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MPC-Based Haptic Shared Steering System: A
Driver Modeling Approach for Symbiotic Driving

Andrea Michelle Rios Lazcano , Tenghao Niu, Xabier Carrera Akutain, David Cole ,
and Barys Shyrokau

Abstract—Advanced driver assistance systems (ADAS)
aim to increase safety and reduce mental workload. How-
ever, the gap in the understanding of the closed-loop
driver–vehicle interaction often leads to reduced user ac-
ceptance. In this article, an optimal torque control law is
calculated online in the model predictive control (MPC)
framework to guarantee continuous guidance during the
steering task. The research contribution is in the integration
of an extensive prediction model covering cognitive be-
havior, neuromuscular dynamics, and the vehicle-steering
dynamics, within the MPC-based haptic controller to en-
hance collaboration. The driver model is composed of a
preview cognitive strategy based on a linear-quadratic-
gaussian, sensory organs, and neuromuscular dynamics,
including muscle coactivation and reflex action. Moreover,
an adaptive cost-function algorithm enables dynamic allo-
cation of the control authority. Experiments were performed
in a fixed-base driving simulator at Toyota Motor Europe
involving 19 participants to evaluate the proposed con-
troller with two different cost functions against a commer-
cial lane keeping assist system as an industry benchmark.
The results demonstrate the proposed controller fosters
symbiotic driving and reduces driver–vehicle conflicts with
respect to a state-of-the-art commercial system, both sub-
jectively and objectively, while still improving the path-
tracking performance. Summarising, this article tackles the
need to blend human and ADAS control, demonstrating the
validity of the proposed strategy.

Index Terms—Collaborative driving, driver modeling,
haptic shared control (HSC), human–machine interaction,
model predictive control (MPC).

Manuscript received September 21, 2020; revised December 29,
2020 and February 26, 2021; accepted February 26, 2021. Date of
publication March 4, 2021; date of current version June 15, 2021. Rec-
ommended by Technical Editor G. Carbone and Senior Editor V. Ivanov.
(Corresponding author: Barys Shyrokau.)

Andrea Michelle Rios Lazcano is with Toyota Motor Europe, B-1930
Zaventem, Belgium (e-mail: Andrea.Lazcano@toyota-europe.com).

Tenghao Niu is with the Cambridge University, CB2 1TN Cambridge,
U.K. (e-mail: tn326@cam.ac.uk).

Xabier Carrera Akutain is with Toyota Motor Europe, Zaventem B-
1930, Belgium (e-mail: Xabier.Carrera.Akutain@toyota-europe.com).

David Cole is with the Cambridge University, CB2 1TN Cambridge,
U.K. (e-mail: djc13@cam.ac.uk).

Barys Shyrokau is with the Delft University of Technology, Delft 2628,
CD, The Netherlands (e-mail: B.Shyrokau@tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMECH.2021.3063902.

Digital Object Identifier 10.1109/TMECH.2021.3063902

I. INTRODUCTION

T
HE exponential growth of advanced driver assistance sys-

tems (ADAS) over the years has a direct impact on in-

creased safety and reduction of mental workload while driv-

ing [1]. However, automation can also lead to unsatisfactory

user acceptance when the driver’s intention or expectation does

not match the behavior of the driving assist system [2].

Moreover, the different projections toward the deployment of

fully automated vehicles (AV) predict several decades of pro-

gressive increase of automation before self-driving cars become

widespread [3]. Vehicles with partial level of automation pro-

vide intermediate scenarios, from basic driving aids to effective

shared control between human and artificial intelligence (AI).

The shared control approach is particularly suitable for the

steering task as forces can be exchanged at the steering wheel to

accomplish a common objective. Through haptic shared control

(HSC), the authority of the driving task is balanced between the

driving assist system and the driver. However, although HSC

can lead to less steering control activity and increased safety [4],

drivers sometimes resist the assist system’s guidance [5]. This

can be due to, for example, a mismatch between the driver’s

cognitive intentions and the controller’s objective, or, from a

neuromuscular level, the reflex action of the muscle spindles [6].

Therefore, the closed-loop driver–vehicle interaction needs

to be carefully reviewed in order to design collaborative, user-

accepted systems. On the one hand, there is an increasing interest

in the study of driver models applicable to the driving task.

However, human complexity and unpredictability have made

it difficult to guarantee collaboration and seamless control. On

the other hand, the difficulty to find objective metrics to analyze

these closed-loop dynamics incentivises the use of driver models

in the development of new driving assist systems to be able to

determine, which characteristics are the cause of certain subjec-

tive feelings. In the literature, the need to blend driver modeling

and vehicle control systems has been widely acknowledged [7],

[8], but there has been limited implementation of detailed driver

models in haptic shared controllers [9]. An in-depth literature

review of shared control for AVs [10] presents an overview of

all model-based HSC algorithms tested with drivers in-the-loop,

and discusses the positive impact that including a driver model

has in the reductions of conflicts is highlighted.

In particular for the steering task, some research studies have

tried to consider the driver–vehicle interaction, in which the

MPC strategy is often recognised as the most attractive control
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approach. However, oversimplified models, representing the

arms as a simple spring damper system, have been commonly

used. In a lane-keeping assist [11], this interaction is modeled

by coupling the arm dynamics to the steering system, and this

was also extended to a lane-changing scenario [12], using MPC.

Together with a simple arm model, an attempt to introduce an

adaptive level of control authority within the MPC cost function

is presented in [13], but the results were constrained to a constant

level of control authority for the shared driving case. In [14],

an adaptive level of control authority is exploited to improve

takeover requests from automation to driver, which further

demonstrates the importance of appropriately balancing the au-

thority in shared control. A more extensive psycho-physiology-

based driver model is implemented in [15] for an LKA case;

however, there was only one participant in the experiment. In

addition, the creation of important key performance indicators

(KPIs) to assess the collaborative behavior of the assistance

is remarkable. From a more theoretical approach, the use of

game theory models in [16]–[18] have also been designed us-

ing MPC to capture the driver-ADAS interaction. Furthermore,

the model developed in [19] takes special care in tackling the

human–machine conflicts, but the human-compatible reference

used by the haptic shared controller is calculated offline. Thus,

no modification during online simulations is possible. Finally,

from the results of these studies, it can generally be seen that the

conflicts in torque between driver and driving assist system are

not successfully addressed and drivers either fight or correct the

torque guidance instead of collaborating with it.

This article presents a case of HSC to provide continuous

guidance during the steering task, in which the optimal torque

control law is calculated in the model predictive control frame-

work. The novel contribution of the proposed study is the predic-

tive controller including the enhanced driver model (cognitive

behavior and neuromuscular dynamics) and the vehicle-steering

dynamics. Such an approach helps us to foster collaboration

between the assist controller and human-being providing a

more pleasant driving experience compared to the conventional

ADAS.

The rest of this article is organized as follows. Section II

establishes the steering-vehicle dynamics. Section III describes

the theory behind the driver model integrated within the MPC

system, and Section IV presents the results of its validation in

a driving simulator pilot experiment. Afterward, in Section V,

the MPC strategy is introduced. Section VI includes the details

of the subsequent driving simulator experiments to evaluate the

proposed driving assist system. In Section VII, the objective

and subjective results of a benchmark comparison between a

commercial LKA and two different collaborative modes of the

proposed MPC controller can be found. Finally, Section VIII,

concludes this article.

II. STEERING-VEHICLE MODEL

A. Vehicle Dynamics

The vehicle dynamics presented in Fig. 1 are based on

the linear single-track model. The model assumes a constant

longitudinal velocity, linear tyre dynamics, and small angle ap-

proximations. This model simplification can capture the vehicle

Fig. 1. Arms-steering-vehicle model.

handling characteristics within the scope of this investigation.

Particularly, a range of lateral acceleration up to 4 m/s2 for pas-

senger cars, which includes path-following tasks in nonevasive

manoeuvres. Moreover, the selected steering-vehicle parameters

are derived from the complete nonlinear steering-vehicle plant

to ensure its applicability for standard manoeuvres at 100 km/h.

Equations (1) and (2) represent the linearized vehicle motion

where m is the vehicle mass and Izz is the inertia with respect

to the centre of mass. The vehicle front and rear distance from

the centre of gravity are denoted by lf and lr, respectively.

Moreover, the states of the vehicle are longitudinalVx and lateral

Vy , vehicle velocities, yaw rate r, and heading angle ψ

m(V̇y + Vxr) = Fy,f + Fy,r (1)

Izzψ̈ = lfFy,f − lrFy,r. (2)

The lateral axle forces Fy,i have a linear relation with respect to

the slip angles αi with i ∈ {f, r} to represent the front and rear

axle, and are calculated as

αf = −δ +
Vy + lfr

Vx

(3)

αr =
Vy − lrr

Vx

(4)

Fy,f = −Cαf ,fαf (5)

Fy,r = −Cαr,rαr. (6)

B. Steering System Dynamics

The introduction of the steering system dynamics is key to

investigate the interaction between driver and driving assist

system. The steering dynamics are rigidly coupled to the arms

dynamics at the steering wheel, where torques are exchanged.

Thereby resulting in a lumped inertia that is the sum of the inertia

of the arms Iarms and the inertia of the steering wheel Isw. The

neuromuscular dynamics of the arms are described in detail in

Section III-B.

The linear steering dynamics [20] are represented in (7) and

(8) with 2-degrees-of-freedom (DoF), where the steering wheel

angle θsw, and steering column angle θc denote each DoF.

The interaction of the driver is taken into account through the

introduction of the muscle angle of the arms θa, which also

interacts with the steering wheel. The difference of the angles

at the steering column is defined as ∆θsc = (θsw − θc), and the
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Fig. 2. HSC scheme with driver model representation. A detailed description of each block can be found in the corresponding sections.

same notation follows for their derivatives with respect to time,

∆ ˙θsc = (θ̇sw − θ̇c)

(Isw + Iarms)θ̈sw = ka(θa − θsw)− ct∆ ˙θsc − kt∆θsc

(7)

Icθ̈c + cswθ̇c + kswθc = ct∆ ˙θsc + kt∆θsc −
Tw

G
− Tf + Tc

(8)

where Ic denotes the inertia of the rack and the front wheels

with respect to the pinion, kt and ct are the steering column

stiffness and the torsion bar damping, respectively, and csw and

ksw are the damping and self-centering stiffness with respect to

the steering wheel axle.

Moreover, the road wheel angle is calculated proportionally

to the steering angle column with the steering gear ratio G

δ =
θc
G
. (9)

The torques interacting at the steering wheel consist of the

self-aligning momentTw, the friction momentTf , and the torque

input from the driving assist system, Tc, calculated through the

MPC strategy described in Section V. The torque generated

about the king-pin axes is

Tw = Fy,fd (10)

where d is the pneumatic trail.

III. DRIVER MODEL

The integration of a realistic driver model is central to the

design of the collaborative shared control strategy. A better

accuracy of the torque predictions can directly improve the

collaborative behavior of the proposed driving assist system.

The driver model, as presented in Fig. 2, was developed by

Niu and Cole [20], building upon earlier work by Nash and

Cole [21]. The model is implemented in Simulink and the cogni-

tive model is adapted to enhance its validity in realistic scenarios

with real-time capability. It aims to represent the cognitive and

physiological mechanisms of the human driver, and includes

an internal model, neuromuscular dynamics, sensory dynamics,

sensorimotor noise, state estimation, and cognitive and reflex

control. In particular, the inclusion of neuromuscular dynamics

makes the model appropriate for the development of a new

driving assist system with torque feedback.

A. Cognitive Behavior

The cognitive model is used to predict the driver’s steering in-

tentions. For the cognitive control, a predictive approach is based

on a linear-quadratic regulator (LQR). Moreover, the states of

the system are estimated with a Kalman filter to reduce the

effect of measurement noise of the sensory organs and process

noise of the muscle activation. This combination of approaches

is also known as the linear-quadratic-Gaussian and it requires

an accurate internal mental representation of the plant in order

to achieve optimal state estimation. In this regard, a forward

internal mental model is assumed to be acquired a priori by the

driver.

The cost function of the LQR, which calculates the expected

driver torque input, is adapted and modified based on previous

work [21], [22]. This function minimizes the lateral deviation of

the vehicle with respect to the upcoming reference trajectory of

the road with a certain preview time Tprev

JLQR =

∞
∑

0

[

[

xKF yp

]

CTQC

[

xKF

yp

]]

+ αRα (11)

where C is a matrix that selects the states on the lateral position,

heading angle, and the road preview points. Finally, the expected

driver torque input, α, is calculated as

α = −KLQR

[

xKF

yp

]

(12)

where KLQR is the LQR gain, xKF is a 20x1 vector with the

estimated states as derived from [20], and yp is a vector con-

taining the upcoming preview lateral road coordinates of length

Np = Tprev/Ts,DM. The estimated states include the lateral ref-

erence target path, the arms-steering-vehicle states, the muscle

activation states, and the delayed states perceived through the
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TABLE I
DRIVER MODEL PARAMETERS

sensory organs. The rest of the cost function parameters can be

found in Table I.

B. Neuromuscular Dynamics

The muscle dynamics are described by a linearized Hill-

muscle model [23]. The elasticity of the tendons is represented

by the stiffness term, ka. The contractile element, on the other

hand, is described by the damping term, ca, and the neural

activation torque Tact, which is a function of the desired driver

torque and the reflex action.

The neuromuscular dynamics of the driver are, thus, com-

posed of the reflex action of the muscle spindles, a linearized

Hill-muscle model including the activation dynamics of the mus-

cles, and the muscle dynamics of the arms, which are interacting

with the steering system. These elements are necessary for the

modeling of the coactivation mechanism of the muscles

Tact = caθ̇a + ka(θa − θsw). (13)

The activation dynamics, denoted by Hact, are subject to a lag

time constant of the motor neurons excitation, τ1, and a lumped

neuro-muscular transduction delay, τ2. The latter time constant

represents the muscle activation and deactivation lag

Hact =
1

(τ1s+ 1)(τ2s+ 1)
. (14)

The reflex loop, an essential element of the coactivation mech-

anism, is subject to a delay time constant, τr, and a gain factor,

kr. The expected muscle angle, γ, is calculated based on the

internal mental model of the driver and the estimated states by

the Kalman filter

αr =
kr

τrs+ 1
(γ − θa). (15)

C. Sensory Organs

The sensory organs modeled are the visual perception organs,

and the proprioceptors with the purpose of representing the

human limitations in the perception. The modeling of the

vestibular organs is considered out of the scope of this research

because the validation is carried out in a fixed-base driving

simulator [24]. The states perceived by the driver are the vehicle

lateral deviation with respect to the desired path, ey , the heading

angle ψ, and the muscle angle of the driver θa. These states are

subject to a visual delay τvisual and a muscle sensory delay τmuscle.

The feedback sensed by these organs is then sent to the central

nervous system, subject to additive measurement noise. These

noisy signals are used to estimate the states of the plant with the

Fig. 3. Driver model predictions based on driver 1, novice.

Fig. 4. Driver model predictions based on driver 3, expert level.

TABLE II
TORQUE PREDICTION ACCURACY OF THE DRIVER MODEL

Kalman filter model, based on the assumption that the driver has

a good internal mental representation of the vehicle and their own

neuromuscular dynamics. In future work, the introduction of

signal-dependent noise, as presented in [25], is of high interest.

The parameters of the driver model are listed in Table I. Most

values are extracted from [20], whereas Tprev and Q are selected

based on the pilot experiment, described in Section IV.

IV. DRIVER MODEL VALIDATION

As a first step in the validation of the driver model, the

predictions of the torque are simulated offline in IPG CarMaker.

Here, the driver model is compared to the IPG CarMaker vir-

tual driver. To represent the plant, we use nonlinear vehicle

dynamics and a proprietary nonlinear steering system [26] with

a Toyota production vehicle parametrization. This allows for a

high-fidelity simulation of real-world scenarios. Afterward, a

driver-in-the-loop pilot experiment was performed.

A. Pilot Experiments With Driving Simulator

A pilot study was performed at Toyota Motor Europe, using

the fixed-base driving simulator of Fig. 6. Three different drivers,

listed in Table II in ascending order of driving experience,

participated in the experiment to further validate the accuracy of

the driver model. In order to test the driver model performance
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Fig. 5. Set-up for the driving simulator experiment at Toyota Motor
Europe, Belgium.

Fig. 6. Driving simulator at Toyota Motor Europe, Belgium.

for different driving styles and behavior, there is significant

variability in the drivers’ experience. Namely, the participants

are a novice driver, a driver with 12-years of experience, and

a driver with over 20 years of driving experience and expert

knowledge in driving simulators.

B. Results and Discussion

The driver model fits all three drivers well, as objectively

shown in Table II, which further demonstrates the capabilities

of the model to capture inter- and intradriver variability.

The driver model parameterization is found to match slightly

better the novice and intermediate driver, which could be be-

cause the linear internal mental model captures better users

with limited driving experience, whereas the mismatch between

the linear model and the knowledge of expert drivers is more

significant.

The sensitivity of the different driver model parameters was

studied preliminarily in order to obtain the best possible fit. From

this analysis, the driver preview time of the road is highlighted

and was tuned for each driver. This can be linked to the different

cognitive strategies that each driver has in order to follow the

road path. The novice driver, in Fig. 3, tends to have a shorter

preview time, as well as a noisier torque input. On the other

hand, for the most experienced driver, in Fig. 4, even though

the perception of the ideal road trajectory was not correct, the

torque input is smooth. This can be associated with the accuracy

of internal knowledge that the experienced driver has concerning

the vehicle dynamics, which influences the level of muscle

spindles activation.

Another relevant factor is that having the correct human

road preview is key for the model to give an accurate torque

prediction. A good fitting of the prediction was obtained for

the three drivers under the assumption that the vehicle position

corresponds to the desired vehicle trajectory. This assumption

would not be valid in the presence of, for instance, external

disturbances, in which case the muscle spindles torque would

be activated.

V. MPC FRAMEWORK

In this section, an overview of the mathematical background

of the proposed MPC-based LKA controller is presented. The

general goal of the MPC is to iteratively calculate the trajectory

of a future control input,u(k), to optimize the performance of the

plant being controlled by minimizing a cost function subject to

constraints. The optimization takes into account the plant states’

information, x(k), at the start of the time window. The length

of this finite-time window is called the prediction horizon, Np.

The control horizon of the control input sequence is set equal to

the prediction horizon.

The MPC approach can compute the optimization online and

in real-time integrating the driver’s torque control behavior in

the loop, thereby capturing the haptic interaction.

A. Structure of the MPC

The need for accurate precision in the steering task makes the

MPC technique highly attractive for the development of ADAS

systems. In this framework, we can introduce constraints on the

control inputs and the states of the plant to guarantee safety,

smooth control, and driving comfort.

The general structure of the prediction model is

x(k + 1) = f(x(k), u(k)), with x(0) = x0 (16)

where x is the vector of the system states, with x ∈ R
38. The

variable x0 denotes the initial states, and f is the function

describing the equations of the prediction model. Lastly, the

variable u ∈ R
Nu is the control input, with Nu = 1 in this

article.

The complete vector of states is

x(k) = [y Vy ψ r θsw θ̇sw θsc θ̇sc . . .

θa xHact Tact eyd ψd θad . . .

xKF γ αr α Tc]
T . (17)

And the control input is the torque control rate Ṫc.

B. Cost Function and System Constraints

The constraints are essential to consider the driver–vehicle

limitations, as well as guaranteeing smooth control inputs to

enhance driving comfort.

The cost function of this MPC-based haptic steering controller

in (18) improves the path-tracking performance and reduces

the driver–vehicle conflicts. Moreover, the settings are tuned
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TABLE III
MPC SETTINGS AND WEIGHTS

to allow the assist system to provide a more intuitive torque

guidance to the driver through the steering interface

J(x, u) =

Np−1
∑

k=0

‖(xk − yr,k)‖
2
Wx

+ ‖uk − ur,k‖
2
Wu

+ ‖xNp
− yr,Np

‖2
WxN

(18)

where Wx, WxN
≥ 0 are the weighting matrices of the stage

and terminal cost for the states. The parameter Wu > 0 corre-

sponds to the stage cost for the input. The time-varying state

reference vector is denoted as yr and input reference ur.

The selected costs for the MPC system can be seen in Table III.

First of all, the tracking performance objective is implemented

to minimize the lateral deviation with respect to the reference

path, subject to a look-ahead distance factor depending on the

vehicle velocity and the heading angle ψ. Moreover, driving

comfort can be enhanced through weights on the lateral velocity

Vy and the yaw rate r. Additional costs on the driver’s effort or

discomfort indicators can also be added to reduce the activation

of the muscle spindles’ torque or the total driver steering torque.

Furthermore, the MPC model is subject to constraints, defined

in Table III in absolute maximum value. These constraints are

imposed on the lateral velocity and the yaw rate. Moreover,

constraints on the steering wheel angle θsw and assist torque

input Tc as well as their respective rates are also introduced

to guarantee a smooth assist guidance. Hard constraints on the

driver model states are avoided for stability and, instead, weights

to penalise their magnitude are included.

The different sampling times and prediction horizons, as

specified in Table III, are appropriately chosen to ensure that

the controller can be run in real-time without compromising its

performance, prediction capabilities, and stability. The nonlinear

plant operates at a higher sampling frequency,Ts,sim, whereas the

linear driver model can be accurately run at a lower sampling fre-

quency, Ts,DM, which reduces the computational requirements.

For the MPC, the maximum sampling frequency that allows the

model to compute the optimal control input in real time, Ts,mpc,

is selected to ensure stability and a long enough prediction time,

Ts,mpc ·Np, which has a direct impact on its performance.

C. Adaptive MPC for Conflict Minimization

Human behavior is adaptive and time-varying. Therefore, one

approach to deal with the competing behavior between human

and driving assist systems is to adapt the level of automation [27].

However, due to the increased complexity of the dynamic task

allocation, most research studies implement binary switches of

control authority.

In this research, the MPC optimization problem is solved

with the ACADO Toolbox [28]. This software allows us to

implement an adaptive cost function algorithm through time-

varying weights. These dynamic characteristics aim to minimize

conflicts between the applied driver torque and the driving assist

system torque, as well as dynamically share the control authority.

Adaptive weights are applied to the MPC controller torque and

its rate based on the online difference with the driver torque. This

feature further enhances collaboration. For instance, an increase

in the control input torque cost results in higher driver control

authority. On the other hand, if there are no torque conflicts, the

cost is smoothly reduced, which results in less driver steering

effort and a higher level of control authority for the collaborative

automation system.

The trigger for the adaptive weights is the presence of torque

conflicts between driver and assist system, represented by a step

signal. In order to ensure smooth transitions, this step signal is

converted to a parabolic shape p by applying a moving average

filter, MAV, and the following operations:

x =

[

1 −
MAV −WTc

bTWTc −WTc

2

]

(19)

p = 1 − 0.0067x− 0.7x2 + 0.2267x3 (20)

with p in the range of [0, 1]. This is then scaled to [WTc, bTWTc]
and [WT input, bTrWT input] for the costs of the controller torque

and torque rate input, respectively. The increase factors are

bT = 2 and bTr = 1.5.

This adaptive cost has fast increments to better tackle con-

flicts and slow reductions, reaching the minimum cost value

in a longer time frame. The velocity of the cost transition is

determined with size of the moving average filter window.

VI. DRIVING SIMULATOR EXPERIMENT: COLLABORATIVE

LANE KEEPING ASSIST

The aim is to assess the performance and collaborative

behavior of the proposed MPC controller with two different

cost-function settings, as well as to compare them against a

commercial LKA used as a benchmark. All three controllers

provide the drivers with haptic torque guidance to track the

centre of the path.

A. Driving Scenario

The driving scenario designed was a route of 5 km long with

four straight segments and four sinusoidal segments of different

amplitudes. In every trial, the vehicle was driving at a constant

vehicle speed of 100 km/h and the test subject’s sole task was

to control the lateral motion of the vehicle to drive in the centre

of the lane. In order to allow for more driver variability, the lane

width was set to 5 m and no lane markings were present. The

importance of this variability is to better assess how the different

LKA systems react and adapt to driver behaviors and diverse
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driving strategies. This is fundamental to obtain a meaningful

comparison of the collaborative behavior of the different assist

systems proposed. An overview of the set-up for this driver-

in-the-loop experiment can be seen in Fig. 5, where the drivers

interact with the controller through the steering torque feedback.

The graphics were rendered with rFpro software based on an

IPG CarMaker scenario in a 2100 projection screen, which can

be seen in Fig. 6.

B. Experimental Procedure

The experimental procedure was the same for all 19 partici-

pants, with drivers ranging from 22 to 41 years old. All partici-

pants are engineers at Toyota with comprehensive knowledge on

vehicle dynamics, with an average age of 29.7 years (SD = 6.9)

and 10.7 years (SD = 8.0) of driving experience. A relevant

note is that three of the drivers have extensive professional

experience assessing LKA systems. The experiment consisted

of independent trials for each of the three driving assist systems

evaluated. During each trial, the driving scenario and the task

were the same and the drivers were not informed of which

assist system they were using at any point. The consistency and

statistical significance of the results strengthens the expectations

that the number of participants was sufficient for this article.

At the start of the experiment, the participants were instructed

of the task and the experimental conditions. The order of the tri-

als was randomized to avoid human bias. During the experiment,

the first minute of each trial was used as training. This initial

data are discarded from the objective metrics and its purpose is

to allow drivers to familiarize themselves with the assist system

and the driving simulator.

C. Lane Keeping Assist Controllers

The controllers assessed during this experiment are described

as follows.

1) Baseline Lane Keeping Assist: The MPC modes are

evaluated against a commercial LKA system, described in

Appendix A. The current systems available in the automotive

industry are mainly focused on minimizing a lateral offset and

they do not integrate the driver interaction nor their impact on

the closed-loop dynamics. This approach aims to improve the

path-tracking performance, but it can result in a torque guidance

with suboptimal acceptance.

2) MPC Mode 1: The MPC framework makes it possible to

change the behavior of the controller through different cost-

function parameterizations. The first MPC mode, which corre-

sponds to a typical cost-function algorithm, has weights on the

lateral error, yaw angle, and other vehicle states, as defined in

Section V. The costs on the driver model states are set to zero

in this cost-function. However, the driver behavior is taken into

account by having the extensive driver model from Section III

within the prediction model of the controller, aiming for a more

human intuitive guidance.

3) MPC Mode 2: The second MPC parameterization makes

explicit use of the driver model in the cost-function through

the introduction of additional weights on the driver torque and

muscle spindles torque predicted by the driver model, which can

Fig. 7. Mean results of the subjective evaluation of 19 participants.

be found in Table III. Specifically, the proposed MPC controller

tries to minimize the muscle spindles activation, which is related

to the rejection of disturbances and muscle discomfort at a neu-

romuscular level. Moreover, the adaptive behavior of the MPC

is further customized to reduce conflicts with the driver. For this

purpose, the cost when the driving assist torque is opposing the

real driver, as described in Section V-C, is increased.

VII. RESULTS AND DISCUSSION

Statistical significance of the metrics was verified using a one-

way ANOVA test comparing the three different LKA systems.

First of all, to ensure the robustness of the results, a Bartlett’s

test for equal variances between the three groups of controllers

was executed. In the subjective evaluations, the null hypothesis

of equal variances is rejected for the second criteria (tracking

performance), thus, a nonparametric Kruskal–Wallis test was

performed in this case. A similar approach is applied to the

objective metrics.

A. Subjective Evaluation

A questionnaire based on a seven-point scale with a total of

five questions was designed to subjectively assess the behavior

of each LKA. At the end of the experiment, the participants

were also asked to rank the three systems from best to worst.

The outcomes of these evaluations show that the proposed MPC

controllers outperform the baseline benchmark, with 84.21%

of the subjective responses choosing the MPC mode 2 as the

best LKA system, and the remaining 15.79% choosing MPC

mode 1. The assessed characteristics are listed as follows:

1) Overall Steering Effort: Based on the torque applied by

the driver, with the ideal range between 3 and 5 points.

2) Performance and Guidance Level: Defined in terms of

the path-tracking performance of the ideal centerline. A

range of 6–7 corresponds to high tracking precision.

3) Collaborative Behavior: An evaluation of 6–7 points

means that torque conflicts between the driver and driving

assist system are reduced.

4) Feeling of Being in Control: Defined in terms of how

easily the drivers feel that they can overrule the assist

guidance if desired, with 6–7 points if it is easy.

5) Smooth Control: In terms of the presence of unneces-

sary corrections during authority transitions between the

driver and assist system control. The lower range being

abrupt (1–2) and the upper range smooth (6–7) control.

Fig. 7 presents the average grade of each subjective metric per

controller. The ideal range is highlighted in light green. This is
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TABLE IV
ANALYZED DATA OF THE SUBJECTIVE EVALUATIONS

Fig. 8. (a) Box plot of the objective KPIs of 19 participants. (b) Torques
over time for participant 1.

consistent with the preference of drivers to use the second mode

of the proposed MPC.

The participants consistently felt that proposed MPC con-

trollers provide an even more natural feel than the state-of-the-art

baseline system. In general, the presence of driver–assist con-

flicts creates a perception of the baseline controller being heavier

than desired, as well as having a lower collaborative behavior.

Moreover, drivers do not perceive small path-tracking errors

that the baseline assist tries to minimize, which may explain a

higher degree of conflict and, eventually, decreased the tracking

performance. The feeling of being in control, as expected, is

lower because part of the control authority is shared with the

assist system. However, the MPC modes are still graded higher

than the baseline system for this last subjective quality, as well

as providing an even more smooth guidance.

Statistical significance of the responses was positively ver-

ified, which can be seen in Table IV. For all five subjective

metrics, MPC mode 2 is the best, closely followed by the fist

MPC mode. The mean value of the responses for each metric,

as well as their standard deviation (SD) are also included.

B. Objective Assessment

The objective evaluation is based on an extensive list of KPI,

which can be seen in Appendix B, based on a recompilation

of both research studies and industry standard metrics. These

metrics were meticulously selected to impartially evaluate the

responses to the subjective questions. Fig. 8 shows the box

plot of two representative objective metrics. In the following

paragraphs, the values of the numerical differences between the

proposed MPC mode 2 and the baseline benchmark LKA are

TABLE V
ANALYZED DATA OF THE OBJECTIVE METRICS

discussed. In Table V, the results of the one-way ANOVA test

are presented, as well as the mean and SD values of each metric.

From this, it is clear that the proposed MPC controllers signifi-

cantly decreased the overall driver steering effort, in particular,

with an average reduction of 55.47% with respect to the baseline

system. This is in agreement with the subjective evaluation of the

MPC modes, which were judged as lighter steering systems. The

explanation lies in the behavior of the MPC controllers, which

actively cooperate with the driver and minimize the conflict, as

can be seen in Fig. 8. In other words, the intuitive, continuous

guidance of the MPC modes makes an efficient use of the torque

feedback to achieve better symbiosis with the driver. Objectively,

the collaborative ratio of the MPC controller in mode 2 increases

by 62.86% with respect to the baseline benchmark.

Moreover, even though the baseline controller optimizes al-

most solely the tracking performance, the results show that

the proposed MPC mode 2 has an improvement of 35.93% in

regards to the rmse of lateral error. This can be explained be-

cause the closed-loop human–vehicle interaction is considered

by the MPC controller. As previously mentioned, an accurate

prediction of the driver’s intention reduces conflicts. On the other

hand, driver–assist conflicts can result in the decreased tracking

performance and user acceptance.

Furthermore, the level of control authority is assessed in terms

of the ratio between the torque effort of the controller and the

driver. As expected, the authority is greatly shared with the LKA,

which relieves the driver partially from the steering workload.

Even though in all three controllers the level of control authority

is dominated by the assist system, in the case of the MPC modes,
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the driver control is significantly higher than with the baseline

system. This can lead to less driver opposition to regain control.

Besides, from the subjective evaluations, most participants felt

like they were still in full control with MPC mode 2. This

further reassures the hypothesis that this novel LKA controller

can provide a human-like, collaborative guidance. Hence, the

assist system can make drivers feel in control while continuously

guiding them to the correct path, decreasing driver workload,

and significantly improving driving comfort. Lastly, the steering

wheel reversal rate (SRR) is an indicator of the smoothness of

both the control, as well as the driver workload. A lower SRR

means that the driver requires less corrections to follow the

target path. In this case, the proposed MPC mode 2 improves

the smoothness of the control by 28.76% with respect to the

baseline. A higher SRR in the baseline controller suggests that

drivers tend to correct the guidance of the assist guidance.

VIII. CONCLUSION

The proposed control strategy tackles the need to blend

driver and assist system through driver modeling in an HSC

strategy. The controller is able to predict the human behavior

and provides a smooth and intuitive guidance to the driver. The

results show that the assist torque guidance matches the driver

expectations and their perception of collaboration. In this article,

a comprehensive driver model has been integrated in the MPC

controller, providing accurate torque predictions when the driver

target trajectory is known, as shown by the pilot experiments

in Section IV. The MPC controller handles the nonlinearities

and system constraints, which enhances driving comfort. At

the same time, it allows a dynamic control authority sharing

between drivers and assist system strengthening collaboration.

The adaptability of the driving assist system is essential to pos-

itively cooperate with the time-varying human behavior during

the steering task. Moreover, the controller can be tuned to por-

tray different behaviors, while maximizing driving comfort and

improving the tracking performance. It is important to highlight

the value of an appropriate selection of the MPC cost-function

weights. In order to ensure stability of the closed-loop system,

sufficiently high weights must be placed to the controller torque

and its rate. In addition, the introduction of a terminal cost for

the lateral position further ensures closed-loop stability. The

experimental results consistently show the proposed controller

fosters symbiotic driving and reduces driver–vehicle conflicts.

Moreover, it has been demonstrated that the proposed strategy

significantly improves the performance of the currently available

commercial system, both subjectively and objectively with ex-

tensive KPIs. On-going research activities are to perform more

extensive tests in the driving simulator, for different scenarios,

to evaluate a wider scope of steering tasks, including evasive

manoeuvres. This will ensure the maximum performance and

stability in a greater envelop of vehicle conditions. For this

purpose, the current single-track vehicle model should be up-

graded to a nonlinear vehicle model. In addition, the integration

of nonlinear steering friction within the MPC prediction model

is also under investigation. The influence of the steering torque

friction plays an important role due to the mismatch between the

modeled nonlinear friction and more complex friction modeling

for the 3-DoF steering wheel system. A higher degree of plant

nonlinearities, and driver model suitability will be investigated in

order to test the robustness of the proposed MPC. Lastly, a more

realistic environment is needed to further assess the validity of

this approach. For this purpose, the proposed MPC controller

will be evaluated with a real-time control system on a physical

test vehicle.

APPENDIX A
BASELINE SYSTEM

The commercial system calculates the target steering angle

based on feedforward and feedback steering characteristics. The

target feedback angle depends on the deviation of vehicle states

with respect to certain target states quantities such as lane offset,

lateral velocity, yaw angle, yaw rate, and steering angle. On

the other hand, the target forward steering angle is based on a

formula, which depends on the steering angle, vehicle velocity,

yaw rate, lateral acceleration, lane offset, and road curvature.

In order to calculate the target angle when codriving, the ideal

target control angle is combined with the actual steering angle

based on a weighting factor in order to enhance codriving, as

follows:

θcodr = θsw +Gdiff(θtarget − θsw). (21)

This weighting factor Gdiff ranges between [0.25, 1] inversely

proportional to the driver torque. This factor reaches its mini-

mum when the driver torque is more than 1.5 N ·m. To reach this

target angle, the LKA calculates a target torque to be added to

the EPS output of the steering system through a PID logic. The

target commands are subject to magnitude and rate of change

limits in order to ensure a smooth transition. Moreover, when

the driver torque is opposing the target command with more

than certain threshold (3 N · m), the torque assist is deactivated,

thus, instantaneously set to zero. This way of tackling the torque

conflicts can sometimes be perceived as unexpected by the

driver.

APPENDIX B
LIST OF KPIS

A full list of all the KPIs found both in the literature and in

the industry are listed as follows:

A. Overall Steering Effort

1) Driver torque steering effort during the time of the ma-

noeuver seTd

seTd =

∫ T

0

T2
d dt. (22)

2) Driving assist system torque steering effort during the

time of the manoeuver seTc

seTc =

∫ T

0

T2
c dt. (23)
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B. Path-Tracking Performance

1) Root-mean-square error (RMSE) of the lateral position

with respect to the ideal road centerline RMSEy with N
being the total number of data points

RMSEy =

√

√

√

√

1

N

N
∑

i=1

e2
y,i. (24)

2) Maximum lateral position error ey,max

ey,max = max(ey). (25)

3) Mean of the lateral position error ey

ey =
1

N

N
∑

i=1

ey,i. (26)

4) SD of the lateral position error σey

σey =

√

√

√

√

1

N − 1

N
∑

i=1

|ey,i − ey|2. (27)

C. Collaborative Behavior

1) Consistency ratio [15] rco is the ratio between the time

where the driver torque and the assist system have the

same sign and the total time of the manoeuvre

rco =
1

T

∫ T

0

sign(TdrTc) dt if TdrTc ≥ 0. (28)

2) Intrusiveness ratio rint calculated as the ratio of the time

where the driver torque and the assist system have oppo-

site sign and the total time of the manoeuvre

rint =
1

T

∫ T

0

sign(TdrTc) dt if TdrTc < 0. (29)

3) Resistance ratio [15] rre calculated as the ratio of the

time where the driver torque and the assist system have

opposite sign and the total time of the manoeuvre, if the

driver torque is bigger than the driving assist torque

rre =
1

T

∫ T

0

sign(TdrTc) dt

if TdrTc < 0 and Tdr > Tc. (30)

4) Contradiction ratio [15] rcont is the ratio of the time where

the driver torque and the assist system have opposite sign

and the total time of the manoeuvre, if the driver torque

is smaller than the driving assist torque

rcont =
1

T

∫ T

0

sign(TdrTc) dt

if TdrTc < 0 and Tdr < Tc. (31)

5) Coherence [29], γ, defined in terms of the cosine of the

angles formed by the driver and driving assist torque.

It is positive if the assist system is mainly portraying a

collaborative behavior during the manoeuvre.

γ =

∫ T

0
TdrTc dt

√

∫ T

0
T2

dr dt
∫ T

0
T2

c dt
. (32)

D. Control Authority Level

1) Level of sharing [29] Tshare is the ratio between the assist

system steering effort and the driver steering effort

Tshare =
seTc

seTd

. (33)

E. Smooth Driving

1) Steering reversal rate (SRR) [30] is the number of steer-

ing wheel reversals, per minute that are larger than a

gap value θsw,min. To reduce high-frequency noise, the

steering wheel angle and steering wheel velocity signals

are filtered with a second-order Butterworth filter with

cut-off frequency fcut = 0.6 Hz. The SRR is calculated as

the number of times where |θsw(t1)− θsw(t2)| ≥ θsw,min

for time-steps t1, t2 corresponding to consecutive steering

wheel velocities equal to zero

θsw,min = 3 deg (34)

SRR =
nchange

T
· 60. (35)

F. Driver Model Accuracy

1) RMSE of the predicted driver torque Td,pred with respect

to the real driver Td

RMSET pred =

√

√

√

√

1

N

N
∑

i=1

(Td,pred,i − Td,i)2. (36)

2) Accuracy of the driver model torque prediction is

A(%) =

[

1 −
1

SD(Td)
RMSET pred

]

· 100. (37)
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