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Abstract—In this paper, we present a new multipacking-tree
(MP-tree) representation for macro placements to handle modern
mixed-size designs with large macros and high chip utilization
rates. Based on binary trees, the MP-tree is very efficient, effective,
and flexible for handling macro placements with various con-
straints. Given a global placement that already considers the areas
and the interconnections among standard cells and macros, our
MP-tree-based macro placer optimizes macro positions, minimizes
the macro displacement from the initial macro positions, and
maximizes the area of the chip center for standard-cell place-
ment and routing. Experiments based on the Proceedings of the
2006 International Symposium on Physical Design placement con-
test benchmarks and Faraday benchmarks show that our macro
placer combined with APlace 2.0, Capo 10.2, mPL6, or NTUplace3
for a standard-cell placement outperforms these state-of-the-art
academic mixed-size placers alone by large margins in robustness
and quality. In addition to wirelength, experiments on four real in-
dustrial designs with large macros and high utilization rates show
that our method significantly reduces the average half-perimeter
wirelength by 35%, the average routed wirelength by 55%, and the
routing overflows by 13 times compared with Capo 10.2, implying
that our macro placer leads to much higher routability.

Index Terms—Floorplanning, layout, physical design,
placement.

I. INTRODUCTION

DUE TO the wide use of Intellectual Property modules and

embedded memories, a modern very large-scale integra-

tion (VLSI) chip often consists of a significant number of large

hard macros. The number of macros in a modern system-on-
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chip (SOC) design is dramatically increasing. Consequently, a

modern SOC chip may consist of hundreds of hard macros, and

a larger portion of the chip area, for example, more than 70%,

may be occupied by hard macros [2]. Accordingly, mixed-size

placements, which place both hard macros and standard cells,

become more and more popular for real-world applications, and

many mixed-size placement flows/algorithms are proposed in

recent literature.

A. Previous Work

We can classify the mixed-size placement algorithms into

three major types in terms of the macro handling methods.

The first type simultaneously places macros and standard cells.

A significant disadvantage of this type is that a robust macro

legalizer is needed since macros are not guaranteed to be

overlap-free after the placement stage. In particular, when the

chip utilization rate is high, or some large macros exist, it is

relatively much harder to legalize a placement. The simulated-

annealing-based placers (Dragon [3], MBP [4], and mPG-MS

[5]), the min-cut-based placers (Fengshui [6] and NTUplace

[7]), and the analytical placers (APlace [8], Kraftwerk [9],

mPL [10], and NTUplace3 [11], [12]) belong to this type.

The second type constructively places macros. Macros are

guaranteed to be overlap-free during the placement process.

Although this type of placers is usually more robust to find legal

solutions, the wirelength (WL) is often much longer than those

from the first type. The min-cut floorplacer, i.e., Capo [13],

belongs to this type, for which fixed-outline floorplanning is

applied when necessary during the min-cut placement process

to ensure legal positions for macros.

The third type divides the mixed-size placement into two

stages—a macro placement and then a standard-cell place-

ment. The macro positions are first determined, and then stan-

dard cells are placed into the remaining area. We summarize

prior macro placement approaches and their characteristics in

Table I. Two combinatorial techniques were proposed in [14].

The first approach uses a standard-cell placer to obtain an

initial placement. Standard cells are clustered as soft macros

based on the initial placement, and fixed-outline floorplan-

ning is applied to find an overlap-free macro placement. The

second approach uses a standard-cell placer to obtain an ini-

tial placement and a force-directed method to remove macro

overlaps. Recently, Auletta [15] has developed an edge place-

ment expert system for macro placements/floorplanning. This

method requires many predefined rules for a macro placement

and does not provide a systematic approach to optimize the

0278-0070/$25.00 © 2008 IEEE
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TABLE I
MACRO PLACEMENT COMPARISONS

Fig. 1. Global placement result generated by APlace. Since macros are not
handled well, it is not easy to remove those overlaps without some fundamental
changes in the placement. (a) RISC1. (b) RISC2.

placement. With the increasing design complexity in modern

SOCs, a systematic approach for macro placements is particu-

larly desired.

Compared with the first two types of mixed-size placement

approaches, the two-stage mixed-size placement is more robust

since it can guarantee a feasible solution as long as an overlap-

free macro placement is obtained. In particular, the recent

trends of a placement with large macros and high utilization

rates make the placement problem even harder. The sizes of

these macros are usually more than 1000 times larger than

those of standard cells, and the chip utilization rate is getting

higher to reduce the die area to decrease the cost. A poor

macro placement may not only cause large overlaps but also

degrade the WL and/or the performance. Fig. 1 shows the global

placements generated by APlace for the circuits RISC1 and

RISC2 of the Faraday benchmark suite [16], [17]. As we can

see from the layouts, when macros are not placed well, it is not

easy to remove these overlaps without some substantial changes

in the placement. As a result, the two-stage approach is widely

used in the industry. Because of the advantages of the third-type

placers and its systematic mechanism, we adopt the two-stage

mixed-size placement approach. This paper focuses on the first

stage, i.e., the macro placement, which is crucial for mixed-

size placements since macro positions significantly affect the

placement of standard cells and the final placement and routing

quality.

B. Our Contributions

In this paper, we present a new multipacking-tree (MP-tree)

representation for macro placements in mixed-size designs,

particularly with large macros and high chip utilization rates.

Given a global placement that already considers the areas and

the interconnections among standard cells and macros, our

MP-tree-based macro placer optimizes macro positions to re-

move overlaps, minimizes the macro displacement from the

initial macro positions, and maximizes the area of the chip

center for a standard-cell placement and routing. Our studies

show that the publicly available state-of-the-art placers alone

often cannot handle this kind of “difficult’” mixed-size designs

well. In contrast, we can combine our MP-tree and a state-

of-the-art placer to form a comprehensive placer for mixed-

size designs. In other words, the MP-tree and these placers

can be complementary to each other for modern mixed-size

designs. We summarize the advantages of the MP-tree-based

macro placement algorithm as follows.

1) Our macro placement is based on a packing technique, so

that we can easily find legal solutions even for the cases

with large macros, a large number of macros, and/or high

chip utilization rates. Also, the MP-tree can easily handle

various placement constraints commonly seen in real

industry designs, such as preplaced blocks, corner blocks,

placement blockages, and region constraints. Thus, our

macro placer is very flexible for practical applications.

2) Based on binary trees, the MP-tree is very fast for opera-

tions and packing. It only needs amortized linear time to

transform an MP-tree to its corresponding macro place-

ment result. Thus, we can additionally consider many

design constraints and efficiently search the solutions by

simulated annealing.

3) The MP-tree structure directly induces a special hierar-

chical framework for the optimization of macro place-

ment. Each MP-tree can be subdivided into a set of

packing subtrees, with each subtree handling macro pack-

ing to a corner (local optimization). A major drawback

of the traditional hierarchical framework is that it lacks

the global information for the interaction among subtrees

(subproblems). Because of the branch structure in the

MP-tree, unlike the traditional hierarchical framework,

the interaction between different subtrees of an MP-tree is

well preserved, facilitating the global optimization among

all subtrees. Experiments show that the MP-tree obtains

an 8% shorter average WL than that obtained by the

traditional hierarchical method using four independent

packing trees.

4) Our two-stage mixed-size placement methodology is ro-

bust for finding a desirable result. By minimizing the

macro displacement during the macro placement process,

we can keep a smaller WL. By reserving the chip

center for a standard-cell placement and routing, our

macro placement results in better routability and a shorter

routed WL.

5) The MP-tree combined with leading academic placers

can robustly generate feasible results even for the designs

with 95% chip utilization, whereas the leading mixed-size
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Fig. 2. Our mixed-size placement flow.

placers alone sometimes fail to find a legal result. Fur-

thermore, the MP-tree with the placers results in a sig-

nificantly shorter WL. Based on the eight Proceedings

of the 2006 International Symposium on Physical Design

(ISPD ’06) placement contest benchmarks [18] and 90%

chip utilization, the MP-tree combined with Capo 10.2

can reduce the half-perimeter WL (HPWL) by 12% than

Capo alone, resulting in an HPWL of 12%, on average;

the MP-tree combined with NTUplace3 can fix two illegal

placements and further reduce the HPWL by 7%, on aver-

age, for the other six legal placements, and the MP-tree

combined with mPL6 can fix seven illegal placements

and further reduce the HPWL by 4% for the only legal

placement. Similar improvements in the legality and the

WL can be found based on the four Faraday benchmarks

[16] with large macros and high utilization rates.

6) In addition to the placement, we also tested four real

industrial designs up to the routing stage. Based on

the same standard-cell placer, our MP-tree-based macro

placer can significantly reduce the average HPWL by

35%, the average routed WL by 55%, and the routing

overflows by 13 times compared with Capo 10.2. This

result implies that our macro placer can lead to much

higher routability.

The rest of this paper is organized as follows. Section II

presents our floorplan representation for the macro placement.

Section III presents our macro placement algorithm based on

the MP-tree. Section IV provides the solution space and the

reachability of the MP-tree. Section VI presents the method

of handling several placement constraints. The experimental

results are given in Section V. Last, the conclusion is given in

Section VI.

II. MACRO PLACEMENT

We adopt the two-stage mixed-size placement flow:

1) a macro placement followed by 2) a standard-cell placement.

See Fig. 2 for our mixed-size placement flow. After the circuit

information is imported, a WL-driven global placement is ap-

plied to find global macro positions. Based on the given macro

positions, our macro placer then determines the legal positions

of macros and places macros along the chip boundary. With the

objective of the macro displacement minimization, our macro

placement algorithm results in better macro positions that lead

to a smaller WL increase for the later stage implicitly. The

macro placement step plays an important role in the mixed-size

placement. Last, all macros are fixed, and a standard-cell placer

is then applied to place all standard cells in the available space.

Although our flow is the same as that of Adya and

Markov [14], the two approaches are very different. We sum-

marize two major differences as follows.

1) We do not shred macros into standard cells in the global

placement stage, whereas Adya and Markov [14] do.

Shredding macros incurs some negative effects, such as

additional constraints in the later stage to enforce that all

standard cells associated with a macro must be placed

together, and also inaccurate estimation of the WL be-

tween macros and standard cells. This inaccuracy is more

severe if the routing resources associated with macros

need to be considered; macros typically incur blockages

that block the interconnects running above the macros.

Consequently, it is much harder to accurately estimate the

routing resources with macro shredding.

2) In [14], it handles not only macros but also standard

cells at the floorplanning stage. The standard cells are

clustered as soft macros. However, it tends to increase the

problem size, and, thus, it is harder to apply simulated

annealing to find a desired placement. In addition, their

objective function considers only the WL, ignoring the

routing blockages induced by macros. As a result, their

generated floorplans may lead to lower routability. In

contrast, we place macros on the chip boundary and

reserve a continuous region without routing blockages for

a standard-cell placement. Therefore, our method often

leads to higher routability.

For the two-stage approach, placing macros along the bound-

ary of a chip or resorting to a hierarchical partition is a common

and popular practice for both flat application-specific integrated

circuits (ASICs) and hierarchical SOCs. This approach can

create a regular region for the standard-cell placement. Fur-

thermore, there are routing blockages above macros in real-

world applications, and the macros tend to block the routes

if they are placed in the chip center. Also, by minimizing the

macro displacement, we can implicitly minimize the increased

WL since the given global placement has been optimized for

the WL.

The traditional packing floorplanning techniques cannot be

directly applied to the macro placement problem since they usu-

ally pack all macros to one corner. To overcome this problem,

we propose a new MP-tree floorplan representation to place

macros along the given region boundary. We shall first present

the packing-tree floorplan representation.

A. Packing-Tree Floorplan Representation

A packing tree is a binary tree for modeling nonslicing or

slicing floorplans. Each node in the packing tree corresponds to

a macro. There are four types of packing for a packing tree.

BL-, TL-, TR-, and BR-packing subtrees pack the blocks to

the bottom-left, top-left, top-right, and bottom-right corners,

respectively.
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Fig. 3. Packing tree with its four types of packing.

Fig. 3 shows a packing tree and its corresponding four

packing types. Let (xcorner, ycorner) be the coordinate of a

corner (there are four corners in a rectangular region), (xi, yi)
be the bottom-left coordinate of the block bi, and wi (hi) be the

width (height) of the block bi. The coordinate of the root of a

packing tree is at:

1) (xcorner, ycorner) for BL-packing;

2) (xcorner, ycorner − hroot) for TL-packing;

3) (xcorner − wroot, ycorner − hroot) for TR-packing;

4) (xcorner − wroot, ycorner) for BR-packing.

Given a packing tree, the x-coordinates of all blocks can

be determined by traversing the tree in linear time. The

x-coordinate of node bj can be computed from its parent

node bi according to the type of the packing tree. If node nj

is the right child of ni, the block bj is:

1) the lowest adjacent block on the right with xj = xi + wi

for BL-packing;

2) the highest adjacent block on the right with xj = xi + wi

for TL-packing;

3) the highest adjacent block on the left with xj = xi − wj

for TR-packing;

4) the lowest adjacent block on the left with xj = xi − wj

for BR-packing.

If node nj is the left child of ni, the block bj is:

1) the first block above bi with xj = xi for BL-packing;

2) the first block below bi with xj = xi for TL-packing;

3) the first block below bi with xj = xi + wi − wj for

TR-packing;

4) the first block above bi with xj = xi + wi − wj for

BR-packing.

Furthermore, a y-coordinate can be computed using the

contour data structure in amortized constant time, similar to the

method used in [19]. Therefore, the complexity of transforming

a packing tree to the corresponding placement is amortized

linear time. Note that B*-tree floorplan representation [19] is

a BL-type packing tree.

Fig. 4. (a) Initial macro placement. (b) Macro placement by dividing the chip
into four regions. The macros in the four regions are independently placed,
and, thus, it lacks the global view of the placement interactions among different
regions. (c) Better macro placement without dividing the chip into subregions.

Fig. 5. General MP-tree.

A packing tree handles only one direction of packing, and,

thus, it is not suitable for our macro placement since all macros

would be packed toward a chip corner. In the following section,

we extend the packing tree to handle a macro placement with

placement constraints.

B. MP-Tree Floorplan Representation

Since a packing tree always packs macros to a corner, we

could apply the traditional hierarchical method by subdividing

the chip into four regions and create four packing trees to

handle different regions. However, this approach has some

limitations. First, the macros in a region must be placed inside

the given region, which is overconstrained because there is

no real boundary between the regions. Furthermore, assigning

the regions for macros greatly affects the resulting placement

because a macro cannot change its region once its region is

assigned. As a result, we may not obtain a desirable placement

because there is no interaction among different regions.

Fig. 4 illustrates the disadvantages of solving the macro

placement problem by subdividing the chip. Given an initial

macro placement in Fig. 4(a), Fig. 4(b) shows a possible

floorplan result by dividing the chip into four subregions and

performing floorplanning in each region based on the packing-

tree representation. To satisfy the fixed-outline constraint, all

macros must be placed inside their regions, which may incur

a large macro displacement. Furthermore, there may be some

large macros that can never fit into their regions, thus causing

significant macro overlaps. Instead, a better alternative is to

optimize all macros at the same time and globally consider the

interactions among regions. Fig. 4(c) gives a better solution

with a smaller macro displacement by employing the global

optimization technique.
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Fig. 6. Recursive function to compute the x-coordinates.

Fig. 7. Recursive function to compute the y-coordinates.

To implement the global optimization idea, we resort to the

MP-tree to handle the global interaction among different re-

gions. An MP-tree combines several packing trees for different

corners. We use branch nodes to connect different packing

subtrees.

Fig. 5 shows an example of a general MP-tree. There are

k branch nodes in an MP-tree to integrate k + 1 packing

subtrees. We use a right-skewed branch to integrate the packing

subtrees for the purpose of easier implementation. By doing so,

the packing order of the subtrees can be determined by the level

of the parent node of the packing subtrees. With the depth-first

search (DFS) order of the tree traversal for packing, the smaller

the level is, the earlier the packing subtree packs blocks. If the

parents of two packing subtrees are the same, the left packing

subtree will be handled first. The general MP-tree can be used

to model the placement in any rectilinear floorplan region, with

each packing subtree packing to one convex corner.

The MP-tree structure directly induces a special hierarchical

framework for the optimization of the macro placement. Each

packing subtree handles macros being packed to a corner,

i.e., performs local optimization. A major drawback of the

traditional hierarchical framework is that it lacks the global

information for the interaction among subtrees (subproblems).

Because of the branch structure in the MP-tree, unlike the tradi-

tional hierarchical framework, the interaction between different

subtrees of an MP-tree is well preserved, facilitating the global

optimization among all subtrees. It will be clear in Section V

that the MP-tree leads to significantly better placement quality

Fig. 8. Packing example for an MP-tree with a BL-packing subtree and a
BR-packing subtree. Adding a new block b4 to the placement, we search the
contour and update it with the top boundary of the new block.

than that obtained by the traditional hierarchical method using

independent packing trees.

To transform an MP-tree to its corresponding placement, the

coordinates of blocks can be determined by a DFS traversal.

Fig. 6 gives a recursive algorithm to compute the x-coordinates

from the root of a given MP-tree. If the given node is the root of

a packing subtree, we use the corner coordinate and the tree

type to determine the x-coordinate of the block (lines 2–6).

If the given node is not a branch node, we can determine the

x-coordinate of the block based on its relation with the parent

node (lines 7–18). After determining the x-coordinate of a

node, we continue the traversal from its left child and then its

right child (lines 19 and 20).

Fig. 7 gives an algorithm for computing the y-coordinates. To

compute the y-coordinates, we keep two contours—the bottom

contour and the top contour—which are initialized according

to the bottom side and the top side of the given floorplan
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Fig. 9. (a) MP-tree with four packing subtrees. (b) Corresponding macro placement.

region, respectively. Both BL- and BR-packing subtrees use the

bottom-contour data structure (lines 3–5), whereas the TL- and

TR-packing subtrees use the top-contour one (lines 6–8). The

packing subtrees that use the same contour data structure al-

ways generate overlap-free placement results since the contour

reserves the spaces of the traversed blocks. BL-/BR-packing

subtrees, however, may overlap with TL-/TR-packing subtrees,

and, thus, we should discard this kind of an infeasible solution.

The y-coordinate is also determined in a recursive manner. Af-

ter determining the y-coordinate of a node, we continue the tra-

versal from its left child and then its right child (lines 9 and 10).

Fig. 8 gives a packing example for an MP-tree with BL- and

BR-packing subtrees. The packing order is b1, b2, b3, and b4.

Adding a new block b4 to the placement, we search the contour

and update it with the top boundary of the new block. It is

clear that no overlap will occur when we process the BL- and

BR-packing subtrees.

For a rectangular VLSI chip, we can use an MP-tree with

four packing subtrees to handle it, as shown in the example

in Fig. 9(a). To obtain the corresponding macro placement, we

traverse the tree in the DFS order from the root n0. Since n0

is a branch node, we do nothing and continue the traversal.

Then, the left child of n0, i.e., n3, is the root of the BL-packing

subtree; therefore, we place b3 on the bottom-left corner. Since

n3 does not have a left child, we traverse n4 and continue the

traversal. In this example, the packing subtrees are traversed in

the order of the BL-packing subtree, the TL-packing subtree,

the TR-packing subtree, and, finally, the BR-packing subtree.

After we traverse all nodes, the macro placement shown in

Fig. 9(b) is obtained.

III. MACRO PLACEMENT ALGORITHM

A. Macro Placement Flow

Fig. 10 shows the flow for our MP-tree macro placer. This

flow readily extends to the macro placement with various con-

straints, such as rectilinear macros, preplaced macros, place-

ment blockages, and macro clustering. For easier presentation,

however, we shall focus on the macro placement in this section

and discuss these constraints in the Appendix.

After reading library exchange format/design exchange for-

mat files, we cluster the macros under the designated perfor-

mance constraints, and the cluster dimension is initialized with

Fig. 10. Our MP-tree macro placement flow. Note that this flow is the second
step, i.e., the macro placement, of the flow of Fig. 2.

the one closest to square since the square shape usually leads

to better results. Then, we create an MP-tree with its number of

packing subtrees equal to the number of the corners in the place-

ment region. If a region constraint is given, we need to create

four subtrees for the region. Each macro/cluster corresponds to

a node in a packing subtree. We assign an initial packing subtree

to a tree node corresponding to the nearest corner to which the

macros are placed in the given global placement. Each packing

subtree is then initialized as a complete binary tree.

Simulated annealing is then used to find a desired macro

placement. We perturb one MP-tree to another by the operations

described in the next section. After the perturbation, we fix the

tree structure to satisfy the given macro placement constraints,

pack the MP-tree, evaluate the macro placement, and decide

whether we should accept the new solution according to the

difference of the macro placement quality and the current tem-

perature of simulated annealing. Then, the MP-tree is perturbed

again. The simulated annealing continues until the solution

is good enough or no better solution can be found, and all

positions of blocks/clusters are determined. Then, the positions

of macros inside a cluster can be computed according to the

matrix dimension of the cluster.

To reserve enough spacing between macros, we use the

number of pins along the macro boundary to estimate the

routing resource. Before the macro placement, macros are
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enlarged to reserve the spacing. The spacing is computed by

the product of the number of pins and the wire spacing di-

vided by available routing layers. A channel routing algorithm

can also be applied to more accurately estimate the routing

resource. If the demand of the routing resource between two

macros is higher than the original spacing, we add more

space between these two macros; otherwise, we can reduce the

original spacing to obtain a more compact placement. After

floorplanning, we further use a heuristic to flip macros. The

basic idea is that the majority of interconnections of a macro are

among standard cells and this macro for practical applications.

Therefore, we vertically/horizontally flip a macro to find an

orientation to make the majority of its pin face the center

of the chip. This way, we can effectively minimize the WL

among standard cells and macros, and, thus, the total WL. Last,

we fix all macros and report the final macro placement solution.

B. Operations on MP-Tree

We define the perturbation operations of the MP-tree for use

in simulated annealing. An MP-tree is perturbed to get another

MP-tree by the following operations.

1) Op1: rotate a block or a cluster.

2) Op2: resize a cluster.

3) Op3: move a node in a packing subtree to another place.

4) Op4: swap two nodes within one or two packing subtrees.

5) Op5: swap two packing subtrees.

For Op1, we rotate a block or a cluster for a tree node. For Op2,

we change the clustering dimension of a cluster. Note that Op1

and Op2 do not affect the MP-tree structure; instead, they only

change the information within the node. Therefore, their time

complexity is O(1). For Op3, we select a node from a packing

subtree and move it to another place of the same or different

packing subtrees. Two steps are needed for the move—deletion

and insertion. The time complexity of the deletion is O(h),
where h is the height of the node being deleted, whereas the

time complexity of the insertion is O(1). For Op4, we select two

nodes from one (two) packing subtree(s) and swap them. For

Op5, we swap two packing subtrees and exchange the packing

order of the two packing subtrees. For this perturbation, we

only need to exchange the pointers of the nodes for Op4 and

Op5, and, thus, the time complexity is O(1). Note that the

branch structure of the MP-tree is not changed by any type of

operations.

C. Evaluation of a Macro Placement

To evaluate the quality of a macro placement solution, the

cost of a macro placement F is defined as follows:

Φ(F ) = αA + βW + γD + δO (1)

where A is the macro placement area, W is the total WL, D is

the total macro displacement, O is the vertical overlap length,

and α, β, γ, and δ are user-specified weighting parameters. The

macro placement area, the WL, the macro displacement, and

the vertical overlap length are explained in the following.

Fig. 11. (a) Macro placement solution and its top and bottom contours.
(b) Corresponding macro placement area.

The macro placement area is defined as the area under the

bottom contour plus the area above the top contour. As shown

in Fig. 11(a), the contours are plotted by dashed lines, and the

corresponding macro placement area is shown in Fig. 11(b).

Minimizing the macro placement area can make more space for

the standard cells in the central region of the chip. By doing so,

the routing between standard cells will be easier, and, thus, the

routed WL will be smaller.

For the WL, since we consider only macros during the

placement, we shall not directly use the netlist from the circuit.

Instead, we create pseudonets among macros of the same design

hierarchy group based on the star or the clique models [20].

Therefore, minimizing the WL of these pseudonets can pack

the macros of the same design hierarchy closer.

The macro placement should honor the given global place-

ment since the global placement is optimized for the WL and

other objectives. We extract the given macro positions from the

global placement and use the macro displacement as a penalty

of the cost function. By doing so, we can find a desired macro

placement with the minimum macro displacement. The cost D
is the total macro displacement, which is defined by

D =
∑

blocks

(|x′
i − xi| + |y′

i − yi|)2 (2)

where (xi, yi) is the given position of the macro bi, and (x′
i, y

′
i)

is the current position of the macro bi during the simulated

annealing. The quadratic penalty can prevent a single macro

from having a large displacement.

Our MP-tree representation can guarantee no overlaps be-

tween the top and bottom packing subtrees. However, there may

exist vertical overlaps between the top and bottom contours.

The penalty cost O for the vertical overlap can guide the

simulated annealing to find a nonoverlap solution.

IV. SOLUTION SPACE AND REACHABILITY

A. Solution Space

We have the following theorem for the MP-tree solution

space.

Theorem 1: The size of the solution space for an MP-tree is

O(mn!22n/n1.5), where m is the number of packing subtrees,

and n is the number of nonbranch nodes.
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Proof: The total number of combinations of an MP-tree

can be computed by the number of unlabeled binary trees and

the permutation of n labels. Suppose that we have n macros to

be packed to m corners. As a result, there are m subtrees in the

MP-tree, and each subtree has n nodes at most. The permutation

of n labels is n!. From [21], the counting of an unlabeled p-ary

tree with n node is

1

(p − 1)n + 1

(

pn

n

)

. (3)

Applying Stirling’s approximation, we have

n! ≈
√

2πn
(n

e

)n

. (4)

Setting p to 2 in (3), we can obtain the following asymp-

totic form:

O

(

22n

n1.5

)

. (5)

Thus, the total number of possible placements for an MP-tree

with m subtrees and n nonbranch nodes is

O

(

mn!
22n

n1.5

)

. (6)

�

B. Reachability

A well-structured solution space should have the property

that there exist a series of operations to transform from one

solution to another. For such a solution structure, it is possible to

find an optimal solution from any initial solution in the solution

space. Two macro placements are equivalent if the topologies

of their corresponding MP-trees, the label of each node, and the

orientations of all blocks are the same.

Theorem 2: Given two MP-trees M1 and M2, M1 can be

transformed to M2 via at most 3n operations.

Proof: We use the DFS traversal order to transform M1

to M2. Each time, we check the nodes in M1 and M2 at the

same position. If two nodes are the same, we do not need

to do any operation and continue the traversal. If the node

in M1 is different from that in M2, we find the correct node

in M1 and swap them (Op4). If there is no node in M1 at

the corresponding position of M2, we find the correct node in

M1 and move it to the correct position (Op3). After the DFS

traversal, the structure and the labels of M1 are the same as

those of M2. Thus, transforming the structure and the labels

requires at most n operations. If clusters exist, we can change

the cluster dimension (Op2) with at most n operations. The final

step is to rotate blocks or clusters, which also needs at most

n operations. Therefore, the total number of the operations, in-

cluding changing the tree structure, labels, cluster dimensions,

and orientations, is 3n at most. �

C. Comparison With Other Floorplan Representations

Tables II and III give the solution space and the worst case

number of operations to transform one floorplan instance to

TABLE II
SOLUTION SPACE COMPARISON FOR n MACROS. m IS THE NUMBER OF

CORNERS FOR MP-TREE PACKING. OTHER REPRESENTATIONS

CAN ONLY PACK MACROS TO ONE CORNER

TABLE III
REACHABILITY COMPARISON FOR n MACROS

another for MP-tree, B∗-tree [19], Q-sequence [22], slicing

tree (normalized Polish expression) [23], Sequence Pair [24],

TCG [25], and TCG-S [26]. Note that our MP-tree represen-

tation can pack macros to several corners, which is different

from all other representations that pack macros to only one

corner. From these two tables, we can see that the MP-tree

has a relatively smaller solution space and a shorter worst

case distance (in terms of the number of operations required)

to transform one floorplan instance to another. Therefore, the

MP-tree does have significant advantages to be applied with a

nondeterministic algorithm, such as simulated annealing.

V. EXPERIMENTAL RESULTS

To show the effectiveness and the robustness of the MP-tree,

we conducted five experiments on an Opteron 2.6-GHz ma-

chine based on three sets of benchmark circuits with large

macros and various chip utilization rates. We used several

state-of-the-art publicly available academic mixed-size placers,

including APlace 2.0 [27], Capo 10.2 [13], Fengshui 5.1 [28],

mPL6 [10], and NTUplace3 [11], [12]. According to the macro

handling method in Section I-A, APlace, Fengshui, mPL, and

NTUplace3 belong to the first type, and Capo belongs to the

second type. We also integrated our MP-tree with those mixed-

size placers to study the effectiveness of our macro placer.

For the first experiment, we studied the effects of different

chip utilizations on the MP-tree by combining the MP-tree

with NTUplace3. In the second experiment, we compared our

MP-tree with the traditional hierarchical method using four

independent packing trees. In the third experiment, we further

combined the MP-tree with mPL and Capo to evaluate the

effectiveness of the MP-tree with different placers using the

ISPD ’06 benchmarks [18]. In the last two experiments, we

adopted the Faraday benchmarks [16], [17] and four real in-

dustry designs to evaluate the WL and the routability of various

placers up to the routing stage.
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TABLE IV
STATISTICS OF THE ISPD ’06 BENCHMARKS

TABLE V
RESULTING HPWLs FOR DIFFERENT CHIP UTILIZATIONS WITHOUT

(“W/O”) AND WITH THE MP-TREE (“MPT”). NR: NO LEGAL

RESULTS CAN BE OBTAINED

A. Effects of Chip Utilization Rates

In this experiment, we used the ISPD’06 Placement Contest

Benchmarks [18]. We changed all fixed macros in the bench-

marks to movable ones to test our macro placement algorithm.

Table IV shows the statistics of the ISPD’06 benchmarks. The

cell numbers range from 842k to 2481k, and the macro numbers

range from 9 to 73. “# Macros” gives the number of macros

handled by the MP-tree. The area of these macros is larger

than 1000 times of the average block area. “MA-ratio” gives

the total area of those macros over the total area of all blocks.

Since modern ASIC designs, such as consumer products, usu-

ally have high chip utilization rates to reduce the cost, we

modified the core region in these benchmarks to obtain three

different utilization rates—85%, 90%, and 95%. To show the

effectiveness of the MP-tree, we compared NTUplace3 alone

with NTUplace3 integrated with the MP-tree. Specifically, the

MP-tree macro placer took NTUplace3’s global placement

results, optimized the macro positions, and fixed all macros.

Then, the remaining cells are placed by NTUplace3 again.

Table V shows the resulting HPWLs with different chip utiliza-

tion rates. The columns “w/o” give the resulting HPWLs using

NTUplace3 alone, whereas the columns “MPT” give the result-

ing HPWLs using NTUplace3 integrated with the MP-tree.

Integrating the MP-tree with NTUplace3, we can obtain legal

placements with shorter HPWLs for most circuits; in contrast,

NTUplace3 alone may not obtain legal placements for several

benchmark circuits. In particular, the higher the chip utilization

rate, the larger the average HPWL reduction. The average

HPWL reductions are 7% and 12% for the 90% and 95% chip

utilization rates, respectively.

The results also show that when the chip utilization is higher,

NTUplace3 obtained longer HPWLs and failed to find legal

placements on more circuits. The reason is that the macro

Fig. 12. (a) Illegal placement generated by NTUplace3 alone for the cir-
cuit newblue3. (b) Placement generated by NTUplace3 with the MP-tree for
newblue3.

TABLE VI
RESULTING HPWLs OF USING THE MP-TREE AND FOUR PACKING TREES

FOR THE MACRO PLACEMENT (UTILIZATION RATE = 90%).
NR: NO LEGAL RESULTS CAN BE OBTAINED

positions are not guaranteed to be overlap-free in analytical

placers, and, thus, it is harder to find legal solutions. Note

that the circuit newblue3 has the highest MA-ratio, i.e., 83%,

and NTUplace3 alone could not find any legal placement for

this circuit. In contrast, NTUplace3 with the MP-tree robustly

generated legal placements under different chip utilizations.

Fig. 12(a) and (b) shows the resulting placements for newblue3

with 95% utilization using NTUplace3 alone and the MP-tree

with NTUplace3, respectively.

B. Comparison Between MP-Trees and Packing Trees

This experiment studies the difference between the

MP-tree and the independent four packing trees described in

Section II-B. The method of using four packing trees is a simple

extension to a macro placement for a rectangular chip. We

divided a chip into four subregions and created four different

BL-/BR-/TL-/TR-packing trees in the corresponding subre-

gions. Note that, although this extension for packing trees

still can handle the macro placement in a chip, it has many

limitations; for example, it is much harder to deal with the

region constraints that cross different regions.

We used the ISPD’06 benchmarks with the 90% chip uti-

lization rate, and the results are shown in Table VI. The CPU

time consists of the time for both macro and standard-cell

placements; the macro placement takes only less than 1 min

for an instance with hundreds of macros. From the results,

we observed that the MP-tree is more robust in finding legal

placements for all benchmarks, whereas the method with four

packing trees cannot be robust. For those benchmarks with
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TABLE VII
RESULTING HPWLs AND CPU TIMES FOR DIFFERENT PLACERS WITHOUT

(“W/O”) AND WITH MP-TREES (“MPT”; UTILIZATION RATE = 90%).
NR: NO LEGAL RESULTS CAN BE OBTAINED

legal placements, the MP-tree can further reduce the average

HPWL by 8% under comparable running times, which shows

the effectiveness of the MP-tree.

C. Integration With Other Placers

In addition to NTUplace3, we also integrated our MP-tree

with Capo 10.2 and mPL6, which are based on the min-cut and

analytical placement techniques, respectively. Table VII shows

the results without and with the MP-tree based on the ISPD ’06

benchmarks. Again, we used the 90% chip utilization rate for

all circuits, and the CPU time for MPT includes macro and cell

placements. Capo is robust in finding legal placements since

macro positions are guaranteed to be overlap-free during the

global placement. However, the quality is not good. Integrated

with the MP-tree, Capo reduced the average HPWL by 12%

than that without the MP-tree. We tried several times, but mPL

alone could not obtain legal solutions for seven circuits. With

the MP-tree, however, mPL can obtain legal solutions for all

circuits. This shows that the MP-tree is robust in finding legal

solutions.

D. Results on the IBM Mixed-Size Benchmarks

We also tested our MP-tree on the IBM-Dragon mixed-size

benchmark suite [16]. See Table VIII for the number of large

macros and the resulting HPWLs for Capo and NTUplace based

on this benchmark suite. As shown in this table, this benchmark

suite contains only a few large macros, which is very different

from the ISPD ’06 one. Despite the circuit properties, the

MP-tree can still outperform Capo by 5% in the average HPWL

and obtain comparable results with NTUplace. Compared with

the ISPD ’06 benchmarks, we observe that the IBM-Dragon

mixed-size benchmarks are much easier and can reasonably be

handled by some existing placers; therefore, they are not of our

main interest for using the MP-tree, which is intended for mod-

ern mixed-size designs with large macros and high chip utiliza-

tion rates. Note that the two circuits—ibm01 and ibm05—do

not contain large macros and are, thus, not shown in the table.

E. Routing Results on the Faraday Benchmarks

Table IX lists the statistics of the Faraday benchmarks [16],

[17]. Note that the direct-memory-access circuit is not used in

our experiment since it has no macro. There are two (seven)

macros in each of the DSP (RISC) circuits. The macro area

TABLE VIII
RESULTING HPWLs FOR DIFFERENT PLACERS WITHOUT (“W/O”) AND

WITH MP-TREES (“MPT”) FOR THE IBM-DRAGON MIXED-SIZE

BENCHMARKS (UTILIZATION RATE = 90%)

TABLE IX
STATISTICS OF FARADAY BENCHMARKS

ranges from 6.96% to 41.99% of the whole chip area in these

benchmarks. It will be clear later that most existing placers

cannot handle these circuits well even when there are only a

few macros.

Table X gives the mixed-size placement and routing results

for Fengshui, mPL, Capo, our MP-tree macro placer inte-

grated with Capo, APlace, the MP-tree integrated with APlace,

NTUplace3, and the MP-tree integrated with NTUplace3 on

the Faraday benchmarks. We do not integrate the MP-tree

with Fengshui and mPL because both placers cannot correctly

handle the MP-tree’s preplaced macros. In the table, “HPWL”

and “WL” (the routed wirelength) are reported in the database

unit, and “Viol” gives the number of violations in the routing

solutions. Our MP-tree macro placer takes Capo’s results as

the initial macro positions, which needs only a few seconds

for these benchmarks since the numbers of macros are small.

Therefore, the runtimes for the macro placement alone are only

a few seconds and not reported.

As shown in the table, the min-cut placer Fengshui gen-

erates the results with many macros/cells outside the chip

region (same as observed in [17]). Also, APlace (NTUplace3)

alone generated many overlaps for three circuits (one cir-

cuit) and failed to legalize them (it); for these illegal de-

tailed placement results, we only report the HPWLs of their

global placement solutions. The min-cut floorplacer Capo and

the analytical placer mPL can find legal solutions for all

Faraday benchmarks; however, Capo achieves much better

HPWLs than mPL. Considering only those with legal-

ized detailed placement solutions, APlace achieves the best

HPWL and routed WL, followed by NTUplace3, Capo,

Fengshui, and mPL (mPL obtains a better WL than Fengshui).
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TABLE X
PLACEMENT AND ROUTING RESULTS FOR THE FARADAY BENCHMARKS. THE WIRELENGTH IS IN THE

DATABASE UNIT. VIOL IS THE NUMBER OF VIOLATIONS FOR THE ROUTING RESULTS

However, APlace failed to generate legal solutions for

three out of four circuits, although there are only two or

seven macros in the circuits; the mixed-size placer Fengshui

had the same problem and failed to generate legal solutions

for two circuits. The results of APlace and Fengshui confirm

the drawbacks of the first-type mixed-size placers mentioned in

Section I-A.

In contrast, our two-stage mixed-size placement approach

can find legal placement solutions for all the circuits. Our

MP-tree macro placer integrated with Capo (as the global and

standard-cell placer) can reduce the HPWL and the routed WL

by 8% and 12%, respectively, on average, compared with Capo

alone. Similarly, our MP-tree integrated with NTUplace3 can

generate a feasible placement for all circuits, and the average

HPWL and WL are 13% and 12% shorter than those of Capo,

respectively. In particular, our MP-tree integrated with APlace

can generate feasible placements for all circuits, and the quality

is superior to all other combinations. The HPWLs are reduced

by 35%, 63%, 15%, and 6% compared with Fengshui, mPL,

Capo, and NTUplace3, respectively. Furthermore, the routed

WLs are 68%, 62%, 15%, and 4% better than Fengshui, mPL,

Capo, and NTUplace3, respectively.

Although Capo’s floor-placement approach can find legal

solutions for all the four circuits, we observe that Capo cannot

handle a macro placement well since our MP-tree macro placer

with Capo can reduce the HPWL and the WL by 10%, on

average, compared to Capo alone. Furthermore, the MP-tree

can save the CPU time for Capo since Capo does not need

extra time to find legal macro positions. From Table X, we

further observe the fact that the larger the total macro area

is, the more HPWL reduction our placement flow can achieve.

Table XI summarizes the WL reductions. In particular, integrat-

ing with the MP-tree can also significantly reduce the number of

violations during routing. The results show the effectiveness of

our MP-tree macro placer. Fig. 13 shows the placement results

using the MP-tree integrated with APlace 2.0.

F. Routing Results on the mchip Circuits

In this experiment, we further show that the macro place-

ments generated by the MP-tree lead to shorter HPWLs and

better routability based on four real industry circuits for cell

phones, digital video disk players, personal digital assistants,

etc. Table XII lists the statistics. The numbers of cells range
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TABLE XI
SUMMARIES OF THE WIRELENGTH REDUCTION ON THE FARADAY BENCHMARKS

Fig. 13. Layouts for the Faraday benchmarks generated by our MP-tree
macro placer combined with APlace 2.0 for a standard-cell placement. Large
rectangles are the macros. (a) DSP1. (b) DSP2. (c) RISC1. (d) RISC2.

TABLE XII
STATISTICS OF THE MCHIP CIRCUITS

from 540k to 1320k, and the numbers of macros range from

50 to 380. There are also some preplaced blocks and some

blockages in these circuits. From the previous experiments,

we found that only Capo can find legal results for the mixed-

size placement with large macros and can correctly handle

preplaced blocks and blockages. As mentioned in the classi-

fication of the mixed-size placement methods in Section I-A,

the first type might not generate overlap-free macro positions.

Therefore, we compared the MP-tree-based macro placement

(the third type) with that of Capo (the second type). That is,

our MP-tree and Capo are used to place macros only, and

the remaining cells are placed by Synopsys Astro. After the

placement, we performed the global routing.

Table XIII shows the resulting HPWLs, routed WLs, global

routing cell (GRC) overflows, and max overflows. The GRC

overflow is the percentage of the GRCs that have overflows.

The larger the value, the more congested the placement. “Max

overflow” gives the number of extra tracks assigned for the

GRC with the maximum overflow.

For the four circuits, our MP-tree consistently obtains much

better WLs (an HPWL and a WL) than Capo’s macro place-

ment. Furthermore, Capo’s macro placement results in larger

GRC overflows and max overflows, and requires greater run-

time for the cell placement and routing than the MP-tree.

The results show that Capo’s macro placement results in more

congested placements than the MP-tree. Specifically, Capo’s

average HPWL and average routed WL are about 35% and 55%

longer than those of the MP-tree, respectively. These results

show that the macro placements generated by the MP-tree have

better routability. In particular, the MP-tree leads to much better

efficiency.

Fig. 14(a) shows the macro placement result of mchip2,

which contains 95 macros by using the MP-tree. Fig. 14(b)

shows the placement of mchip4 with 380 macros and four

region constraints.

VI. CONCLUSION

We have proposed a novel macro placement algorithm based

on the MP-tree representation. Experimental results have shown

that our algorithm is robust in finding legal macro placements

and routable results, and can obtain much smaller WLs than

leading academic mixed-size placers alone, based on bench-

marks with large macros and high utilization rates. Integrating

our macro placer with the leading academic standard-cell plac-

ers, such as APlace 2.0, Capo 10.2, mPL6, and NTUplace3,

we can easily find legal mixed-size placement results with sig-

nificantly better WLs and routability. Our studies have shown

that the MP-tree can be adopted as a niche tool that performs

particularly well for the “difficult” instances with large macros

and high utilization rates. In particular, the MP-tree is also

complementary to other leading placers and can be combined

with them to form a comprehensive placer for general mixed-

size designs.

APPENDIX I

MACRO PLACEMENT CONSTRAINTS

With the nice properties of the MP-tree and the binary tree,

the MP-tree can easily handle various placement constraints.

RECTILINEAR PLACEMENT REGION

In the hierarchical design methodology, a chip is divided

into several partitions. These partitions are usually rectilinear

instead of square. Since the MP-tree packs macros to corners,
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TABLE XIII
COMPARISON OF CAPO’S MACRO PLACER AND OUR MP-TREE MACRO PLACER

Fig. 14. (a) Macro placement of mchip2 with 95 macros by using the MP-tree.
(b) Macro placement of mchip4 with 380 macros and four region constraints.

it is very easy to handle the rectilinear placement region by

creating one packing subtree for each convex corner.

PLACEMENT BLOCKAGES AND PREPLACED MACROS

The placement blockages are given by users, and no macro

can overlap with any blockage. During packing, we place each

macro and check if it overlaps with a blockage. If it does,

we shift the macro horizontally or vertically to the nearest

position with no overlap. A preplaced macro can be treated

as a placement blockage, and there is no need to add such a

corresponding node to the MP-tree.

CORNER MACROS

Some macros, such as analog blocks, are usually fixed at a

corner; we call them corner macros. We fix the node corre-

sponding to the corner macro as the root of the packing subtree.

Thus, the corner macro can be fixed at the corresponding corner.

RECTILINEAR MACROS

We adopt the method proposed in [29] to handle rectilinear

macros for our MP-tree. A rectilinear macro is sliced into sev-

eral rectangular macros. The location constraint corresponding

to the tree topology is created. During packing, we shift a

misalignment macro upward to maintain the rectilinear shape.

MACRO CLUSTERING AND PERFORMANCE CONSTRAINTS

Our macro placer considers the design hierarchy to cluster

macros to reduce the problem size. The macros in the same

group of the design hierarchy will be clustered if they have the

same height/width. These macros usually have strong correla-

tions, and, thus, clustering macros not only utilizes the area

Fig. 15. Example of region constraints. (a) Initial macro placement. (b) Macro
placement using an MP-tree without region constraints. (c) Macro placement
using an MP-tree with region constraints. There are three regions, i.e., R1, R2,
and R3, which contain eight, four, and five macros, respectively. The macro
displacement in (c) is smaller than that in (b).

better but also places strongly correlated macros closer. We

shall consider only the cluster dimensions that do not produce

any waste area. For example, for the clustering of four macros,

it has three possible cluster matrices, i.e., 1 × 4, 2 × 2, and

4 × 1. The desired clustering dimension is selected during

simulated annealing. For some macros, the timing between

them is critical; we may also cluster these macros to satisfy

the performance constraint. When declustering, the blocks are

placed according to the current cluster matrix.

REGION CONSTRAINTS

In a hierarchical design, a floorplan may be given. Based on

the given floorplan, we can impose region constraints to macros

so that these macros can only be placed into the corresponding

regions. For each region, we create four packing subtrees for

its four corners so that macros can be packed along the region

boundary. Fig. 15 gives an example of the region constraints.

Fig. 15(b) shows a macro placement from an MP-tree without

any region constraints. If the regions and the corresponding

macros are given, we may obtain a macro placement shown in

Fig. 15(c) that has a smaller macro displacement. The region

constraints are also important to timing-critical macros since

they can keep these macros in the user-specified regions. In

particular, the region constraints can also be used to reduce the

macro displacement when the chip utilization is low.
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