that enable low-cost, high-throughput genotyping

of hundreds of thousands of DNA markers that in turn can

be tested for association to complex traits of interest like

disease and drug response. A number of studies have al-

ready leveraged the availability of such technologies to

identify polymorphisms in genes that associate with dis-

eases like age-related macular degeneration (Edwards et al.

2005; Haines 2005; Klein 2005), diabetes (Grant 2006;

Sladek 2007), and obesity (Herbert 2006), to name just a

few. In addition, there are scores of similar genome-wide

association studies that are ongoing and that promise to

deliver scores of genes that harbor variations that associate

with diseases like obesity and diabetes. While these types

of genetic discoveries provide a peek into pathways that

underlie disease, they are usually devoid of context, so that

elucidating the functional role such genes play in disease
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can take years, or even decades, as has been the case for

ApoE, an Alzheimer’s susceptibility gene identified nearly

15 years ago (Peacock et al. 1993).

Information that defines how variations in DNA that

associate with disease actually impact the complex physi-

ologic processes underlying disease flows through tran-

scriptional and other molecular, cellular, tissue, and

organism networks (Fig. 1). In the past the ability to

comprehensively assess intermediate phenotypes that

comprise the hierarchy of networks that drive disease was

not possible. However, today DNA microarrays have rad-

ically changed the way we study genes, enabling a more

comprehensive look at the role they play in everything

from the regulation of normal cellular processes to com-

plex diseases like obesity and diabetes. In their typical use,

microarrays allow researchers to screen thousands of genes

for differences in expression or differences in how genes

are connected in molecular networks (Schadt and Lum

2006) between experimental conditions of interest. These

data are often used to discover genes that differ between

normal and disease-associated tissue, to model and predict

continuous or binary measures, to predict patient survival,

and to classify disease or tumor subtypes. Because gene

expression levels in a given sample are measured simul-

taneously, researchers are able to identify genes whose

expression levels are correlated, implying an association

under specific conditions or more generally.

Integrating genetic and functional genomic data can

provide a path to inferring causal associations between

genes and disease. In the past, causal associations between

genes and traits have been investigated using time series

experiments, gene knockouts or transgenics that overex-

Fig. 1 High-level view of the flow of information in biological

systems through a hierarchy of networks. Each panel highlights a

different set of networks at play in a biological system. Genomics

networks represent interactions among DNA sequences that may give

rise to longer-range as well as more local chromosome structures that

modulate gene activity, in addition to inducing synergistic effects on

higher-order phenotypes. Genomics networks drive molecular net-

works composed of RNA, protein, metabolites, and other molecules

in the system. Molecular networks are components of cellular

networks in which the complex web of interactions among these

networks gives rise to the complex phenotypes that define living

systems. Tissue networks comprise cellular networks that are clearly

influenced by the molecular and genomics networks, and organism

networks comprise tissue networks that are clearly defined by the

component cellular and molecular networks. Complex phenotypes

like disease emerge from this complex web of interacting networks,

given genetic and environmental perturbations to the system
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press a gene of interest, RNAi-based knockdown or viral-

mediated overexpression of genes of interest, and chemical

activation or inhibition of genes of interest. A more sys-

tematic and arguably relevant source of perturbation to

make such inferences regarding genes and disease are DNA

polymorphisms, where gene expression and other molec-

ular phenotypes in a number of species have been shown to

be significantly heritable and at least partially under the

control of specific genetic loci (Brem et al. 2002; DeCook

et al. 2006; Hubner et al. 2005; Jin et al. 2001; Klose et al.

2002; Monks et al. 2004; Morley et al. 2004; Oleksiak et al.

2002; Schadt et al. 2003; Stranger et al. 2005). By exam-

ining the effects that naturally occurring variations in DNA

have on variations in gene expression traits in human or

experimental populations, other phenotypes (including

disease) can be examined with respect to these same DNA

variations and ultimately ordered with respect to genes to

infer causal control (Fig. 2) (Kulp and Jagalur 2006; Lum

et al. 2006; Mehrabian et al. 2005; Schadt et al. 2005). The

power of this integrative genomics strategy rests in the

molecular processes that transcribe DNA into RNA and

then RNA into protein, so that information on how varia-

tions in DNA impact complex physiologic processes often

flows directly through transcriptional networks. As a result,

integrating DNA variation, transcription, and phenotypic

data has the potential to enhance identification of the

associations between DNA variation and disease and

characterize those parts of the molecular networks that

drive disease.

Here we review different approaches for integrating

expression quantitative trait loci (eQTLs), expression, and

clinical data to infer causal relationships among gene

expression traits and between expression and disease traits.

We further review methods to integrate these data in a

more comprehensive manner by constructing coexpression

gene networks that leverage pairwise gene interaction data

to represent more general relationships. This type of net-

work provides a useful construct for characterizing the

topologic properties of biological networks and for parti-

tioning such networks into functional units (modules) that

underlie complex phenotypes like disease. However, these

networks are, by design, undirected and so do not explicitly

Fig. 2 Possible relationships between phenotypes with and without

genetic information. Edges between nodes in each of the graphs

represent an association between the nodes. A directed edge indicates

a causal association between the nodes. A A subset of the number of

possible relationships between three variables. In the case where one

of the three nodes in the network is a DNA locus (red nodes), many of

the graphs are no longer possible, given that directed edges from

expression trait to DNA locus are not possible. The red Xs highlight

edges that would not be allowed if the red node were a DNA locus. B
The first three graphs represent the set of possible relationships

between two traits and a controlling genetic locus when feedback

mechanisms are ignored. The final two graphs represent more

complicated scenarios in which multiple genetic loci control a given

trait that in turn drives a second trait or a single genetic locus drives

multiple traits that collectively drive another trait
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capture causal relationships among genes. To infer gene

networks that capture causal information, we review

Bayesian network reconstruction algorithms that, like the

methods operating on only two or three expression traits

and/or clinical traits mentioned above, integrate eQTLs,

expression, and clinical phenotype data to reconstruct

whole-gene networks capable of representing direction

along the edges of the network. Here, directionality among

the edges corresponds to causal relationships among genes

and between genes and clinical phenotypes related to dis-

ease. These emerging high-dimensional data analysis ap-

proaches that integrate large-scale data from multiple

sources represent the first steps in statistical genetics,

moving away from considering one trait at a time and to-

ward operating in a network context. Evolving statistical

procedures that operate on networks will be critical to

extracting information related to complex phenotypes like

disease as research goes beyond the single-gene focus. The

early successes achieved with some of the methods de-

scribed herein suggest that these more integrative genomics

approaches to dissecting disease traits will significantly

enhance the identification of key drivers of disease beyond

what could be achieved by genetics alone.

Leveraging the heritability of expression as a path to

reconstructing networks

Gene transcripts have been identified that are associated

with complex disease phenotypes (Karp et al. 2000;

Schadt et al. 2003), are alternatively spliced (Johnson

et al. 2003), elucidate novel gene structures (Mural et al.

2002; Schadt et al. 2004; Shoemaker et al. 2001), can

serve as biomarkers of disease or drug response (DePrimo

et al. 2003), lead to the identification of disease subtypes

(Mootha et al. 2003; Schadt et al. 2003; van’t Veer et al.

2002), and elucidate mechanisms of drug toxicity (Waring

et al. 2001). Changes in gene expression often reflect

changes in a gene’s activity and the impact a gene has on

different phenotypes. Because gene expression is a

quantitative trait, linkage and association methods can be

directly applied to such traits to identify genetic loci that

control them. In turn, genetic loci that control for

expression traits may also associate with higher-order

phenotypes affected by expression changes in the gene of

interest, providing a path to directly identify genes con-

trolling for phenotypes of interest. Therefore, identifying

the heritable traits and the extent of their genetic vari-

ability provides insight about the evolutionary forces

contributing to the changes in expression that associate

with biological processes that underlie diseases like

obesity and diabetes, beyond what can be gained by

looking at the transcript abundance data alone.

It is now well established that gene expression is a sig-

nificantly heritable trait (Alberts et al. 2005; Brem et al.

2002; Chesler et al. 2005; Cheung et al. 2005; Jansen and

Nap 2001; Monks et al. 2004; Morley et al. 2004; Petretto

et al. 2006a, b; Schadt et al. 2003, 2005). If a gene

expression trait is highly correlated with a disease trait of

interest, and if the corresponding gene physically resides in

a region of the genome that is associated with the disease

trait, then knowing that the expression trait is also geneti-

cally linked to a region coincident with its physical location

provides an objective and direct path to identify candidate

causal genes for the disease trait (Alberts et al. 2005; Brem

et al. 2002; Chesler et al. 2005; Cheung et al. 2005; Jansen

and Nap 2001; Monks et al. 2004; Morley et al. 2004;

Petretto et al. 2006a, b; Schadt et al. 2003, 2005). The ge-

netic information therefore enables the dissection of the

covariance structure for two traits of interest into genetic

and nongenetic components, and the genetic component can

then be leveraged to support whether an expression and

disease trait are related in a causal, reactive, or independent

manner (with respect to the expression trait). Elucidating

causal relationships is possible in this setting given the

unambiguous flow of information from changes in DNA to

changes in RNA and protein function (Fig. 1). That is, gi-

ven that two traits are linked to the same DNA locus and a

few important simplifying assumptions, there are a limited

number of ways in which these two traits can be related with

respect to a given locus (GuhaThakurta et al. 2006; Schadt

2005; Schadt et al. 2005), whereas in the absence of such

genetic information, many indistinguishable relationships

would be possible, so that additional data would be required

to establish the correct relationships.

Leveraging DNA variation information to reconstruct

gene networks supposes that we are able to systematically

identify genetic loci that at least partially control transcript

abundances for genes of interest. This of course is

straightforward given that transcript abundance or gene

expression traits are quantitative measures that can be

analyzed like any other quantitative trait in a genetics

context. However, the difficulty in analysis and interpre-

tation comes with the large number of traits examined.

Microarrays are capable of monitoring tens of thousands

(or hundreds of thousands) of transcripts simultaneously.

Therefore, methods to compute eQTLs must consider

computational tractability given the need to run the anal-

yses potentially millions of times. In addition, significance

thresholds must take into account multiple testing. Multiple

testing issues relate not only to the number of transcripts

tested but also to the number of markers or proportion of

the genome tested. However, the strong correlation struc-

ture that exists among many of the expression traits mon-

itored in a segregating population can be leveraged to

enhance the power to detect relationships among genes.
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A number of methods have been developed and applied

to gene expression traits in segregating populations to

identify eQTLs and to establish relationships among genes

and between genes and disease traits, where multiple traits

at a time can be considered. Typical approaches to the joint

analysis of genetic traits involve mapping each gene

expression trait individually and inferring the genetic cor-

relation between pairs or sets of expression traits based on

pairwise Pearson correlation, eQTL overlaps, and/or tests

for pleiotropy. Using a family-based sample, Monks et al.

(2004) estimated the genetic correlation between pairs of

traits using a bivariate variance-component-based segre-

gation analysis and showed that the genetic correlation was

better able to distinguish clusters of genes in pathways than

correlations based on the observed expression traits. This

type of method can be extended to perform bivariate and

multivariate QTL analyses, which can be more highly

powered to detect QTLs when traits are correlated. Clusters

of correlated gene expression traits can often contain

hundreds or thousands of genes, which would be compu-

tationally prohibitive in a joint analysis. Kendziorski et al.

(2006) approached this problem in a different way by

employing a Bayesian mixture model to exploit the in-

creased information from the joint mapping of correlated

gene expression traits, which is computationally tractable

for large sets of genes. Instead of doing a linkage scan by

computing LOD scores at positions along the genome,

Kendziorski et al. (2006) computed the posterior proba-

bility that a particular gene expression trait maps to marker

m for each marker, as well as the posterior probability that

the trait maps nowhere in the genome. Nonlinkage in this

setting is declared for a transcript if the posterior proba-

bility of nonlinkage exceeds a threshold that bounds the

posterior expected false discovery rate (FDR). One benefit

to this approach is that it controls false discovery for the

number of expression traits being tested, whereas assessing

the appropriate significance cutoffs in single-transcript

linkage analysis often requires data permutation analyses.

The drawback of this method is that it assumes that linkage

occurs at either one or none of the markers tested and it

lacks a well-defined method for the case when multiple

eQTLs control an expression trait.

In a study of inbred strain crosses, the only valid way of

estimating the extent of genetic control of a given trait is to

explicitly model each eQTL, including any epistatic

interactions if they exist. Brem and Kruglyak (2005)

showed that epistatic interactions were prevalent in the

gene expression levels in yeast, and similar suggestions

have been made in other species as well (Schadt et al.

2005), but more definitive studies are needed to charac-

terize the extent of epistasis among eQTLs in these other

species. In the absence of epistasis, the genetic contribution

for each transcript has been estimated by summing

contributions for each individual eQTL, assuming that little

or no allelic association exists between the eQTLs. In the

presence of epistasis, however, this practice cannot yield a

valid estimate, and multilocus models are instead required

to obtain valid estimates. In addition, multilocus modeling

can identify loci contributing to expression traits that

would have been missed in single-locus eQTL scans (Brem

and Kruglyak 2005; Storey et al. 2005).

Integrating eQTLs and clinical trait linkage mapping to

infer causality

While understanding the mechanisms of RNA expression is

in itself important for understanding biological processes,

the ultimate use of this information is identifying the

relationship between variation in expression levels and

disease phenotypes in an organism of interest. Microarray

experiments are commonly used to explore differential

expression between disease and normal tissue samples or

between samples from different disease subtypes. These

studies are designed to detect association between gene

expression and disease-associated traits, which in turn can

lead to the identification of biomarkers of disease or dis-

ease subtypes. However, in the absence of supporting

experimental data, these data alone are not able to distin-

guish genes that drive disease from those that respond. As

discussed above, eQTL mapping can aid traditional clinical

trait QTL (cQTL) mapping by narrowing the set of can-

didate genes underlying a given cQTL peak and by iden-

tifying expression traits that are causally associated with

the clinical traits.

Expression traits detected as significantly correlated

with a clinical phenotype may reflect a causal relationship

between the traits, either because the expression trait

contributes to, or is causal for, the clinical phenotype, or

because the expression trait is reactive to, or a marker of,

the clinical phenotype. However, correlation may also exist

in cases when the two traits are not causally associated.

Two traits may appear correlated due to confounding fac-

tors such as tight linkage of causal mutations (Schadt et al.

2005) or may arise independently from a common genetic

source. The Ay mouse provides an example of correlations

between eumelanin RNA levels and obesity phenotypes

induced by an allele that acts independently on these dif-

ferent traits, causing both decreased levels of eumelanin

RNA and an obesity phenotype. More generally, a clinical

and expression traits for a particular gene may depend on

the activity of a second gene in such a manner that con-

ditional on the second gene, the clinical and expression

traits are independent.

Correlation data alone cannot indicate which of the

possible relationships between gene expression traits and a
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clinical trait are true. For example, given two expression

traits and a clinical trait detected as correlated in a popu-

lation of interest, there are 112 ways to order the traits with

respect to one another. If we consider the traits as nodes in

a network, then there are five possible ways the traits (or

nodes) can be connected: (1) connected by an undirected

edge, (2) connected by a directed edge moving left to right,

(3) connected by a directed edge moving right to left, (4)

connected by a directed edge moving right to left and a

directed edge moving left to right, and (5) not connected by

an edge. Since there are three pairs of nodes, there are 5 · 5

· 5 = 125 possible graphs. However, because we start with

the assumption that the traits are all correlated with one

another, we exclude 12 of the 125 possible graphs in which

one node is not connected to either of the other two nodes,

in addition to excluding the graph in which none of the

nodes are connected, leaving us with 112 possible graphs

(Fig. 2A). The joint trait distribution induced by these

different graphs are often statistically indistinguishable

from one another (i.e., they are Markov equivalent, so that

their distributions are identical), making it nearly impos-

sible in most cases to infer the true relationship. On the

other hand, when the two traits are at least partially con-

trolled by the same genetic locus and when more compli-

cated methods of control (e.g., feedback loops) are ignored,

the number of relationships between the QTLs and the two

traits of interest can be reduced to three basic models

illustrated graphically in Fig. 2B. The dramatic reduction

in the number of possible graphs to consider is mainly

driven by the fact that changes in DNA drive changes in

phenotypes and not vice versa. That is, while it may be

possible that changes in RNA or protein lead to changes in

DNA at a high enough frequency to detect associations

between germ-line transmitted DNA changes and pheno-

type in segregating populations, it seems extremely un-

likely.

It is important to note here that when we use the term

causality, it is perhaps meant in a more nonstandard sense

than most researchers in the life sciences may be accus-

tomed to. In the molecular biology or biochemistry setting,

claiming a causal relationship between, say, two proteins

usually means that one protein has been determined

experimentally to physically interact with or to induce

processes that directly affect another protein and that in

turn leads to a phenotypic change of interest. In such in-

stances, an understanding of the causal factors relevant to

this activity are known, and careful experimental manipu-

lation of these factors subsequently allows for the identi-

fication of genuine causal relationships. However, in the

present setting, the term ‘‘causal’’ is used from the stand-

point of statistical inference, where statistical associations

between changes in DNA, changes in expression (or

other molecular phenotypes), and changes in complex

phenotypes like disease are examined for patterns of sta-

tistical dependency among these variables that allows

directionality to be inferred among them, where the

directionality then provides the source of causal informa-

tion (highlighting putative regulatory control as opposed to

physical interaction). The graphical models (networks)

described here, therefore, are necessarily probabilistic

structures that use the available data to infer the correct

structure of relationships among genes and between genes

and clinical phenotypes (Schadt and Lum 2006). In a single

experiment with one time point measurement, these

methods cannot easily model more complex regulatory

structures that are known to exist, like negative feedback

control. However, the methods can be useful in providing a

broad picture of correlation and causative relationships,

and while the more complex structures may not be

explicitly represented in this setting, they are captured

nevertheless given that they represent observed states that

are reached as a result of more complicated processes like

feedback control.

Distinguishing proximal (‘‘cis’’) eQTL effects from

distal (‘‘trans’’)

All genes expressed in living systems are cis-regulated at

some level and so are under the control of various cis-

acting elements such as promoters and TATA boxes

(Fig. 3). In this context, expression as a quantitative trait

for eQTL mapping presents a unique situation in quanti-

tative trait genetics because the expression trait corre-

sponds to a physical location in the genome (the structural

gene that is transcribed, giving rise to the expression trait).

The transcription process operates on the structural gene,

and so DNA variations in the structural gene that affect

transcription will be identified as eQTLs in the mapping

process. In such cases eQTLs would be identified as cis-

acting, given that the most reasonable explanation for

seeing an eQTL coincident with the physical location of the

gene will be that variations within the gene region itself

give rise to variations in its expression (Doss et al. 2005).

However, because we cannot guarantee that the eQTL is

truly cis-acting (i.e., it could arise from variation in a gene

that is closely linked to the gene expression trait in ques-

tion), it is more accurate to refer to such eQTLs as proxi-

mal, given that they are close to the gene corresponding to

the expression trait. Because the cis-regulated components

of expression traits are among the most proximal traits in a

biological system with respect to the DNA (given that

RNA is transcribed from DNA), we might expect that true

cis-acting genetic variance components of expression traits

are among the easiest components to detect via QTL

analysis, if they exist. This indeed has been observed in

a number of studies in which proximal (presumably cis-
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acting) eQTLs have been identified that explain unprece-

dented proportions of a trait’s overall variance (several

published studies highlight examples where greater than

90% of the overall variation was explained by a single cis-

acting eQTL) (Brem et al. 2002; Cervino et al. 2005;

Cheung et al. 2005; Lum et al. 2006; Monks et al. 2004;

Schadt et al. 2003).

Variations in expression levels induced by DNA varia-

tions in or near the gene itself may in turn induce changes

in the expression levels of other genes (Fig. 3). Each of

these genes in a population of interest may not harbor any

DNA variation in their structural gene so that they do not

give rise to true cis-acting eQTL, but they nevertheless

would give rise to eQTLs that link to the gene region

inducing changes in their expression. Therefore, we see

that the individual variation in gene expression can be of

two fundamental types. The first, termed proximal, often

results from DNA variations of a gene that directly influ-

ence transcript levels of that gene. The second, termed

trans-acting or distal, does not involve DNA variations of

the gene in question but rather is secondary to alterations of

other true cis-acting genetic variations (Fig. 3). In reality,

variation in expression traits may be due to variation in cis-

acting elements and/or one or multiple trans-acting ele-

ments. In addition, master regulators of transcription,

which affect the expression of many traits in trans (Fig. 3),

may exist, though the evidence on this is not conclusive at

this point in all species, given the limited number of studies

and small sample sizes for all studies published to date.

In most cases it is not possible to infer the true regula-

tory effects (i.e., cis vs. trans) of an eQTL without complex

bioinformatics study (GuhaThakurta et al. 2006) and

experimental validation. As a result, eQTLs have been

categorized into proximal and distal types based on the

distance between the eQTL and the location of the struc-

tural genes. Obviously, if these are on different chromo-

somes the eQTLs are distal, but if they fall on the same

chromosome then they are considered proximal only if the

distance between the structural gene and the eQTLs do not

exceed some threshold. The exact threshold is a function of

the number of meioses and extent of recombination in a

given population data set. In a completely outbred popu-

lation where LD mapping has been used to fine-map the

eQTLs, it has been reasonable to require the distance be-

tween the proximal eQTL and structural gene to be less

than 1 Mb (Cheung et al. 2005). However, in an F2 inter-

cross population constructed from two inbred lines of mice,

the extent of LD will be extreme given that all animals are

descended from a single F1 founder, with only two meiotic

events separating any two mice in the population. In such

cases the resolution of linkage peaks is quite low, requiring

the threshold of peak-to-physical gene distance to be more

relaxed, so that eQTLs that are within 20 or 30 Mb could

be potentially cis-acting (Doss et al. 2005; Schadt et al.

2003). While the proximal eQTLs provide an easy path to

making causal inference, given that the larger effect sizes

commonly associated with proximal eQTLs make them

easier to detect (Brem et al. 2002; Cervino et al. 2005;

Cheung et al. 2005; Lum et al. 2006; Monks et al. 2004;

Schadt et al. 2003), the methods discussed above work for

distal as well as proximal eQTLs. In fact, if a given gene

sits more centrally in a given gene network that drives

Fig. 3 Mapping proximal and distal eQTLs for gene expression

traits. The white rectangles represent genes that are controlled by

transcriptional units. The ellipses represent the transcriptional control

units, which could be transcription regulatory sites, other genes that

control the expression of the indicated gene, and so on. A Cis-acting

control unit acting on a gene. DNA variations in this control unit that

affected the gene’s expression would lead to a cis-acting (proximal)

eQTL. B Cis and trans control units regulating the indicated gene.

DNA variations in these control units that affected the gene’s

expression would lead to proximal and distal eQTLs. C Cis control

unit and multiple trans control units regulating the indicated genes.

DNA variations in these control units would lead to a complex eQTL

signature for the gene. D A single control unit regulating multiple

genes. DNA variations in this single control unit could lead to a

cluster of distal eQTLs (an eQTL hot spot)
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disease, it may capture a larger percentage of the genetic

variation associated with the disease (Fig. 2B), making the

gene easier to identify and associate with disease. This was

the case in one of the first studies to explicitly leverage

DNA and RNA changes to map genes for obesity (Schadt

et al. 2005). In that study three genes (C3ar1, Tgfbr2, and

Zfp90) were identified and validated as causal for obesity,

and in all three cases the QTLs that facilitated identifica-

tion of the causal association were all distally acting with

respect to the expression traits.

More generally leveraging eQTL data to reconstruct

gene networks

The classic reductionist view applied to genetics has

motivated the identification of single genes associated with

disease as one means of getting a foot into disease path-

ways. However, even in cases where genes are involved in

pathways that are well known, it is unclear whether the

gene causes disease via the known pathway or whether the

gene is involved in other pathways or more complex net-

works that lead to disease. This was the case with TGFBR2,

a recently identified and validated obesity susceptibility

gene (Schadt et al. 2005). The classic view of the signaling

pathways involving the superfamily of transforming

growth factor b (TGF-b) proteins is that TGF-b acts

through receptor serine/threonine kinases to phosporylate

regulatory proteins of the Smad family, which then move

into the nucleus where they bind DNA to activate specific

sets of target genes (Alberts 2002) (Fig. 4A). Although the

number of biological functions this cascade ultimately

impacts is large, the classic pathway is simplistic, involv-

ing only a limited number of genes, with little insight

provided into the vast network of gene interactions that

potentially modulate key players in this pathway.

RNA levels of the type II TGF-b receptor (TGFBR2)

were recently shown to be very significantly correlated

with thousands of other gene expression traits in the liver

transcriptional network of a cross between two inbred lines

of mice (referred to here as the BXD cross) (Schadt et al.

2003, 2005) This set of genes associated with TGFBR2 was

enriched for a broad range of biological functions known to

be associated with the classic TGF-b signaling pathway

and with metabolic disease traits such as obesity. Fur-

thermore, TGFBR2 RNA levels in the BXD cross were also

found to be significantly correlated with many obesity-re-

lated traits like fat mass, percent body fat, and weight.

Taking a view that a complex network of gene interactions

underlies obesity phenotypes in the BXD cross, genotypic

and gene expression data were systematically integrated to

assess whether changes in DNA sequence at a given

location in the genome (reflected as genotypes in the cross

animals) leading to changes in transcript abundances for a

given gene supported an independent, causative, or reactive

function of that gene relative to various obesity phenotypes

like fat mass (Schadt et al. 2005). In partitioning the

thousands of genes associated with obesity in this way,

TGFBR2 was one of 40 genes predicted as causal for

obesity in the BXD cross. TGFBR2 and two other genes

selected for validation were all validated as causal for

obesity in this study (Schadt et al. 2005). These data di-

rectly demonstrated that TGFBR2 and other genes in this

signaling pathway are involved in a more general gene

Fig. 4 Genes comprising

simple linearly ordered

pathways operate in a network

context. A The classic view of

TGF-b signaling (Alberts 2002)

involves Tgfbr2 as a key

component. Tgfbr2 was recently

identified and validated as an

obesity susceptibility gene. B
The genes comprising the TGF-

b signaling pathway are

correlated with hundreds of

other genes in the liver network

(Schadt et al. 2005) so that

components of this pathway

affect and are affected by many

different parts of the network
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network (Schadt et al. 2005a, b), so that it is possible that

perturbations in these other genes or in TGFBR2 itself may

drive diseases like obesity by influencing other parts of the

network beyond the TGF-b signaling pathway (Fig. 4B).

Therefore, considering single genes in the context of a

whole-gene network may provide the necessary context

within which to interpret the disease role a given gene may

play.

Networks provide a convenient framework for exploring

the context within which single genes operate. Networks

are simply graphical models comprising nodes and edges.

For gene networks associated with biological systems, the

nodes in the network typically represent genes, and edges

(links) between any two nodes indicate a relationship be-

tween the two corresponding genes. For example, an edge

between two genes may indicate that the corresponding

expression traits are correlated in a given population of

interest (Zhu et al. 2004), that the corresponding proteins

interact (Kim et al. 2005), or that changes in the activity of

one gene lead to changes in the activity of the other gene

(Schadt et al. 2005). Interaction or association networks

have recently gained more widespread use in the biological

community, where networks are formed by considering

only pairwise relationships between genes, including pro-

tein interaction relationships [49], coexpression relation-

ships (Gargalovic et al. 2006; Ghazalpour et al. 2006), and

other straightforward measures that may indicate associa-

tion between two genes.

Genetic data can aid in the construction of association

networks by helping to reduce artifactual correlations be-

tween expression traits. Significant artifactual correlations

can arise because of correlated noise structures between

array-based experiments networks. One way to leverage

the eQTL data in this setting is to simply filter out gene-

gene correlations in which the expression traits are not at

least partially explained by common genetic effects (Lum

et al. 2006). For example, we can connect two genes with

an edge in a coexpression network if (1) the p value for the

Pearson correlation coefficient between the two genes is

less than some prespecified threshold, and (2) the two

genes had at least one eQTL in common. This can be taken

a step further by formally assessing whether two expression

traits driven by a common QTL are related in a causal or

reactive fashion, filtering out correlations driven by

expression traits that are independently driven by common

or closely linked QTLs (Doss et al. 2005; Schadt et al.

2005).

As has been discussed, multiple traits driven by common

QTLs is a central idea that can be leveraged to construct

networks. One intuitive way to establish whether two genes

share at least one eQTL is to perform single-trait eQTL

mapping for each expression trait and then consider eQTLs

for each trait overlapping if the corresponding LOD for the

eQTLs are above some threshold and if the eQTLs are in

close proximity to one another. The significance of the

statistic corresponding to the strength of association be-

tween two genes in the coexpression networks is then

chosen such that the resulting network exhibits the scale-

free property (Gargalovic et al. 2006; Ghazalpour et al.

2006; Lum et al. 2006) and the false discovery rate for the

gene-gene pairs represented in the network is constrained.

Beyond the simple, albeit intuitively appealing, eQTL

overlap method, we can formally test whether two over-

lapping eQTLs represent a single eQTL or closely linked

eQTLs by employing a pleiotropy effects test (PET), such

as that originally described by Jiang and Zeng (1995) and

Zeng et al. (2000). The formation of gene clusters by

simultaneously considering gene-gene and marker-gene

correlations also promises to provide a more comprehen-

sive characterization of shared genetic effects (Lee et al.

2006).

Identifying modules of highly interconnected genes in

coexpression networks

Given the scale-free and hierarchical nature of coexpres-

sion networks (Barabasi and Oltvai 2004; Ghazalpour

et al. 2006; Lum et al. 2006), one of the key problems is

to identify the network modules, or functional units, in

the network that represent those hub nodes (nodes that are

significantly correlated with many other nodes) that are

highly interconnected with one another but that are not as

highly connected with other hub nodes. Figure 5 illus-

trates a topological connectivity map for the most highly

connected genes in the adipose tissue of the BXH cross

(E. E. Schadt et al., unpublished). After hierarchically

clustering both dimensions of this plot, the network is

seen to break out into clearly identifiable modules. Gene-

gene coexpression networks are highly connected, and the

clustering results shown in Fig. 5 illustrate that there are

gene modules arranged hierarchically within these net-

works.

Ravasz et al. (2002) used manually selected height

cutoff to separate tree branches after hierarchical cluster-

ing, in contrast to Lee et al. (2004) who formed maximally

coherent gene modules with respect to gene ontology (GO)

functional categories. Another strategy is to employ a

measure similar to that used by Lee et al. (2004) but

without the dependence on the GO functional annotations,

given it is of interest to determine independently whether

coexpression modules are enriched for GO functional

annotations (Lum et al. 2006). The modules identified in

this way are informative for identifying the functional

components of the network that are associated with disease

(Lum et al. 2006). It has been demonstrated that the types

of modules depicted in Fig. 5 are enriched for known
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biological pathways, for genes that associate with disease

traits, and for genes that are linked to common genetic loci

(Ghazalpour et al. 2006; Lum et al. 2006). In this way, one

can identify those key groups of genes that are perturbed by

genetic loci that lead to disease, and that therefore define

the intermediate steps that actually define disease states.

Using eQTL data to reconstruct probabilistic networks

Coexpression networks are useful constructs for character-

izing gross topological properties of biological networks,

highlighting nodes that are highly connected, and identi-

fying functional modules that aid in the characterization of

subnetworks associated with disease. The edges in these

networks, however, are undirected so that they do not pro-

vide explicit details on the connectivity structure among

genes in the network. As suggested above, one way to

incorporate causal information into the coexpression net-

works would be to define direction using the causality

procedures described in Fig. 2B. However, such a method

would be limited by considering only pairs of genes at a

time. The naturally occurring variations in DNA can be

leveraged more generally as a systematic source of pertur-

bations to infer causal associations among gene expression

traits and between gene expression and clinical traits,

moving us toward the ultimate goal of reconstructing

whole-gene networks that drive disease, so that for any

given gene a more complete context is defined. Zhu et al.

(2004) were among the first to formally incorporate genetic

data into the reconstruction of whole-gene networks using

Fig. 5 Coexpression and Bayesian networks from adipose expression

data collected in a murine F2 intercross population. The upper-left

panel is a topological overlap map view of the adipose coexpression

network. All pairs of correlations among the 5000 most highly

connected genes in the adipose data are plotted in the color matrix

display (red indicates positive correlation, blue indicates negative

correlation, and white indicates correlation not significant at the p <

10-20 level). The genes are ordered along the x and y axes using an

agglomerative hierarchical clustering algorithm. Tightly correlated

groups of genes (modules) clearly emerge from this plot. Modules are

identified as described in the text. The upper-right panel is the

Bayesian network corresponding to genes in module 2 highlighted in

the topological overlap map. The lower-left panel represents a

subnetwork consisting of 36 genes that contain the genes Lpl and

Lactb recently validated as causal for obesity (E. E. Schadt et al.,

unpublished). More generally, module 2 highlighted in the topolog-

ical overlap map contains a number of genes validated as causal for

obesity (lower-right panel), indicating that disease-causing genes may

cluster into functionally coherent sets in the network
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Bayesian network reconstruction methods. Bayesian net-

works are directed acyclic graphs that, while limited with

respect to representing temporal information or feedback

loops, allow for the explicit representation of causal asso-

ciations among nodes in the network. With Bayesian net-

work reconstruction methods taking gene expression data as

the only source of input, many relationships between genes

in such a setting will be Markov equivalent (symmetric),

similar to what was discussed for three-node graphs in

Fig. 2. This means one cannot statistically distinguish

whether a given gene causes another gene to change or vice

versa. To break this symmetry, Zhu et al. (2004) incorpo-

rated eQTL data as prior information to establish more

reliably the correct direction among expression traits.

Bayesian network methods have been applied previ-

ously to reconstruct networks comprising only expression

traits, and to networks comprising both expression and

disease traits, where the aim has been to identify those

portions of the network that are driving a given disease

trait. Forming candidate relationships among genes was

performed using an extension of standard Bayesian net-

work reconstruction methods (Chiellini et al. 2002). In the

first approach to extend this method using genetic data,

QTL information for the transcript abundances of each

gene considered in the network was incorporated into the

reconstruction process. It is well known that searching for

the best possible network linking a moderately sized set of

genes is an NP-hard problem. Exhaustively searching for

the optimal network with hundreds of genes is presently a

computationally intractable problem. Therefore, various

simplifications are typically applied to reduce the size of

the search space and to reduce the number of parameters

that need to be estimated from the data. Two simplifying

assumptions to achieve such reductions are commonly

employed. First, while any gene in a biological system can

control many other genes, a given gene can be restricted so

that it is allowed to be controlled by a reduced set of genes.

Second, the set of genes that can be considered possible

causal drivers (parent nodes) for a given gene can be re-

stricted using the type of causality arguments discussed in

previous sections, as opposed to allowing for the possibility

of any gene in the complete gene set to serve as a parent

node. The eQTL data in this case can be leveraged as prior

information to restrict the types of relationships that can be

established among genes and the QTL information can be

more intimately integrated into the network reconstruction

process. As indicated in previous sections, correlation

measures are symmetric and so can indicate association but

not causality. However, QTL mapping information for the

gene expression traits can be used to help sort out causal

relationships. The different tests described in the section on

making causal inferences between pairs of traits provides

one way to explicitly sort out such relationships. Zhu et al.

(2004) leveraged the eQTL data in a different way to make

similar types of inferences in their network reconstruction

algorithm.

With the various constraints and measures defined

above, the goal in reconstructing whole-gene networks is to

find a graphical model M (a gene network) that best rep-

resents the relationships between genes, given a gene

expression data set D of interest. That is, given data D, we

seek to find the model M with the highest posterior prob-

ability P(M|D). The prior probability P(M) of model M is

PðMÞ ¼
Y

X!Y

PðX ! YÞ

where the product is taken over all paths in the network (M)

under consideration. The algorithm Zhu et al. (2004) em-

ployed to search through all possible models to find the

network that best fits the data is similar to the local max-

imum search algorithm implemented by Friedman et al.

(2000). Zhu et al. (2007) recently demonstrated via simu-

lation of biologically realistic networks that the integration

of genetic and expression data in this fashion to reconstruct

gene networks leads to networks that are more predictive

than networks reconstructed from expression data alone.

The Bayesian network reconstruction algorithm can be

used to elucidate the module connectivity structure depicted

in Fig. 5. Because reconstruction of Bayesian networks is an

NP-hard problem (Garey and Johnson 1979), the number of

nodes that can be considered in the network and the extent of

connections (edges) among these nodes must be reduced

(over what can be considered in reconstructing coexpression

networks) to make the problem tractable, thereby making

such networks more sparse compared with coexpression

networks. Toward this end, Fig. 5 shows the result of the

Bayesian network reconstruction algorithm discussed above

applied to module 2 of the coexpression network depicted in

Fig. 5. Further highlighted in Fig. 5 is a subnetwork con-

taining the gene Lpl, a gene recently identified as causal for

obesity in the BXH cross (E. E. Schadt et al., unpublished).

In fact, the module 2 subnetwork contains a number of genes

recently identified and validated as causal for obesity

(Fig. 5). The more detailed structure provided by the dif-

ferent networks depicted in Fig. 5 allows for the examina-

tion of the context in which specific genes like Lpl operate,

providing insights into which parts of the network may

impact a given gene’s function and what other parts of the

network may be impacted by the gene’s function.

Conclusions

The identification of DNA polymorphisms that associate

with diseases like obesity and diabetes can be considered

only as the beginning in a long series of steps needed to
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elucidate disease pathways and to establish the specific role

individual genes may play in the process. Diseases like

obesity are diseases of the system, potentially involving

many different pathways operating in many different tis-

sues and ultimately giving rise to not only different disease

subtypes but to different comorbidities of the disease as

well. The integration of gene expression (and other

molecular profiling data more generally) and genotypic

data will be critical if we are ever to understand how ge-

netic and environmental perturbations to a given system

lead to complex traits like disease. If common forms of

these diseases represent states of a network, then focusing

on single-gene perturbations will likely never reveal the

most effective ways to treat or prevent disease.

The integration of the diverse sets of molecular data now

being generated in population settings is only in its infancy.

Many of the methods employed to date toward this end are

more heuristic in nature and so will benefit from a more

formal treatment. In addition, little to date has been done to

integrate expression data from multiple tissues to dissect

how modules in one tissue may communicate with modules

in another tissue. The types of interactions considered along

with eQTL data so far have been restricted to RNA-RNA

association data, despite the availability of large-scale

DNA-protein and protein-protein interaction data. The

predictive power of the types of networks discussed in this

review could be enhanced by more systematically inte-

grating protein-protein interactions, protein-DNA interac-

tions, protein-RNA interactions, RNA-RNA interactions,

protein state information, methylation state, and interac-

tions with metabolites as these types of data become

available. These developments promise to take us beyond

the single-gene view of disease and move us closer to the

type of systems level view, depicted in Fig. 1, that may be

needed to fully understand the complexity of common hu-

man diseases like obesity and diabetes. Of course, further

study and experimentation are needed to demonstrate more

convincingly that understanding the state of a given

molecular network, interactions among molecular net-

works, and how the states of such networks change in re-

sponse to different genetic and environmental contexts is

tractable enough to take us beyond the reductionist ap-

proach, which to date has achieved great success in eluci-

dating the complexity of living systems more generally.
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