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Abstract 20 

Increasing availability of reactive nitrogen (N) threatens plant diversity in diverse 21 

ecosystems. While there is mounting evidence for the negative impacts of N deposition 22 

on one component of diversity, species richness, we know little about its effects on 23 

another one, species evenness. It is suspected that ecosystem management practice that 24 

removes nitrogen from the ecosystem, such as hay-harvesting by mowing in grasslands, 25 

would mitigate the negative impacts of N deposition on plant diversity. However, 26 

empirical evidence is scarce.  27 

Here, we reported the main and interactive effects of N deposition and mowing on plant 28 

diversity in a temperate meadow steppe with four years data from a field experiment 29 

within which multi-level N addition rates and multiple N compounds are considered.  30 

Across all the types of N compounds, species richness and evenness significantly 31 

decreased with the increases of N addition rate, which was mainly caused by the growth 32 

of a tall rhizomatous grass, Leymus chinensis. Such negative impacts of N addition were 33 

accumulating with time. Mowing significantly reduced the dominance of L. chinensis, 34 

and mitigated the negative impacts of N deposition on species evenness.  35 

We present robust evidence that N deposition threatened biodiversity by reducing both 36 

species richness and evenness, a process which could be alleviated by mowing. Our 37 

results highlight the changes of species evenness in driving the negative impacts of N 38 

deposition on plant diversity and the role of mowing in mediating such negative impacts 39 

of N deposition. 40 



Keywords: Nitrogen deposition, nitrogen compounds, hay-making, diversity, community 41 
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 43 

Introduction 44 

Human activities have substantially altered global N cycling (Vitousek et al. 1997, 45 

Galloway et al. 2004), resulting in large amounts of reactive N being deposited into many 46 

terrestrial ecosystems (Galloway et al. 2008). For instance, N deposition increased by ~8 47 

kg N ha-1 yr-1 from 1980 (9.4 kg N ha-1 yr-1) to 2010 (averaged 21.8 kg N ha-1 yr-1) in 48 

China (Liu et al. 2013), with an average NO3
– deposition of 32.93 kg ha–1 yr–1 in Chinese 49 

terrestrial ecosystems from 2009 to 2014 (Yu et al. 2016). Nitrogen enrichment generally 50 

decreases species richness, especially in herbaceous communities (Stevens et al. 2004, 51 

Clark and Tilman 2008, Bobbink et al. 2010), and alters community composition (Suding 52 

et al. 2005, Dickson et al. 2014), with consequences for ecosystem processes and 53 

functioning (Vitousek et al. 1997, Cardinale et al. 2012, Isbell et al. 2015). Many 54 

mechanisms have been proposed for the negative impacts of N deposition on species 55 

richness, including light limitation (Hautier et al. 2009, Borer et al. 2014), eutrophication 56 

(Clark and Tilman 2008), acidification (Stevens et al. 2004), and metal toxicity (Tian et 57 

al. 2016). 58 

It is well established that species richness is not a complete surrogate for plant diversity 59 

(Wilsey and Potvin 2000). There are many limitations for using species richness as a 60 

surrogate for biodiversity, which would not capture the key responses of biodiversity to 61 

environmental changes (Hillebrand et al. 2008). However, fewer studies have focused on 62 



the impacts of N deposition on other components of plant diversity beyond species 63 

richness, for example species evenness, which measures the distribution of abundance or 64 

biomass among species in a community (Smith and Wilson 1996). Species evenness 65 

plays an important role in driving ecosystem functioning (Hillebrand et al. 2008), in that 66 

it has a positive relationship with primary productivity (Wilsey and Potvin 2000, Orwin 67 

et al. 2014) and could increase the resistance of plant community to dicot invasion and 68 

insect infestation (Wilsey and Polley 2002). However, it should be noted that the impacts 69 

of species evenness on ecosystem invasibility are variable depending on phenological 70 

traits of target species (Losure et al. 2007). While species evenness could indirectly affect 71 

ecosystem processes by affecting species richness (Wilsey and Polley 2004), a recent 72 

study reported that species evenness and richness would show synergistic effects on 73 

ecosystem functioning (Lembrechts et al. 2018).  74 

Nitrogen deposition generally facilitates the growth of grasses but is unfavorable for that 75 

of forbs (Bobbink et al. 2010, Mitchell et al. 2017), and thus changes the relative 76 

abundance of species with different functional and morphological traits in grasslands 77 

(Suding et al. 2005, Gough et al. 2012). N enrichment is beneficial to competitively 78 

dominant species (Stevens et al. 2004, Suding et al. 2005). Whether such changes in 79 

community composition and species relative abundance following N deposition would 80 

alter species evenness remains unknown. In a tallgrass prairie, Avolio et al. (2014) found 81 

that a decade long N addition increased species evenness but the substantial changes in 82 

community composition had no effect on species evenness. In a survey of calcareous 83 

grasslands in UK, however, van den Berg et al. (2011) reported that species evenness was 84 

negatively correlated with N deposition rate.  85 



The divergent responses of plant diversity to N addition have been ascribed to the 86 

variation in addition rate, application duration, and climate in different experiments 87 

(Phoenix et al. 2012, Humbert et al. 2016). Other factors may also play a role, for 88 

instance, the different types of N compounds used for simulating N deposition (Gaudnik 89 

et al. 2011, Van Den Berg et al. 2016). Atmospheric deposited N is mainly composed of 90 

inorganic N (Jia et al. 2016) with less organic N (Cornell 2011), and is often 91 

accompanied by sulfate deposition (Yu et al. 2016). Many types of N compounds have 92 

been used in related experiments, including NH4NO3, NaNO3, (NH4)2SO4, NH4Cl, and 93 

urea (Phoenix et al. 2012, Stevens and Gowing 2014). In an alpine meadow, Song et al. 94 

(2012) showed the idiosyncratic responses of different plant functional groups to different 95 

N compounds, with ammonium addition favoring legumes and sedges and nitrate 96 

addition favoring forbs. Similarly, species richness in acid grasslands is more sensitive to 97 

the reduced N form while that in calcareous grasslands is more sensitive to the oxidized 98 

form (van den Berg et al. 2016). Compared with species richness, the effects of different 99 

N compounds on species evenness have received less attention. 100 

Ecosystem management practice can also modulate the impacts of N deposition on plant 101 

diversity (Bobbink et al. 2010). On one hand, mowing can alter the intrinsic sensitivity of 102 

plants to N deposition (Bobbink et al. 1998). On the other hand, it can change the abiotic 103 

factors, such as light availability and biotic factors, such as the number of C3 species 104 

(Collins et al. 1998). In fertilized plots, mowing is apparently able to mitigate for the 105 

negative effects of the dominant species which positively affected by fertilization (Lepš 106 

2014). Mowing for hay-harvesting, as a widely-used ecosystem management practice in 107 

grasslands, could preserve plant diversity under the scenarios of N deposition (Collins et 108 



al. 1998, Poschlod et al. 2005, Knop et al. 2006). The removal of biomass and N could 109 

reduce the accumulation of N in soils (Storkey et al. 2015), which reduces the 110 

eutrophication effects. Mowing could increase light availability, therefore promoting low-111 

statured perennial grasses and forbs (Collins et al. 1998, Hautier et al. 2009). While 112 

evidence from the European and Chinese grasslands showed that mowing can mitigate 113 

the negative effects of N addition on species richness (Socher et al. 2013, Jones et al. 114 

2016, Yang et al. 2012, Zhang et al. 2017), we are not sure how mowing would mediate 115 

the N impacts on species evenness. 116 

To investigate the main and interactive effects of N addition (both rates and forms) and 117 

mowing on plant diversity, we carried out a four-year field experiment in a temperate 118 

meadow steppe in northeastern China. We hypothesized that (1) N addition would 119 

decrease species diversity via a biomass promotion of the nitrophilous species, (2) such 120 

effects would vary among different types of N compounds, and (3) mowing would 121 

mitigate the negative effects of N addition on species diversity by decreasing the 122 

dominance of nitrophilous species.  123 

 124 

Materials and Methods  125 

Study site  126 

The experiment was conducted at the Erguna Forest-Steppe Ecotone Research Station 127 

(N50°10′46.1′′，E119°22′56.4′′). The field experiment was carried out in a 128 

natural steppe which has been fenced since 2013 to prevent livestock grazing, before that 129 

the grassland was annually mown for hay-harvesting. The long-term mean annual 130 



precipitation of the site is 363 mm and the mean annual temperature is -2.45°C (1957-131 

2016). The soil is classified as chernozem according to the US soil taxonomy 132 

classification. The pH of top soil (0-10cm) is 6.8~7.0. The dominant species in this 133 

ecosystem are Leymus chinensis, Stipa baicalensis, Cleistogenes squarrosa, Thermopsis 134 

lanceolate, Cymbaria dahurica, and Carex duriuscula. Previous study from this region 135 

showed that N enrichment increased the aboveground biomass of L. chinensis (Zhang et 136 

al. 2015), whose maximum photosynthetic rate showed positive responses to N 137 

enrichment (Chen et al. 2005). Moreover, L. chinensis is a nitrophilous species with 138 

higher foliar N concentration than other grasses (Cui et al. 2010). 139 

Experimental design  140 

The N addition experiment began in 2014, following a randomized complete block 141 

design. There were six rates of N addition (i.e., 0, 2, 5, 10, 20, and 50 g N m–2 yr–1), five 142 

types of N compounds (NH4NO3, (NH4)2SO4, NH4HCO3, CO(NH2)2, slow-release 143 

CO(NH2)2, crossed with mowing treatments (non-mown vs. mown). There were 60 144 

treatments with each being replicated by eight times (480 treatment plots in total). The 145 

area of each plot was 10 m × 10 m. Nitrogen fertilizers were added annually since 2014, 146 

in late May. Fertilizers were mixed with sand (because of the low amount of added 147 

fertilizer at low addition rates) and broadcast uniformly by hand. Sand was sieved 148 

through less than 2 mm in size, washed in water, and then heated at nearly 250°C for 60 149 

minutes in an iron pan. To avoid potentially confounding effects, all plots received the 150 

same amount of sand (0.5 kg per plot). Mowing was conducted annually in late-August at 151 

the height of 10 cm above the soil surface to simulate hay harvesting. The harvested 152 

biomass was removed from the plots.  153 



Field sampling and measurement 154 

Aboveground biomass was sampled each year between August 10th and 20th by clipping 155 

all vascular plants at the soil surface in a 1 m × 1 m quadrat, which was randomly placed 156 

in each plot without a spatial overlap of quadrats among different years and at least 50 cm 157 

inside the border of each plot to avoid edge effects. All living vascular plants were sorted 158 

to species. All plant materials were oven-dried at 65°C for 48h and weighed. Species 159 

richness (number of plant species m-2) was recorded in the same quadrat in which 160 

aboveground biomass was measured. We classified species into the following five plant 161 

functional groups based on life forms: perennial rhizomatous grasses (PR), non-162 

leguminous forbs (NF), bunchgrasses (BG), sedges (SE) and legumes(LE).  163 

Calculation and statistical analysis  164 

Species evenness was quantified as 1 𝐷⁄ . D is the Simpson’s dominance index and 165 

calculated as 𝐷=∑ (𝑝𝑖)2𝑆𝑖=1  (vegan package), where pi is the relative aboveground 166 

biomass of species i in the community. The relative biomass of L. chinensis was 167 

calculated as its proportional contribution to the community total aboveground biomass. 168 

Repeated-measures ANOVAs (gls function in nlme packages) were conducted to detect 169 

the effects of N addition rate, N compounds type, mowing, and their interactions on 170 

species evenness, species richness, aboveground biomass of each plant functional group, 171 

and relative biomass of L. chinensis across 2014 to 2017. The relationship between the 172 

relative biomass of L. chinensis and species evenness was fitted with quadratic regression 173 

in different years, using the lm function, with model selection criterion AIC to choose the 174 



best model. All analyses were conducted using R version 3.2.3 (R development core 175 

team, 2015) 176 

 177 

Results 178 

Effects of N addition and mowing on plant diversity  179 

Both species evenness and richness significantly decreased with increasing N addition 180 

rates (P < 0.001, Table 1; Figs. 1 and 2). The effects of N addition on species evenness 181 

and richness significantly different among N compounds (P < 0.05, Table 1, Figs. 1 and 182 

2), with the (NH4)2SO4 treatment showing stronger reduction of evenness and richness 183 

averaged across the four years (Fig. 1F, Fig. 2F). Mowing significantly enhanced species 184 

evenness and richness (P < 0.001, Table1; Figs.1 and 2).  185 

After four years treatments, species evenness declined by 8.5%-55.8% and 13.1%-62.9%, 186 

species richness decreased 4%-30% and 2%-45% across the N addition gradient with the 187 

presence and absence of mowing, respectively. Species evenness and richness showed 188 

significant inter-annual variation (P < 0.001, Table1; Figs. 1 and 2), with a decreasing 189 

trend as time went on. The effects of N addition rates on species evenness and richness 190 

varied among different years as indicated by the significant interaction between both of 191 

them (Table 1).  192 

Effects of N addition and mowing on aboveground biomass of plant functional groups 193 

The aboveground biomass of perennial rhizome grasses (PR) significantly increased with 194 

increasing the N addition rates, whereas that of bunchgrasses (BG), sedges (SE) and 195 



legumes (LE) significantly decreased with increasing N addition (Table S1). Mowing 196 

significantly reduced aboveground biomass of PR and increased that of non-leguminous 197 

forbs (NF) and SE (Table S1). 198 

Effects of N addition and mowing on the relative biomass of L. chinensis  199 

The relative biomass of L. chinensis, a tall perennial rhizomatous grass, significantly 200 

increased with the increasing N addition rates (P < 0.001, Table1; Fig. 3). The changes of 201 

relative biomass of L. chinensis varied significantly across different N compounds, with 202 

the largest enhancement presenting under the (NH4)2SO4 treatment (Fig. S2). Mowing 203 

significantly reduced the relative biomass of L. chinensis by 19.2% averaged across all 204 

the N treatments and years. Mowing and N addition rates did not interact to affect the 205 

relative biomass of L. chinensis (Table 1), indicating a consistent role of mowing across 206 

the N addition gradient.  207 

The relative biomass of L. chinensis varied significantly among different years, with 208 

higher contribution of L. chinensis to the total community biomass at late years than that 209 

in early years (Table 1, Fig. 4). From 2014 to 2017, averaged across all the rates and 210 

types, N addition increased the relative biomass of L. chinensis by 14.5%, 36.9%, 46.2%, 211 

and 93.0%, respectively. The effects of both the rates and types of N addition on the 212 

relative biomass of L. chinensis varied among different years (Table 1).  213 

The relative biomass of L. chinensis and species evenness showed significantly quadratic 214 

regression in each year. With the increases of the relative biomass of L. chinensis, species 215 

evenness decreased sharply when the relative biomass of L. chinensis was less than 60% 216 

and changed slowly higher than 60% (Fig.5). 217 



 218 

Discussion  219 

Species evenness and richness was reduced with the increases of N addition rates, which 220 

was consistent with our first hypothesis and findings from previous studies (Stevens et al. 221 

2004, Clark and Tilman 2008, Hillebrand et al. 2007, Bobbink et al. 2010, van den Berg 222 

et al. 2011, Niu et al. 2018). Effects of N addition and mowing on perennial rhizomatous 223 

grasses (PR) were much stronger than on other plant functional groups, so we deduced 224 

that the losses of species evenness and richness in response to N addition resulted from 225 

the enhancement of the dominance of the rhizomatous grass, L. chinensis. Species 226 

evenness decreased with the increases of relative biomass of L. chinensis, highlighting 227 

the important role of L. chinensis in driving the decline of species evenness in response to 228 

N enrichment in this ecosystem. Similarly, other studies have reported that N enrichment 229 

may reduce species diversity by favoring competitively dominant species (Stevens et al. 230 

2004, Suding et al. 2005). From a plant physiology perspective, L. chinensis has higher 231 

foliar N concentration than other grasses in this ecosystem (Cui et al. 2010) and its 232 

maximum photosynthetic rate shows positive responses to N enrichment (Chen et al. 233 

2005). In natural steppe, L. chinensis dominates in sites with high N availability (Chen et 234 

al. 2005). L. chinensis spreads clonally with runners (in contrast to clumps) following the 235 

classification of Cleland et al. (2008), with rhizomes and longer spacers between ramets 236 

of the same individual (Wang et al. 2004). The capacity of L. chinensis to vegetatively 237 

expand by rhizomes would give it competitive advantage under N enrichment. Moreover, 238 

L. chinensis is a canopy species in this ecosystem. Height would give it benefit for the 239 

competition for light, a limiting factor which drives local species extinction following N 240 



enrichment thus reduce species richness (Hautier et al. 2009). The above-mentioned 241 

physiological and morphological traits would account for the rapid enhancement of 242 

dominance of L. chinensis in response to N enrichment, with direct consequences on the 243 

changes of species evenness and richness. 244 

Although species evenness and richness decreased with increasing N addition rates for all 245 

the N compounds examined in this study, the magnitude of such responses varied 246 

significantly among different compounds. Across all the five types of N compounds, 247 

(NH4)2SO4 addition resulted in the lowest evenness due to the strongest increases of the 248 

dominance of L. chinensis. Soil pH, an important driver for the local extinction of plant 249 

species in temperate steppe (Zhang et al. 2014), was lowest in the (NH4)2SO4 treatment 250 

(Fig. S3). There would be, therefore, more niche space for L. chinensis in the (NH4)2SO4 251 

treatment due to the losses of other acid-sensitive species. In contrast, L. chinensis is 252 

tolerant of acid conditions. Lan (2014) found that L. chinensis was the sole species 253 

showing positive relationship between primary productivity and the degree of 254 

acidification in an acid addition experiment in a temperate steppe. While the variation of 255 

the effects of reduced and oxidized N on biodiversity is well-recognized (Stevens et al. 256 

2011), our results implied that the combined N and S deposition, which is occurring 257 

globally (Dentener et al. 2006), would be a bigger threaten to biodiversity (species 258 

evenness and richness) than N deposition alone.  259 

The negative effects of N addition rates on species evenness increased over the duration 260 

of our experiment, which is in line with previous results about the changes of species 261 

richness in other studies (Isbell et al. 2013, Zhang et al. 2016). For example, species 262 

richness has been found to show large decreases during the later years of a three-decade 263 



N addition experiment in tall prairie in US (Isbell et al. 2013) and of a five-year 264 

experiment in temperate steppe in China (Zhang et al. 2016), and global mountain 265 

grasslands (Humbert et al. 2016). Such temporal changes for the responses of species 266 

richness could be ascribed to the increasing of N availability, decreasing of soil pH, and 267 

litter accumulation (Clark and Tilman 2010, Dupre et al. 2010). The cumulative negative 268 

effects of N deposition on species richness and evenness have important implications for 269 

measures of ecosystem functioning, such as primary productivity (Wilsey and Potvin 270 

2000, Cardinale et al. 2007, Orwin et al. 2014).  271 

Our results supported the second hypothesis, in that mowing mitigated the negative 272 

effects of N addition on species evenness and richness, mainly due to it reducing the 273 

growth of L. chinensis. In line with our results, Smith et al. (2017) showed that the effects 274 

of mowing on evenness was generally positive for temperate grassland in Australia. 275 

Furthermore, mowing also preserved species richness under N enrichment partly reducing 276 

the competitive ability of dominant species (Lepš 2014). On the one hand, mowing (and 277 

also herbivory) could remove aboveground plant biomass and increase light availability 278 

(Borer et al. 2014, Kotas et al. 2017), which would help reduce the dominance of tall 279 

herbs and perennial grasses and increase that of small herbs (Hewett 1985, Plassmann et 280 

al. 2009). On the other hand, mowing had considerable potential to remove N (Jones et al. 281 

2017). For example, Barker et al. (2004) found that high intensity mowing removed 23% 282 

of total system N while regular mowing had been able to maintain the N balance despite 283 

at high N deposition levels in heathland (Verhoeven et al. 1996). The lower biodiversity 284 

losses in response to N deposition under mown communities not only help maintain 285 

ecosystem services under the N enriched conditions (Yang et al. 2012), but also facilitate 286 



the biodiversity recovery after the cessation of N deposition (Tilman and Isbell 2015). 287 

Consequently, annual mowing with the removal of biomass would be an appropriate 288 

management strategy to conserve biodiversity in temperate grasslands. 289 

 290 

Conclusions 291 

Our results demonstrated that N deposition could simultaneously reduce species richness 292 

and evenness. The negative impacts of N deposition on biodiversity would be stronger 293 

than previous findings based solely on species richness as it substantially reduced species 294 

evenness. But, it remains unknown whether and how such shifts in species evenness 295 

would contribute to the impacts of N deposition on ecosystem functioning. The N-296 

induced losses of species evenness and richness in mown plots were much lower than that 297 

in unmown plots, highlighting the important role of ecosystem management practice in 298 

mediating the impacts of N deposition on plant diversity. The higher species evenness 299 

and richness in mown plots compared with that in unmown plots may help explain why 300 

the biodiversity in mown ecosystems shows a more rapid recovery as N declines (Tilman 301 

and Isbell 2015). 302 
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  521 



Table1. Results (F values) of the repeated measures analysis of variance for the effects of 522 

mowing(M), N addition rate (R), Year (Y), N compounds type (T) and their interactions 523 

on species evenness, species richness and relative biomass of Leymus chinensis.  524 

 525 

 df Species 

evenness 

 Species 

richness 

Relative biomass of 

L. chinensis 

R 5 78.63***  63.89*** 27.825*** 

T 4 7.07***  5.41*** 2.867* 

M 1 284.80***  111.22*** 195.053*** 

R×T 20 1.18 ns  1.01 ns 2.373** 

R×M 5 2.51*  1.35 ns 0.832ns 

T×M 4 0.17 ns  1.78 ns 3.774** 

R×T×M 20 1.05 ns  0.99 ns 2.284** 

Y 3 18.14***  106.43*** 17.195*** 

Y×R 15 2.15**  2.21** 2.561*** 

Y×T 12 1.43 ns  1.38 ns 0.494ns 

Y×M 3 1.08 ns  0.29 ns 1.409ns 

Y×R×T 60 0.96 ns  0.77 ns 0.770ns 

Y×R×M 15 1.47 ns  2.11** 0.517ns 

Y×T×M 12 0.87 
ns  1.01 ns 0.770ns 

Y×R×T×M 60 0.68 ns  0.63 ns 0.653ns 

 526 

Asterisks denote significant levels: ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; and ***, P ≤ 527 

0.001, respectively.  528 
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