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In recent decades, automatic vehicle classification plays a vital role in intelligent transportation systems and visual traffic
surveillance systems. Especially in countries that imposed a lockdown (mobility restrictions help reduce the spread of COVID-
19), it becomes important to curtail the movement of vehicles as much as possible. For an effective visual traffic surveillance
system, it is essential to detect vehicles from the images and classify the vehicles into different types (e.g., bus, car, and pickup
truck). Most of the existing research studies focused only on maximizing the percentage of predictions, which have poor real-
time performance and consume more computing resources. To highlight the problems of classifying imbalanced data, a new
technique is proposed in this research article for vehicle type classification. Initially, the data are collected from the Beijing
Institute of Technology Vehicle Dataset and the MIOvision Traffic Camera Dataset. In addition, adaptive histogram
equalization and the Gaussian mixture model are implemented for enhancing the quality of collected vehicle images and to
detect vehicles from the denoised images. Then, the Steerable Pyramid Transform and the Weber Local Descriptor are
employed to extract the feature vectors from the detected vehicles. Finally, the extracted features are given as the input to an
ensemble deep learning technique for vehicle classification. In the simulation phase, the proposed ensemble deep learning
technique obtained 99.13% and 99.28% of classification accuracy on the MIOvision Traffic Camera Dataset and the Beijing
Institute of Technology Vehicle Dataset. The obtained results are effective compared to the standard existing benchmark
techniques on both datasets.

1. Introduction

In recent times, developing an intelligent traffic surveillance
system has become an emerging research topic, where it
delivers an innovative tool to improve driver satisfaction, effi-
ciency, and transportation safety [1]. Automatic vehicle clas-

sification plays a crucial role in intelligent traffic surveillance
systems, and it supports several applications like traffic flow
analysis, electronic toll collection, and intelligent parking sys-
tems [2, 3]. Due to the COVID-19 outbreak and mobility
restrictions, citizens were allowed to move out of the home
to procure only essential goods in groceries or pharmacies.
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Intelligent traffic surveillance systems can track down any
motorists entering to the worst-affected region from low-
risk areas.

Automatic vehicle classification is a challenging task
while the videos are being collected from traffic surveillance
cameras [4]. Captured traffic surveillance images are lower-
resolution images and are subjected to several weather condi-
tions, illumination conditions, and occlusion [5]. In addition,
vehicle types generate a lot of intraclass and interclass simi-
larities which affect vehicle classification performance [6].
In order to address the aforementioned problems, several
machine learning methods and data manipulation tech-
niques have been developed in order to deal with the imbal-
anced data classification [7–9]. Compared to other objects,
vehicles have different structural characteristics, larger intra-
class variations, and larger interclass distances, and these fac-
tors make vehicle detection and classification a challenging
task [10] because a single classifier in the classification stage
would seem impossible to detect. The existing research on
various detection mechanisms has resulted in efficient identi-
fication of incidences while others have the same limitations
of standard identification versions [11, 12]. The motivation
of this research study is to highlight the aforementioned
issues and to deal with the imbalanced data, and a new tech-
nique is proposed in this research paper for vehicle type
classification.

Initially, the surveillance videos or images are collected
by the Beijing Institute of Technology (BIT) Vehicle Dataset
and the MIOvision Traffic Camera Dataset (MIO-TCD).
Additionally, the visual ability of the collected vehicle images
is improved by implementing the Adaptive Histogram
Equalization (AHE) method and then the Gaussian Mixture
Model (GMM) which are utilized to detect vehicles from
the denoised images. The GMM model provides higher
detection accuracy, adaptation to image content, simplicity
of implementation, and fast computation in vehicle detec-
tion. After recognizing the vehicles, the hybrid feature extrac-
tion is accomplished by using the Steerable Pyramid
Transform (SPT) and the Weber Local Descriptor (WLD)

to extract feature vectors from the detected images. By imple-
menting high-level global descriptors, the semantic gap
between the extracted feature vectors is limited and results
in better classification, reduced training time, and overfitting
issues. Finally, the ensemble deep learning technique is used
to classify the vehicle types such as the 11 classes in MIO-
TCD and the 6 classes in the BIT Vehicle Dataset. Lastly,
the proposed ensemble deep learning technique performance
is analyzed in terms of the False Discovery Rate (FDR), the
False Omission Rate (FOR), recall, precision, and accuracy.
The simulation results confirmed that the proposed ensem-
ble deep learning technique is significant in vehicle type clas-
sification related to the state-of-the-art techniques. In
contrast, one of the drawbacks of using the ensemble deep
learning technique is the vanishing gradient problem, which
occurs when a large input space is mapped into a smaller one;
this problem can be highlighted in future work.

2. Related Work

Liu et al. [13] developed the Generative Adversarial Nets
(GANs) to classify vehicles from traffic surveillance videos.
The developed approach consists of three steps in vehicle
classification. Initially GAN was trained on a collected traffic
dataset to generate adversarial samples for the rare classes. In
the second step, an ensemble-based Convolutional Neural
Network (CNN) was trained on the imbalanced dataset,
and then sample selection was carried out to eliminate the
lower quality adversarial samples. Finally, the selected adver-
sarial samples were utilized to refine the ensemble model on
the augmented dataset. Extensive experiments showed that
the developed GAN approach achieved effective performance
in vehicle classification on MIO-TCD by means of the Cohen
kappa score, mean recall, precision, and mean precision.
However, degradation issues will occur in the developed
GAN approach, when the deeper networks are about to con-
verge. Fu et al. [14] developed a new vehicle classification
technique on the basis of a hierarchical multi-SVM (multi-
Support Vector Machine) classifier. Initially, the foreground

Image collection

Image pre-processing

Adaptive histogram equalization

Vehicle detection
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Steerable pyramid transform Weber local descriptor

Vehicle classification

Ensemble deep learning technique

BIT vehicle and MIO-TCD datasets

Figure 1: Flow diagram of the ensemble deep learning technique.
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objects were extracted from the surveillance videos, and then
the hierarchical multi-SVM technique was developed for
vehicle classification. Additionally, a voting-based correction
approach was used to track the classified vehicles for the per-
formance evaluation. In this literature study, a practical sys-
tem was developed based on the hierarchical multi-SVM
technique for robust vehicle classification in a heavy traffic
scene. Hence, the developed technique is ineffective in prac-
tical crowded traffic scenes, due to the different views,
shadows, and heavy occlusion. Further, Şentaş et al. [15] used

the tiny YOLO with the SVM classifier for vehicle detection
and classification. In the experimental segment, the perfor-
mance of the developed model was validated on the BIT
Vehicle Dataset in light of precision and recall. The result
of the experiment confirms that the developed model signif-
icantly classifies the vehicle types in real-time-streaming traf-
fic videos. However, SVM was a binary classifier, which
supports only binary classification that was a major limita-
tion in this study. Wang et al. [16] developed a vehicle type
classification system based on the faster R-CNN technique.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Sample images of BIT Vehicle Dataset: (a) SUV, (b) sedan, (c) minivan, (d) microbus, (e) bus, and (f) truck.

3Wireless Communications and Mobile Computing



The performance of the developed technique was evaluated
on a real-time dataset which contains real scene images cap-
tured at the crossroads. As a future enhancement, a novel
technique is needed to improve the ability to detect a vehicle
which is occluded due to different illumination conditions,
angles, and scales of the images. Zhuo et al. [17] developed
a CNN model for vehicle classification which includes two
important steps such as fine tuning and pretraining. In the
pretraining step, GoogLeNet was applied on the ImageNet
Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) dataset in order to get the initial model with
connection weight. In the fine tuning step, the obtained ini-
tial model was fine-tuned on the vehicle dataset to achieve
final classification. In this literature study, the collected high-
way surveillance videos include six vehicle categories like
van, minibus, truck, bus, car, and motorcycle. In the experi-
mental phase, the performance analysis was carried out on
the vehicle dataset by means of accuracy. However, the devel-
oped CNN model is computationally expensive and has a
major problem of “overfitting.” Murugan and Vijaykumar
[18] developed a new framework for vehicle type classifica-
tion that includes six main phases such as data preprocessing,
detection of the vehicles, vehicle tracking, structural match-
ing, extraction of the features, and vehicle classification. After
collecting the traffic surveillance videos, data preprocessing
was accomplished by using noise removal and color conver-
sion. Further, the Otsu thresholding algorithm and back-
ground subtraction were used to detect the vehicles. Then,
vehicle tracking was accomplished using the Kalman filter
in order to track the moving vehicles. Additionally, the log
Gabor filter and the Harrish corner detector were used to
extract the feature vectors, and then the obtained features
were fed to the Artificial Neural Fuzzy Inference System
(ANFIS) for classification of the vehicles. Extensive experi-
ments showed that the developed framework achieved signif-
icant performance in vehicle classification in light of error
rate and accuracy. The developed framework increases the
dimensionality issue that accounts for the model complexity.
Dong et al. [19] implemented a new semisupervised CNN
architecture for vehicle type classification. In the developed
architecture, a sparse Laplacian filter was applied to extract

the rich and discriminative information of the vehicles. In
the output layer, a softmax classifier was trained by multitask
learning for vehicle type classification. In this literature study,
the features learned by the semisupervised CNN architecture
were discriminative to work significantly in the complex
scenes. Extensive experiments were evaluated on the BIT
Vehicle Dataset and a public dataset in order to analyze the
efficiency of the developed architecture in light of classifica-
tion accuracy. The semisupervised CNN architecture
includes several layers, so the training process consumes
more time. Hedeya et al. [20] introduced a new densely con-
nected single-split super learner and applied variants for
vehicle type classification on the BIT Vehicle Dataset and
MIO-TCD. The developed model was simple, and it does
not require any logic reasoning and hand-crafted features
to achieve better vehicle type classification performance. In
the complex datasets, the developed model introduces the
vanishing gradient problem that is a major concern in this lit-
erature study. Soon et al. [21] implemented a new semisuper-
vised model for vehicle type classification on the basis of
Principal Component Analysis Convolutional Network
(PCN). In the developed model, convolutional filters were
utilized to extract the hierarchical and discriminative fea-
tures. The simulation result showed that the developed
model obtained better performance in real-time applications,
due to its robustness against noise contaminations, illumina-
tion conditions, rotation, and translation. The developed
PCN model contains a greater number of training parame-
ters that lead to an overfitting problem.

Awang et al. [22] developed the Sparse-Filtered CNN
with Layer Skipping (SF-CNNLS) approach for vehicle type
classification. In this literature study, three channels of the
SF-CNNLS approach were applied to extract discriminant
and rich vehicle features. Additionally, the global and local
features of the vehicles were extracted from the three chan-
nels of an image based on their color, brightness, and shape.
In the Experimental Results and Discussion, the performance
of the developed SF-CNNLS approach was validated on a
benchmark dataset. Finally, the softmax regression classifier
was used to classify the vehicle types like truck, minivan,
bus, passenger, taxi, car, and SUV. The developed softmax
regression classifier includes higher-level layers; however,
by embedding lower-resolution vehicle images, there may
be a loss of vehicle type information. Nasaruddin et al. [23]
developed an attention-based approach and a deep CNN
technique for lightweight moving vehicle classification. In
this literature, the developed model performance was vali-
dated on a real-time dataset by means of specificity, preci-
sion, and f -score. However, the developed model
performance was limited in such circumstances as baseline,
camera jitter classes, and bad weather. The methods under-
taken, datasets, advantage of using the developed methods
in vehicle type classification, and disadvantage of the
methods are clearly given for each literature paper. In order
to address the above stated issues, a new ensemble deep
learning technique is proposed in this research paper to
improve vehicle type classification.

This paper is organized as follows. Methodology intro-
duces two vehicle datasets and their parameters, as well as

Table 1: Data statistics of the MIO-TCD classification dataset.

Vehicle type Training Testing

Articulated truck 10,346 2,587

Pedestrian 6,262 1,565

Car 260,518 65,131

Pickup truck 50,906 12,727

Bicycle 2,284 571

Single-unit truck 5,120 1,280

Nonmotorized vehicle 1,751 438

Bus 10,316 2,579

Motorcycle 1,982 495

Work van 9,679 2,422

Background 160,000 40,000

Total 519, 164 129,795
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(e) (f)

Figure 3: Continued.
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(g) (h)

(i) (j)

Figure 3: Continued.

6 Wireless Communications and Mobile Computing



(k)

Figure 3: Sample images of theMIO-TCD classification dataset: (a) pickup truck, (b) articulated truck, (c) car, (d) work van, (e) pedestrian, (f
) single-unit truck, (g) bus, (h) bicycle, (i) motorcycle, (j) nonmotorized vehicle, and (k) background.

(a) (b)

(c)

Figure 4: (a) Original image, (b) preprocessed image, and (c) vehicle-detected image.

7Wireless Communications and Mobile Computing



preprocessing data techniques and selected machine learning
algorithms. The Experimental Results and Discussion
describes the performance of the ensemble deep learning
technique in terms of classification accuracy, provides com-
parative analysis between the proposed and existing tech-
nique, and discusses benefits and weaknesses of selected
models. Finally, the last section presents our conclusions.

3. Methodology

In a recent scenario, vehicle type classification is the emerg-
ing research area in intelligent traffic systems, due to its wide
range of applications that includes intelligent parking sys-
tems and traffic flow statistics [24]. Many approaches have
been developed using vehicle type classification, which are
commonly based on cameras, magnetic induction, and optic
fibres [25]. The image-based approaches received great atten-
tion in the computer vision community with the extensive
use of traffic surveillance cameras. The flow diagram of the
ensemble deep learning technique is given in Figure 1.

3.1. Image Collection. In this research study, the proposed
ensemble deep learning technique performance is tested on
the BIT Vehicle Dataset and MIO-TCD. The BIT Vehicle
Dataset is comprised of 9850 vehicle images with pixel sizes
of 1920 × 1080 and 1600 × 1200, which have been captured
using two different cameras at different places and time.
The BIT Vehicle Dataset consists of six vehicle types, namely,
sedan, microbus, SUV, minivan, bus, and truck, and there are

5922, 883, 1392, 476, 558, and 822 images for each corre-
sponding vehicle type [26]. The captured images are varied
in terms of view points, surface color of the vehicles, scales,
position of the vehicles, and illumination conditions. Due
to the sizes of the vehicles and capturing delay, the top and
bottom parts of the vehicles are not included in the images.
The location of every vehicle is preannotated in the BIT
Vehicle Dataset, because some images include one or two
vehicles in the same image. The sample images of the BIT
Vehicle Dataset are given in Figure 2. The BIT Vehicle Data-
set link is as follows:https://www.programmersought.com/
article/7654351045/.

In addition, the MIO-TCD classification dataset is
comprised of 648,959 vehicle images, and it includes eleven
vehicle types: bicycle, articulated truck, motorcycle, nonmo-
torized vehicle, bus, car, pedestrian, work van, pickup truck,
single-unit truck, and background [27]. The data statistics
of the MIO-TCD classification dataset is stated in Table 1.
Every annotated image in the BIT Vehicle Dataset and
MIO-TCD is stored in a structured format. Sample images
of the MIO-TCD classification dataset are given in Figure 3.
The MIO-TCD classification dataset link is as follows:
https://github.com/hakimamarouche/MIO-TCD-
classification.

3.2. Image Preprocessing and Vehicle Detection. After collect-
ing the vehicle images, the AHE technique is used to enhance
the visual ability of the images by altering the global image
contrast. Additionally, the AHE technique calculates several

Tra�c surveillance videos

Tra�c data
Ensemble deep learning technique

Majority voting

ResNet-50

ResNet-101

ResNet-152

Pickup truck

Bicycle

Single unit truck
Bus
Motorcycle

Work van
Background, etc.

Vehicle classification

Figure 5: Architecture of the ensemble deep learning technique.

Input: Size of feature space, training set, size of feature subspace, feature set, number of feature subspace, one test sample, and number
of classes.
Output: Classification of vehicle types.
Process:

For i = 1: classes

Label the samples of ith class.
Train the feature subsets using ResNet-152, ResNet-101, and ResNet-50.

End for
Calculate the value of counter
Output.

Pseudocode 1: Pseudocode of ensemble deep learning technique.
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histogram values for redistributing the lightness values of the
vehicle images that enhances the local contrast and defini-
tions of edges in every region of a vehicle image. Firstly, the
collected images are considered as x, and the number of gray
level occurrences i in the collected images is indicated as ni
[28]. Hence, the probability of a grey level occurrence is com-
puted using

px ið Þ = p x = ið Þ =
ni
n
,  0 ≤ i < L, ð1Þ

where L is indicated as the number of image gray levels,

which ranges between 0 and 255; n is denoted as total image
pixels; and pxðiÞ is stated as the histogram value of the image
pixel which is normalized between ½0, 1�. Further, the cumu-
lative distribution function (CDF) is computed for px using

cdf x ið Þ = 〠
i

j=0

px x = jð Þ: ð2Þ

Then, a transformation form y = ðxÞ is developed to gen-
erate a new image y with the flat histogram values. The trans-
formed vehicle images have a linear CDF which is
mathematically stated in

cdf y ið Þ = iK , ð3Þ

y′
� �

= cdf y T kð Þð Þ = cdf x kð Þ, ð4Þ

where K and T are represented as constant variables that
range between ½0, 1�, and the k variable is in the range of ½0,
L�. In the AHE technique, a simple transformation is applied
to map the pixel values back into their original image, which
is mathematically determined in

y′ = y × max xð Þ −min xð Þð Þ +min xð Þ: ð5Þ

After image preprocessing, GMM is applied to detect

vehicles from the preprocessed images, y′. In the field of
vehicle type classification, GMM is used for detecting and
recognizing moving objects [29]. GMM is a statistical model,
which describes spatial distribution and the properties of the
data in the parameter space. GMM includes a parametric
probability density function, which is comprised of numer-
ous Gaussian component functions for detecting vehicles

Table 2: Performance analysis of the proposed ensemble deep
learning technique on the BIT Vehicle Dataset in terms of
precision, recall, and accuracy.

Feature extraction Classifier
Precision

(%)
Recall
(%)

Accuracy
(%)

SPT

MSVM 64.90 78 75

KNN 69 60.83 72

DNN 70.45 72 62.43

LSTM 73.97 80.80 79.60

Ensemble 78.91 86.82 90

WLD

MSVM 70 75 80

KNN 70.02 79.97 81

DNN 78.20 86.55 81.02

LSTM 79 84.60 83.20

Ensemble 81.02 84.39 86.22

Hybrid (SPT
+WLD)

MSVM 82.94 92.19 93

KNN 87 92 94.94

DNN 92.28 97.20 96.66

LSTM 93.90 96.97 98.98

Ensemble 98.24 99.72 99.28

Table 3: Performance analysis of the proposed ensemble deep
learning technique on the BIT Vehicle Dataset in terms of FDR
and FOR.

Feature extraction Classifier FDR (%) FOR (%)

SPT

MSVM 34.7 20.91

KNN 20 34.72

DNN 28 22

LSTM 18.90 17

Ensemble 11.02 12

WLD

MSVM 29 18.42

KNN 29.98 14

DNN 24 13.18

LSTM 18.07 7.2

Ensemble 12.03 6.5

Hybrid (SPT+WLD)

MSVM 13 11

KNN 9 5.01

DNN 7.67 3.10

LSTM 6.65 2.87

Ensemble 3.92 1.90
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Figure 6: Training error of ResNet-152, ResNet-101, and ResNet-
50 on MIO-TCD.
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from the images [30], that is mathematically defined in equa-
tion (6). Sample preprocessed and vehicle-detected images
are graphically represented in Figure 4:

Prob y′
� �

= 〠
Q

i=1

πiRi y′ ∣ μi, Ci

� �

, ð6Þ

where Riðy′ ∣ μi, CiÞ is denoted as bivariate normal distribu-
tion with mean vector μi, πi is denoted as the ith prior prob-
ability of Gaussian distribution, where the data sample
produces, and Ci is indicated as a covariance matrix.

3.3. Feature Extraction and Vehicle Classification. After vehi-
cle detection, SPT and WLD are combined to extract feature
vectors from the detected images, which decreases the over-
fitting risks, speeds up the training process, and enhances
the data visualization ability. SPT is a linear multiorientation
and multiscale image decomposition method, and it is devel-
oped to overcome the concerns of orthogonal separable
wavelet decomposition [31]. At first, the SPT decomposition
method categorizes the detected images into several orienta-
tions, and then scales the images based on the derivate oper-
ators in different directions with variable sizes, even though
the bandwidth orientation of the subbands are equal to2π/o
, where o is stated as the number of orientations. The resul-
tant subbands of the SPT method are rotation invariant and
translation invariant [32].

In the SPT method, the detected images are decomposed
into high- and low-frequency components using H0 and L0
filters. Additionally, the lower-frequency components are
decomposed into two oriented band-pass components, and
the low-frequency components are decomposed by using
the oriented band-pass filters B0 and B1 and the low-pass fil-
ter L1. The more the number of orientations (increasing the
derivative degree), the greater the number of pyramid levels
produced and the finer is the orientation and scale tuning,
which means a more robust representation of the images.
In the SPT method, orientation of the filters should satisfy
the following conditions:

(i) The linear combination of the filters generates a filter
of any orientation

(ii) The filters are copied and rotated to develop another
filter. So, all the filters are copies rotated from their
counterparts

Next, every subband is convolved with the texture
descriptor WLD to extract the active features from the
images. WLD is a robust local texture feature descriptor,
which is inspired from Weber’s law. WLD is comprised of
two components such as image orientation and differential
excitation to extract texture features from the vehicle-
detected image. Hence, the differential excitation component
is used for reflecting the changes of current pixels [33–35],
which is computed by utilizing

ξ xað Þ = arctan Gratio xað Þð Þ = arctan 〠
m−1

i=0

xi − xa
xa

� �

" #

, ð7Þ

where ξðxaÞ is represented as the differential excitation of
the current pixel xa,GratioðxaÞ is stated as the ratio of the dif-
ference in current pixel intensity, xiði = 0, 1, 2, 3⋯m − 1Þ is
represented as ith neighboring pixel of xa, and m is stated
as the number of neighbors. Further, the gradient orientation
component of the current pixel xa is calculated using

θ xað Þ = arctan
v11s
v10s

� �

, ð8Þ

where v11s and v10s are the outputs of two filters, filter11 and
filter10, which are used to compute the differences between
current and neighborhood image pixels, and θ is in the range
of ½−π/2, ðπ/2Þ�. Next, the extracted active feature vectors F
are fed to the ensemble deep learning technique for vehicle
classification.

Additionally, an ensemble deep learning technique is
proposed for vehicle type classification on traffic surveillance
videos. The extracted features F are fed to the ensemble deep
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learning technique in the input layer that reduces the classi-
fication bias and the training time. In order to highlight the
concerns occurring because of extreme imbalanced data dis-
tributions, hybrid feature extraction (SPT and WLD) is
devised in this research. Additionally, the size of the minority
vehicle classes is reduced to a small number compared to the
majority classes in the practical applications to avoid overfit-
ting problems. One of the major advantages of using ResNet-
152, ResNet-101, and ResNet-50 models is while it increases
network depth, it also effectively eliminates negative out-
comes. The proposed ensemble deep learning technique con-
sists of a set CNN models which are trained on the balanced
dataset with good initialization (pretrained on ImageNet). At
last, the output of the ensemble techniques are combined by
maximum voting policy based on the predictions of an indi-
vidual technique.

As represented in Figure 5, the ensemble deep learning
technique includes ResNet-152, ResNet-101, and ResNet-
50. The proposed ensemble deep learning technique consists
of three key phases: CNN techniques with good initial
parameters, fine tuning of network parameters, and averag-
ing models.

The residual networks (ResNets) are easy to optimize
with limited training error, and it also gains higher classifica-
tion accuracy from large datasets like the BIT Vehicle Dataset
and MIO-TCD. The training error of ResNet-152, ResNet-
101, and ResNet-50 on MIO-TCD is indicated in Figure 6.
By increasing the number of epochs, the error percentage
gradually decreases in the ResNet-152, ResNet-101, and
ResNet-50 techniques. Pseudocode of the ensemble deep
learning technique is given below.

4. Experimental Results and Discussion

In this research, the proposed ensemble deep learning tech-
nique performance is simulated using MATLAB 2019a soft-
ware with the following system requirements: operating
system—Windows 10 (64 bit); processor—Intel core i9; hard
disk—3TB; and RAM—16GB. In this research, the ensemble
deep learning technique performance is validated by compar-

ing with a few benchmark techniques such as the GAN-based
deep ensemble technique [13], the tiny YOLO with SVM
[15], the semisupervised CNN model [19], PCN [21], and
the three channels of SF-CNNLS (TC-SF-CNNLS) approach
[22]. The primary goal of this research study is to classify the
vehicle types from the BIT Vehicle Dataset and MIO-TCD.
The proposed ensemble deep learning technique perfor-
mance is validated using 10-crossfold validation. Let FP be
indicated as false positive, FN be denoted as false negative,
TP be stated as true positive, and TN be represented as true
negative. Five performance measures are used to analyze
the performance of the proposed ensemble deep learning
technique such as accuracy, precision, recall, FDR, and FOR
[34]. The mathematical expressions of accuracy, precision,
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Figure 8: Graphical comparison of the proposed ensemble deep learning technique on the BIT Vehicle Dataset in terms of FDR and FOR.

Table 4: Performance analysis of the proposed ensemble deep
learning technique on MIO-TCD by means of precision, recall,
and accuracy.

Feature extraction Classifier
Precision

(%)
Recall
(%)

Accuracy
(%)

SPT

MSVM 67.84 70 82

KNN 70.40 70.27 65

DNN 78.22 89 80.10

LSTM 85 88.29 88

Ensemble 89 89.54 90.72

WLD

MSVM 70 80 90

KNN 78 80.90 92.04

DNN 83 90.72 93

LSTM 87.09 92 94.20

Ensemble 89 93.39 97

Hybrid (SPT
+WLD)

MSVM 72.34 93.02 96

KNN 82.02 94 97.77

DNN 92.31 96.20 96

LSTM 98.70 98.82 98.62

Ensemble 99.12 99.69 99.13
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recall, FDR, and FOR are represented in

Accuracy =
TN + TP

TN + TP + FN + FP
× 100, ð9Þ

Precision =
TP

TP + FP
× 100, ð10Þ

Recall =
TP

TP + FN
× 100, ð11Þ

FDR =
FP

FP + TP
× 100, ð12Þ

FOR =
FN

TN + FN
× 100:

ð13Þ

4.1. Quantitative Analysis on BIT Vehicle Dataset. Here, the
proposed ensemble deep learning technique performance is
investigated using the BIT Vehicle Dataset, which consists
of six vehicle types such as sedan, microbus, SUV, minivan,
bus, and truck. In this scenario, performance analysis is car-
ried out by different classifiers such as the Long Short-Term
Memory (LSTM) network, Multisupport Vector Machine
(MSVM), K-Nearest Neighbor (KNN), Deep Neural Net-
work (DNN), and the ensemble deep learning technique with
individual and hybrid feature extraction. By inspecting
Table 2, the combination ensemble deep learning technique
with the hybrid feature extraction achieved significant per-
formance in vehicle type classification compared to other
combinations by means of precision, recall, and accuracy.
In Table 2, the proposed ensemble deep learning technique
achieved a maximum recall of 99.72%, a precision of
98.24%, and an accuracy of 99.28% on the BIT Vehicle Data-
set. The graphical comparison of the proposed ensemble
deep learning technique on the BIT Vehicle Dataset in terms
of precision, recall, and accuracy is denoted in Figure 7.

Similarly, in Table 3, the proposed ensemble deep learn-
ing technique performance is validated in terms of FDR

and FOR on the BIT Vehicle Dataset. By inspecting
Table 3, the combination of the ensemble deep learning
technique with hybrid feature extraction achieved a mini-
mum FDR of 3.92% and an FOR of 1.90% which are effec-
tive compared to other combinations in vehicle type
classification. In the BIT Vehicle Dataset, 7,880 vehicle
images are utilized for training, and 1,970 vehicle images
are utilized for testing. The graphical comparison of the
proposed ensemble deep learning technique on the BIT
Vehicle Dataset in terms of FDR and FOR is represented
in Figure 8. In addition to this, the running time of the
proposed ensemble deep learning technique on the BIT
Vehicle Dataset is 1.6 seconds per frame.
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Figure 9: Graphical comparison of the proposed ensemble deep learning technique on MIO-TCD in terms of precision, recall, and accuracy.

Table 5: Performance analysis of the proposed ensemble deep
learning technique on MIO-TCD in terms of FDR and FOR.

Feature extraction Classifier FDR (%) FOR (%)

SPT

MSVM 22 18.03

KNN 12 17

DNN 9.72 10.74

LSTM 8 3.20

Ensemble 6 1.29

WLD

MSVM 11.91 9.5

KNN 6.03 5.93

DNN 3 3.07

LSTM 2.09 1.02

Ensemble 1.72 0.86

Hybrid (SPT+WLD)

MSVM 4 3.29

KNN 1.20 1.95

DNN 0.98 0.83

LSTM 0.79 0.35

Ensemble 0.44 0.32
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4.2. Quantitative Analysis on MIO-TCD. Here, MIO-TCD is
used to validate the efficiency of the proposed ensemble deep
learning technique in terms of precision, recall, accuracy,
FDR, and FOR. MIO-TCD includes 648,959 images with 11
vehicle classes like single-unit truck, pickup truck, nonmo-
torized vehicle, car, pedestrian, articulated truck, back-
ground, motorcycle, bicycle, work van, and bus. In this
scenario, 80% of the images are used for training, and 20%
of the vehicle images are used for testing. By investigating
Table 4, the combination of ensemble deep learning tech-
nique with hybrid feature extraction achieved a maximum
precision of 99.12%, a recall value of 99.69%, and an accuracy
of 99.13% on MIO-TCD. In this article, hybrid feature
extraction significantly detects the statistical interactions
and extracts the active feature vectors from the vehicle
images. The graphical comparison of the proposed ensemble
deep learning technique on MIO-TCD by means of preci-
sion, recall, and accuracy is denoted in Figure 9.

In Table 5, the proposed ensemble deep learning tech-
nique achieved a minimum FDR value of 0.44 and an FOR
value of 0.32 compared to other combinations on MIO-
TCD. In this study, the ensemble deep learning technique
effectively maximizes the percentage of correct predictions
that reduces the misclassification in dominant and minority
vehicle categories. Graphical comparison of the ensemble
deep learning technique on MIO-TCD by means of FDR

and FOR is stated in Figure 10. Similarly, the running time
of the proposed ensemble deep learning technique on MIO-
TCD is 1.44 seconds per frame.

4.3. Comparative Analysis. The comparative analysis between
the proposed and existing techniques are given in Table 6.
Liu et al. [13] introduced a deep learning technique, namely,
GANs, for classifying vehicles in traffic surveillance videos.
Extensive experiments showed that the developed GANs
achieved 96.41% precision on MIO-TCD. Additionally, Şen-
taş et al. [15] utilized the Tiny YOLO with the SVM classifi-
cation technique for vehicle detection and classification. The
simulation outcome showed that the developed model
obtained 97.9% precision and 99.6% recall on the BIT Vehi-
cle Dataset in vehicle type classification. Dong et al. [19]
developed a novel semisupervised CNN model for vehicle
type classification. The semisupervised CNN model used a
sparse Laplacian filter to extract rich and discriminative fea-
tures of the vehicles. The features learned by the CNN model
were discriminative which works effectively in complex
scenes. In the experimental phase, the developed semisuper-
vised CNN model achieved 88.11% accuracy on the BIT
Vehicle Dataset.

Soon et al. [21] developed a semisupervised model,
namely, PCN for vehicle type classification. The developed
PCN model utilized convolutional filters to extract
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Figure 10: Graphical comparison of the proposed ensemble deep learning technique on MIO-TCD in terms of FDR and FOR.

Table 6: Comparative analysis between the proposed and the existing techniques.

Algorithm Dataset Precision (%) Recall (%) Accuracy (%)

GAN-based deep ensemble technique [13] MIO-TCD 96.41 — —

Tiny YOLO with SVM [15] BIT Vehicle 97.90 99.60 —

Semisupervised CNN model [19] BIT Vehicle — — 88.11

PCN with softmax classifier [21] BIT Vehicle — — 88.52

TC-SF-CNNLS [22] BIT Vehicle 90.52 90.41 93.80

Ensemble deep learning technique

MIO-TCD 99.12 99.69 99.13

BIT Vehicle 98.24 99.72 99.28

Combined 99.27 99.77 99.32
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hierarchical and discriminative features of the vehicles for
better classification. The simulation results showed that the
developed PCN model with the softmax classifier achieved
88.52% classification accuracy, and the PCN model with the
SVM classifier achieved 88.39% accuracy on the BIT Vehicle
Dataset. Additionally, Awang et al. [22] developed the TC-
SF-CNNLS approach for vehicle type classification. In the
experimental phase, the developed approach performance
was validated on the BIT Vehicle Dataset in terms of recall,
precision, and accuracy. The developed TC-SF-CNNLS
approach achieved 93.8% accuracy by classifying the vehicle
types like truck, minivan, bus, passenger, taxi, car, and SUV.

4.4. Discussion. As previously discussed, feature extraction
and classification are the integral parts of vehicle type classi-
fication. In this research study, hybrid (SPT+WLD) descrip-
tors are used to extract active feature vectors from the vehicle
images that speed up the training process, reduce overfitting
risk, and improve the data visualization ability. Hence, the
effect of hybrid feature extraction in vehicle type classifica-
tion is given in Tables 2, 3, 4, and 5. Additionally, a new
ensemble deep learning technique is proposed in this
research paper for learning the original dataset in order to
classify unknown data. In most of the existing research
works, an individual classifier causes bias in terms of a fixed
set of parameters, where such bias is reduced by developing
an ensemble classifier. In contrast, the performance of the
ensemble classifier completely depends on the accuracy of
the constituent classifiers, which has stronger generalization
ability than the individual classifiers.

5. Conclusion

In this article, an ensemble deep learning technique is pro-
posed for vehicle type classification which was primarily used
for traffic surveillance systems. Nowadays, video surveillance
has been utilised for additional reasons across the world dur-
ing the COVID-19 pandemic. Our application uses a deep
learning approach that consists of two major phases in vehi-
cle type classification such as feature extraction and classifi-
cation. In this research, hybrid (SPT+WLD) feature
descriptors are applied to extract active feature vectors that
reduce training time, improve classification accuracy, and
diminish overfitting problems in the ensemble deep learning
technique. In this study, the ensemble deep learning tech-
nique classifies 11 classes in MIO-TCD and 6 classes in the
BIT Vehicle Dataset. In Experimental Results and Discus-
sion, the ensemble deep learning technique achieved better
performance in vehicle type classification compared to other
classification techniques in terms of precision, recall, accu-
racy, FDR, and FOR. Compared to the existing benchmark
techniques like the GAN-based deep ensemble technique,
the Tiny YOLO with SVM, the semisupervised CNN model,
the TC-SF-CNNLS, and the PCN with a softmax classifier,
the proposed technique showed a maximum of 11.17%
improvement in vehicle type classification by means of clas-
sification accuracy. In future work, a clustering-based seg-
mentation algorithm is included in the proposed technique
for improving vehicle type detection and classification. In

addition to this, three-dimensional modelling, vehicle track-
ing, and occlusion handling are given emphasis for an effec-
tive intelligent transportation system.
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