
MPC-based Mid-level Collision Avoidance for ASVs

using Nonlinear Programming

Bjørn-Olav H. Eriksen, Morten Breivik

Abstract— In this paper, we present a mid-level collision
avoidance algorithm for autonomous surface vehicles (ASVs)
based on model predictive control (MPC) using nonlinear
programming. The algorithm enables avoidance of both static
and moving obstacles, and following of a desired nominal
trajectory if there is no danger of collision. We compare
two alternative objective functions, where one is a quadratic
function and the other is a nonlinear function designed to
produce maneuvers observable for other vessels in compliance
with rule 8 of the International Regulations for Preventing
Collisions at Sea (COLREGS). The algorithm is implemented
in the CASADI framework and uses the IPOPT solver. The
performance of the algorithm is evaluated through simulations
which show promising results. Furthermore, the algorithm is
considered computationally feasible to run in real time. This
algorithm serves as a base algorithm for further development
in order to ensure full COLREGS compliance.

I. INTRODUCTION

The development and use of autonomous technology in
both industry and research is continuously moving forward.
In particular, the automotive industry has had a leading
role, while the development in the maritime domain has
not received similar focus, even though the potential benefits
from developing and utilizing autonomous marine technol-
ogy is great. Employing autonomous surface vehicles (ASVs)
for marine operations such as oceanography, bathymetry,
passenger and goods transport, marine patrolling, etc. can
result in increased safety, widened operational window and
reduced costs.

A requirement for employing ASVs in the marine domain
is a collision avoidance (COLAV) system. Such a system
must be able to plan observable long-term maneuvers and
at the same time respond to rapid changes in the environ-
ment, such as a nearby high-speed vessel suddenly changing
course. Employing observable maneuvers is especially im-
portant to establish implicit communication between vessels
based on their maneuvers. Performing observable maneuvers
is also a requirement of the International Regulations for
Preventing Collisions at Sea (COLREGS), which acts as
“rules of the road” for marine surface vessels, both manned
and unmanned.

COLAV algorithms can in general be divided into reac-
tive and deliberate algorithms. Reactive algorithms utilize
currently available sensor data, and employ a minimum of
computations. This often produces sub-optimal solutions, but

Bjørn-Olav H. Eriksen and Morten Breivik are with the Centre
for Autonomous Marine Operations and Systems, Department
of Engineering Cybernetics, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway. Email:
{bjorn-olav.h.eriksen,morten.breivik}@ieee.org

Fig. 1: Example of a hybrid COLAV architecture with three
layers. The middle and top layers are typically deliberate
algorithms, while a reactive algorithm is used in the bottom
layer. In this architecture, electronic nautical charts (ENC),
prediction of moving obstacles and interpretation of COL-
REGS are handled by separate support functions.

the low computational requirement makes the algorithms
capable of responding to rapid changes in the environment.
Examples of reactive algorithms include velocity obstacles
(VO) [1, 2] and the dynamic window (DW) approach [3–5].
Deliberate algorithms, on the other hand, utilize apriori
information (often in the form of aggregated sensor in-
formation, maps, etc.) and can encode more sophisticated
criteria for the behavior, for instance generating observable
maneuvers which are optimal in a global sense. Examples of
deliberate algorithms include rapidly-exploring random trees
(RRT) [6], graph search algorithms such as A* and D* [7, 8]
and constrained nonlinear optimization [9, 10]. A downside
of deliberate algorithms is their computational complexity,
which results in high computational requirements and possi-
bly challenges for real-time implementation. The solution to
this issue is to employ a hybrid architecture, merging reactive
and deliberate algorithms [9, 11]. An example of a three-
layered hybrid architecture is shown in Fig. 1. In such an
architecture, the top layer can perform long-term planning
from the start position to the goal position, only considering
static obstacles (land, reefs, etc.) while performing optimal
planning with respect to arrival time, energy consumption,
etc. This would typically be performed offline, but may also
be computed online if required. The second layer inputs
the desired nominal path or trajectory, and makes local
adaptations if necessary. The planning horizon of this layer



should be long enough to plan avoidance maneuvers, but
short enough to ensure computational feasibility. The reactive
layer then tries to follow the trajectory specified by the mid-
level algorithm, and makes local adaptations if necessary.

In this paper, we focus our attention to deliberate mid-layer
COLAV formulated using nonlinear programming (NLP).
Constrained optimization in the form of model predictive
control (MPC) has already been applied for automotive
COLAV [12, 13]. The use of MPC for ASV COLAV has
been investigated in [10], however only using brute-force
techniques by discretization of the search space in a finite
number of control inputs. In this paper, we present an MPC
algorithm for mid-level COLAV, implemented using NLP
and solved using the IPOPT [14] solver in the CASADI [15]
framework. The algorithm is tested with two objective func-
tions, where one generates maneuvers which are compliant
with rule 8 of COLREGS.

The paper is structured as follows: Section II presents
an ASV model and kinematic constraints. An overview of
COLREGS, and some discussion of the most applicable rules
to ASVs is given in Section III. In Section IV, we define
the mid-level COLAV problem as an optimization problem,
while simulation results are shown in Section V. Finally,
concluding remarks and possibilities for further work are
given in Section VI.

II. ASV MODELING

In the scope of deliberate mid-level COLAV, we propose
to use a purely kinematic model. This simplifies the design,
since no vehicle kinetic model is required. For underactuated
ASVs, a kinematic model can be formulated as [16]:

η̇ =





cos(ψ) 0
sin(ψ) 0

0 1



u, (1)

where η =
[

N E ψ
]T

∈ R
2 × S is the vehicle pose

with N and E representing the north and east position
and ψ representing the yaw angle (heading). The vector
u =

[

U r
]T

∈ R
2 is the vehicle velocity with U and r

representing the vehicle speed over ground (SOG) and yaw
rate (ROT), respectively. Note that the vehicle is assumed
to have zero side-slip, hence the vehicle heading and course
are assumed to be aligned. In addition, note that the ocean
current is not included in (1).

The argument for neglecting the vehicle kinetics and the
ocean current is that the reactive layer will take these into
account when following the mid-level trajectory. However,
some criteria should be employed to ensure a degree of
feasibility with respect to the vessel capabilities. Underac-
tuated ASVs typically employ a rudder for controlling ROT,
and uses the forward thrust from the propeller to control
SOG. For such a configuration, the actuation moment in yaw
is highly dependent on the SOG since the rudder force is
dependent on the fluid velocity over the rudder.

In [16], a nonlinear kinetic model for the Maritime
Robotics Telemetron ASV, shown in Fig. 2, is identified.
The model is of the form:

Fig. 2: The Telemetron ASV. Courtesy of Maritime Robotics.

M(x)ẋ+ σ(x) = τ , (2)

where x =
[

U r
]T

, M(x) is a velocity-dependent inertia
matrix, σ(x) is a damping vector and τ is a normal-
ized control input. The inertia matrix and damping vector
are formed by a number of polynomial and asymptotic
terms [16]. Keeping in mind that the possible SOG and ROT
are dependent on each other, we use the model to develop
the kinematic limitations:

x ∈ Vs =
{ [

U r
]T

∈ R
2|Umin(r) ≤ U ≤ Umax(r)

∧ rmin ≤ r ≤ rmax

}

, (3)

where rmin < 0 and rmax > 0 are constants, while Umin(r)
and Umax(r) are functions of r. We handle the ROT limi-
tation as constant, while letting the SOG limitation capture
the dependency between the SOG and ROT limitations.

III. THE INTERNATIONAL REGULATIONS FOR

PREVENTING COLLISIONS AT SEA (COLREGS)

COLREGS intends to provide a set of rules which when
followed should avoid ship-to-ship collisions. The rules have
been revised a number of times, to cope with the advances in
technology and the increasing use of the seaways for different
activities.

COLREGS is divided in 5 parts, with a total of 38
rules [17]. Part B (Steering and Sailing Rules) considers the
rules most relevant for implementing COLAV algorithms.
The rules most commonly discussed in the litterature on
autonomous COLAV, see e.g. [2], are rules 13-15, which
describe the overtaking, head-on, and crossing situations:

Rule 13 Overtaking situation: An overtaking situation oc-
curs when a vessel is approaching another vessel
of more than 22.5◦ abaft her beam. A vessel
overtaking is required to keep clear of the vessel
being overtaken, such that risk of collision is
avoided.

Rule 14 Head on: A head-on situation occurs when two
vessels are approaching at reciprocal (or nearly
reciprocal) courses. This is usually interpreted
as a relative bearing of 180◦ ± 6◦. In such a
situation, both vessels are required to do a port
turn to avoid collision.



Crossing, give-wayCrossing, stand-on

Overtaking

Head-on

12◦

22.5◦22.5◦

Fig. 3: Graphical interpretation of COLREGS situations.

Rule 15 Crossing: A crossing situation occurs when a
vessel is approaching with a relative bearing of
between 25◦ abaft her beam and 6◦ abaft her
bow. In such a situation, the vessel having the
other vessel on her starboard side is required
to give way to avoid collision. If possible, one
should avoid passing in front of the other vessel.

A graphical interpretation of the COLREGS situations is
shown in Fig. 3. Formally, the vessel required to avoid
collision is named the give-way vessel while the other vessel
is named the stand-on vessel.

In addition to rules 13-15, rules 8, 16 and 17 are quite
relevant for autonomous COLAV:

Rule 8 Action to avoid collision: This rule requires that
actions taken to avoid collision should be large
enough to be observable for other ships. An
implication for this is that a series of small
alterations of course and/or speed should not
be applied. If there is sufficient space available,
alterations of course should be the preferred
action to avoid collision.

Rule 16 Action by give-way vessel: This rule dictates that
the give-way vessel should, if possible, take early
and substantial action to keep well clear of the
stand-on vessel.

Rule 17 Action by stand-on vessel: This rule dictates that
the stand-on vessel should keep her speed and
course. However, if it is apparent that the give-
way vessel is not taking action to avoid collision,
the stand-on vessel is required to apply actions
to best avoid collision.

Rule 8 is considered in [10] by limiting the possible actions,
resulting in distinct observable actions. These rules are,
however, seldom considered in the literature. It should be
noted that rule 17 actually requires the stand-on vessel to
not attempt to avoid collision, before it is apparent that the
give-way vessel is not acting to avoid collision. By applying
a hybrid architecture, rule 17 can be handled implicitly by
implementing the latter part in the reactive algorithm.

IV. MPC-BASED MID-LEVEL COLAV

This section describes the parameterization and implemen-
tation of the mid-level COLAV algorithm.

A. Control objective

For the mid-level COLAV algorithm, we want to input a
desired nominal path or trajectory which should be followed
if there is no danger of collision. A trajectory can for example
be a sequence of waypoints together with a desired speed.
By assuming that we wish to follow straight lines between
the waypoints, we can define a desired nominal trajectory:

pd(t) =

[

Nd(t)
Ed(t)

]

. (4)

Consequently, we can formulate the control objective as that
the vessel trajectory p(t) =

[

N(t) E(t)
]T

should converge
towards pd(t), while avoiding collisions and obeying COL-
REGS.

B. Obstacle modeling

A common simplification is to model both moving and
static obstacles as circles. We define a static obstacle using a
center position and a radius as Osi = (psi , rsi) ∈ R

2 ×R
+.

A set of S static obstacles can then be defined as Os =
{Os1 , Os2 , . . . OsS}.

Similarly, a moving obstacle can be defined by a
time-varying center position and a radius as Omi

(t) =
(pmi

(t), rmi
) ∈ R

2 × R
+, where pmi

: R → R
2. A

set of M moving obstacles is then defined as Om =
{Om1

(t), Om2
(t), . . . OmM

(t)}.

C. Optimization problem construction

To solve the mid-level COLAV problem in Section IV-
A as an optimal control problem (OCP), we first define the
general OCP:

minimize φ(η(t),u(t))

subject to η̇(t) = F (η(t),u(t))

h(η(t),u(t)) ≤ 0,

η(t0) = η̄0,

(5)

where φ : (R2 × S) × R
2 → R is the objective function,

η(t) is the vehicle pose trajectory, u(t) is the control input
trajectory and F (η(t),u(t)) denotes the kinematic model
(1). The function h : (R2 × S) × R

2 → R
nh forms nh

inequality constraints and η̄0 ∈ R
2 × S is the initial vehicle

state.
Even though the continuous OCP in some cases is possible

to solve e.g. by using Pontryagin’s maximum principle, it
is generally practical to define a nonlinear program (NLP)
by discretizing (5). The discretized OCP can be formulated
using a number of techniques. We choose to use direct
multiple shooting, where both the state and control inputs
are explicitly defined as decision variables. The NLP with
Np prediction steps is:

minimize
w

φ(w)

subject to g(w) = 0

h(w) ≤ 0,

(6)



where w =
[

ηT0 uT0 . . . ηTNp−1 uTNp−1 ηTNp
]T

∈
R

5Np+3 is a vector of 5Np+ 3 decision variables, and
g(w) ∈ R

ng is a vector of ng equality constraints.
We define a quadratic objective function:

φ1(w,pd1:Np
) =

Np−1
∑

k=0

(

Kp

∥

∥

∥
pk+1 − pdk+1

∥

∥

∥

2

2

+KU (Uk − Ud)
2 +Kr(rk − rd)

2
)

, (7)

where Kp,KU ,Kr > 0 are tuning parameters. The desired
SOG Ud and ROT rd can be derived from the desired
nominal path, given by the sequence of desired positions
pd1:Np

=
[

pd1 pd2 . . . pdNp

]

.
When using multiple shooting, one must employ shooting

constraints to ensure that the control input and vehicle states
satisfy the kinematic model (1). We define an integrator
function f(ηk,uk) using Runge-Kutta of order 4:

k1 = F (ηk,uk)

k2 = F (ηk +
h

2
k1,uk)

k3 = F (ηk +
h

2
k2,uk)

k4 = F (ηk + hk3,uk)

f(ηk,uk) = ηk +
h

6
(k1 + 2k2 + 2k3 + k4) ,

(8)

where h is the discretization time step. Given a state and
control input ηk and uk, we can now define the vessel state
at the next iteration as ηk+1 = f(ηk,uk). We include the
shooting constraints in the equality constraints g(w) as:

g(w) =















η̄0 − η0

f(η0,u0)− η1

f(η1,u1)− η2
...

f(ηNp−1,uNp−1)− ηNp















, (9)

resulting in ng = 3(Np+ 1) equality constraints.
To guarantee that the resulting vehicle trajectory p(t)

avoids collisions, we must make sure that the vehicle tra-
jectory p(t) does not intersect the obstacles in the sets Os

and Om. In the set Os, we have S static obstacles. For each
obstacle Osi = (psi , rsi) ∈ Os we define the function:

hsi(p1:Np) =













r2si −
∥

∥p1 − psi

∥

∥

2

2

r2si −
∥

∥p2 − psi

∥

∥

2

2
...

r2si −
∥

∥pNp − psi

∥

∥

2

2













∈ R
Np. (10)

Similarly, for each moving obstacle Omi
= (pmi

(t), rmi
) ∈

Om we define the function:

hmi
(p1:Np, t1:Np) =













r2mi
−
∥

∥p1 − pmi
(t1)

∥

∥

2

2

r2mi
−
∥

∥p2 − pmi
(t2)

∥

∥

2

2
...

r2mi
−
∥

∥pNp − pmi
(tNp)

∥

∥

2

2













∈ R
Np,

(11)

where t1:Np =
[

t1 t2 . . . tNp
]T

contains the time
related to each NLP step. We then define the inequality
constraints:

ho(w, t1:Np) =





















hs1(p1:Np)
...

h
sS
(p1:Np)

hm1
(p1:Np, t1:Np)

...
h

mM
(p1:Np, t1:Np)





















∈ R
(S+M)Np,

(12)
which ensure that the resulting trajectory avoids obstacles.

To ensure compliance with the velocity limitations in (3),
we can for each control input ui define the function:

hui
(ui) =









Umin(ri)− Ui
−(Umax(ri)− Ui)

rmin − ri
−(rmax − ri)









∈ R
4, (13)

and form the inequality constraints:

hu(w) =











hu0
(u0)

hu1
(u1)
...

huNp−1
(uNp−1)











∈ R
4Np, (14)

which ensure that all control inputs satisfy (3).
Finally, (12) and (14) is combined:

h(w, t1:Np) =

[

ho(w, t1:Np)
hu(w)

]

, (15)

resulting in nh = (4 + S +M)Np inequality constraints.
By requiring the functions Umin(r) and Umax(r) to be C2

in r, we see that h(w, t1:Np) is C2 in w.

D. COLREGS compliance

The NLP formulation (6), (7), (9) and (15) will be able
to avoid collision with both moving and static obstacles, but
will not necessarily obey the COLREGS rules formulated in
Section III.

Implementing these rules in an NLP problem is a chal-
lenging task, and in this paper we will only investigate
the possibility of obeying rule 8, which requires that the
vessel maneuvers should be large enough to be observable to
other vessels. This implies that applying a sequence of small
alterations in course or speed should be avoided. Naturally,
there are a number of ways to avoid this, including:

• Constraining the ROT and SOG derivatives to only
allow values with magnitude very close to zero or
greater than some threshold.

• Including penalty terms in the objective function which
penalize course and speed alteration depending on the
time to perform it. Slow alterations would then be
penalized more than quick alterations.

Initially, it may seem like a good solution to constrain
the ROT and SOG derivatives to only allow maneuvers
of a given magnitude, avoiding small alterations. However,



r [deg/s]

C
o
st

−1 0 1

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

0

10

20

0

20

40

60

80

100

Fig. 4: ROT penalty function with ar = 112, br = 6.25·10−5

and rmax = 0.25 rad/s ≈ 14.3 deg/s. The function is non-
convex close to the origin, but remains smooth as the zoomed
insert shows.

this would result in a highly non-convex (and even non-
connected) search space. Solving an NLP of this form is
difficult, and highly dependent on initialization. We therefore
investigate the second option with introducing penalty terms
in the objective function. Such penalty terms can either be
defined on the change of course and SOG ∆ψk = ψk+1−ψk
and ∆Uk = Uk+1−Uk, for k = 0 . . . Np−1, or the ROT and
SOG-derivative. Defining the terms on the ROT and SOG-
derivative allows for changing the time step length h, without
changing the behavior of the penalty terms. Since the SOG-
derivative is not part of the NLP (6), we approximate it as
U̇k ≈ Uk+1−Uk

h
.

We wish to ensure that the objective function is C2,
hence special considerations must be made when designing
the penalty terms. Inspired by the normal distribution, we
propose to combine a square and an exponential term as:

q(ζ; a, b) = aζ2 + (1− e−
ζ2

b ), (16)

where a, b > 0 control the shape of the function. We define
two functions:

qr(r; rmax) =
100

q(rmax; ar, br)
q(r; ar, br)

qU̇ (U̇ ; U̇max) =
100

q(U̇max; aU̇ , bU̇ )
q(U̇ ; aU̇ , bU̇ ),

(17)

where the parameters ar and br define the shape of the
ROT penalty function qr(r), and the parameters aU̇ and bU̇
define the shape of the SOG-derivative penalty term. The
parameters rmax > 0 and U̇max > 0 are the maximum ex-
pected values of r and U̇ , and are used to scale the functions
such that qr(r), qU̇ (U̇) ∈ [0, 100] for r ∈ [−rmax, rmax] and
U̇ ∈ [−U̇max, U̇max].

The ROT penalty function qr(r) with ar = 112, br =
6.25 · 10−5 and rmax = 0.25 rad/s is shown in Fig. 4. It is
obvious that the function is non-convex, but it is C∞.

Assuming that a course alteration is performed with a
constant ROT, the cost of performing a course alteration ∆ψ
using the penalty term can be approximated as qr(r)

∆ψ
r

,

r [deg/s]

C
o
st

0 5 10 15
0

100

200

300

400

500

600

Fig. 5: Cost of performing a 30 deg course alteration, using
different ROTs. The peak at r ≈ 0.51 deg/s is the highest
cost, while r = 5.42 deg/s is the minimum after the peak.

where ∆ψ
r

is the time to execute the turn. From Fig. 5 it
is clear that for a course alteration of 30 deg, the penalty
term motivates choosing a ROT either significantly higher
than 0.51 deg/s, or using very long time to execute the turn.
Notice that this generalizes to an arbitrary turn, since the
cost scales linearly with ∆ψ.

To avoid that the position error in (7) dominates at large
errors, we introduce the pseudo-Huber cost function:

C(x; δ) = 2δ2

(

√

1 +
(x

δ

)2

− 1

)

, (18)

which for small x approximates a quadratic function x2, and
for large x approximates a linear function with slope 2δ [18].
The parameter δ > 0 controls where the function changes
from being quadratic to being linear.

Replacing the squared 2-norm position error with the
pseudo-Huber cost function and the quadratic ROT and SOG
cost with the new penalty terms we get the modified objective
function:

φ2(w,pd1:Np
) =

Np−1
∑

k=0

(Kp

2
C
(∥

∥

∥
pk+1 − pdk+1

∥

∥

∥

2
; δ
)

+KU̇qU̇ (U̇k) +Krqr(rk)
)

. (19)

Notice that the desired SOG and ROT are implicitly included
in the position error term. We select δ = 1 and scale
the position error by 1/2 to get a slope of 1 for large
position errors. This can, however, also be treated as a tuning
parameter in the problem.

V. SIMULATION RESULTS

We simulate a scenario with two static and one moving
obstacle to show the resulting behavior of the mid-level
COLAV algorithm, given the two objective functions (7) and
(19). The mid-level COLAV algorithm is implemented as
an MPC algorithm, where only the first step of the optimal
solution is implemented.

To define and solve the NLP (6) with (9), (15), and the
quadratic and modified objective functions (7) and (19), we



TABLE I: Simulation and tuning parameters.

Param. Value Comment

Ns 55 Number of simulation steps
h 10 s Step size
Np 24 Prediction steps
Umin 0 m/s Minimum SOG
Umax 17 m/s Maximum SOG

Quadratic objective function φ1:
Kp: 2/3 · 10−4 1/m2 Position error scaling
KU : 1 · 10−1 s2/m2 SOG error scaling
Kr : 3 · 102 1/rad2 ROT error scaling

Modified objective function φ2:
Kp 4 · 10−2 Position error scaling
K

U̇
6 · 10−1 SOG-derivative penalty term scaling

Kr : 5 · 10−1 ROT penalty term scaling
[a

U̇
, b

U̇
] [8, 2.5 · 10−4] SOG-derivative penalty term param-

eters
[ar, br] [112, 6.25 · 10−5] ROT penalty term parameters

used the CASADI framework (v3.1.0-rc1 for MATLAB) [15]
with the IPOPT solver [14]. From the parameterization in
Section IV is is clear that the NLP problem is non-convex.
IPOPT is however able to handle non-convex optimization.

Simulation and tuning parameters are shown in Table I.
The desired nominal trajectory pd(t) is generated by a set of
waypoints and a desired speed along the path Ud = 10 m/s.

We start the simulation with η0 =
[

0 0 0
]T

, and initialize
the first iteration of the MPC with the desired nominal
trajectory, and SOG and ROT as zero. Hence:

w0 =
[

ηT0 uT0 pTd1 . . . uT0 pTdNp

]T
, (20)

with u0 =
[

Ud 0
]T

. Notice that the initial guess is
infeasible if the desired nominal trajectory intersects with
obstacles. However, IPOPT does not require a feasible initial
guess. Later iterations of the MPC is initialized with the
solution of the previous iteration.

The simulations are run in MATLAB R2016b, on a 2.8
GHz Intel Core i7 processor. The first iteration of the MPC
with the quadratic and modified objective functions takes ap-
proximately 250 ms and 750 ms to solve, respectively. Later
iterations with warm start take approximately 15–25 ms
for the quadratic objective function, and 20–150 ms for
the modified objective function. Hence, with a time step of
10 s, we consider the algorithm with the modified objective
function as implementable in real time. The NLP with the
modified objective function has more local minima than the
NLP with the quadratic objective function, which is why
the runtime with the modified objective function is less
consistent than when using the quadratic objective function.
Guaranteeing a maximum computational time for NLPs is
difficult, but in the event that the optimization problem is not
solved within the required time, the reactive COLAV layer
would still keep the vessel on a collision-free path, although
possibly getting stuck in a local minima.

Figures 6 and 7 show the resulting vessel trajectory using
the quadratic and modified objective functions, respectively.
The vessel trajectory is shown in red, while the colored

4

3

321

N
o
rt
h
[m

]

East [m]

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Fig. 6: Simulation result using the quadratic objective func-
tion φ1. Note that the size of the ownship (in blue) is
overexaggerated for visibility. Hence, what appears to be a
collision with the moving obstacle is in fact not a collision.

4

3

321
N
o
rt
h
[m

]

East [m]

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

Fig. 7: Simulation result using the modified objective func-
tion φ2. Note that the size of the ownship (in blue) is
overexaggerated for visibility. Hence, what appears to be a
collision with the moving obstacle is in fact not a collision.

lines show the predicted trajectory in each iteration with
blue and yellow in the start and end of the predicted
trajectory, respectively. Furthermore, the numbers 1–4 mark
time instants, where t1 = 0 s, t2 = 80 s, t3 = 290 s
and t4 = 510 s. We clearly see that the modified objective
function results in a trajectory with clear and observable
course changes in contrast to the quadratic objective function.
This is also confirmed from the ROT in Fig. 8 which shows
the input sequences. We also see that the modified objective
function produces a more observable SOG trajectory than
the quadratic objective function.

Both objective functions produce collision-free trajecto-
ries, and avoid the first encounter with the moving obstacle
by passing in front of it at t ≈ 80 s. An interesting
observation is that with respect to COLREGS, our vessel
should actually keep the course and speed constant here,
and not attempt to avoid collision at an early stage, since
our vessel is deemed the stand-on vessel in this situation. In
the second encounter with the moving obstacle at t ≈ 500 s,
both algorithms turn to port to avoid collision.

VI. CONCLUSION AND FURTHER WORK

We have designed and implemented an NLP-based mid-
level COLAV algorithm, enabling avoidance of both static
and moving obstacles. The algorithm is simulated with two



Time [s]

r
[d
eg
/s
]

Time [s]

U
[m

/s
]

0 100 200 300 400 500 600

0 100 200 300 400 500 600

−10

0

10

20

0

5

10

Fig. 8: SOG and ROT trajectories when using the quadratic
and modified objective functions.

different objective functions, where one is designed to ensure
compliance with rule 8 of COLREGS, thus providing observ-
able course and speed changes. The simulation results are
promising and motivate for further development to include
other essential COLREGS rules. Based on the simulations,
the NLP is considered to be real-time implementable with
respect to computational requirements.

Possibilities for further work include:

• Designing objective function terms able to capture rules
13-15 and 17 of COLREGS. These terms can be aided
by a support function, see Fig. 1, to encode which rules
are applicable to each vessel in a given situation.

• Combining the developed mid-level COLAV algorithm
with a reactive algorithm, e.g. continuing the work on
the dynamic window algorithm in [5].

ACKNOWLEDGMENT

This work was supported by the Research Council of
Norway through project number 244116 and the Centres of
Excellence funding scheme with project number 223254.

REFERENCES

[1] P. Fiorini and Z. Shiller, “Motion planning in dynamic
environments using velocity obstacles”, International

Journal of Robotics Research, vol. 17, no. 7, pp. 760–
772, 1998.

[2] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L.
Huntsberger, “Safe maritime autonomous navigation
with COLREGS, using velocity obstacles”, IEEE J.

Oceanic Eng., vol. 39, no. 1, pp. 110–119, 2014.
[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic win-

dow approach to collision avoidance”, IEEE Robotics

& Automation Magazine, vol. 4, pp. 23–33, 1997.
[4] P. Ögren and N. Leonard, “A convergent dynamic

window approach to obstacle avoidance”, IEEE Trans-

actions on Robotics, vol. 21, no. 2, pp. 188–195, 2005.
[5] B.-O. H. Eriksen, M. Breivik, K. Y. Pettersen, and

M. S. Wiig, “A modified dynamic window algorithm
for horizontal collision avoidance for AUVs”, in Proc.

of IEEE CCA, Buenos Aires, Argentina, 2016.

[6] S. M. LaValle, “Rapidly-exploring random trees: A
new tool for path planning”, Computer Science Dept.,
Iowa State University, Tech. Rep., 1998.

[7] P. Hart, N. Nilsson, and B. Raphael, “A formal ba-
sis for the heuristic determination of minimum cost
paths”, IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[8] A. Stentz, “The focussed D* algorithm for real-time

replanning”, in Proc. of the International Joint Con-

ference on Artificial Intelligence, Pittsburgh, Pennsyl-
vania, USA, 1995.

[9] Ø. A. G. Loe, “Collision avoidance for unmanned
surface vehicles”, Master’s thesis, Norwegian Univer-
sity of Science and Technology, Trondheim, Norway,
2008.

[10] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship
collision avoidance and COLREGS compliance us-
ing simulation-based control behavior selection with
predictive hazard assessment”, IEEE Transactions on

Intelligent Transportation Systems, vol. 17, no. 12,
pp. 3407–3422, 2016.

[11] G. Casalino, A. Turetta, and E. Simetti, “A three-
layered architecture for real time path planning and
obstacle avoidance for surveillance USVs operating
in harbour fields”, in Proc. of Oceans 2009-Europe,
Bremen, Germany, 2009.

[12] T. Shim, G. Adireddy, and H. Yuan, “Autonomous
vehicle collision avoidance system using path plan-
ning and model-predictive-control-based active front
steering and wheel torque control”, Proceedings of the

Institution of Mechanical Engineers, part D: Journal

of Automobile Engineering, vol. 226, no. 6, pp. 767–
778, 2012.

[13] B. Yi, S. Gottschling, J. Ferdinand, N. Simm, F.
Bonarens, and C. Stiller, “Real time integrated vehicle
dynamics control and trajectory planning with MPC
for critical maneuvers”, in IEEE Intelligent Vehicles

Symposium, Gothenburg, Sweden, 2016.
[14] A. Wächter and L. T. Biegler, “On the implemen-

tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming”, Mathematical

Programming, vol. 106, pp. 25–57, 2005.
[15] J. Andersson, “A general-purpose software framework

for dynamic optimization”, PhD thesis, Arenberg Doc-
toral School, KU Leuven, Heverlee, Belgium, 2013.

[16] B.-O. H. Eriksen and M. Breivik, “Modeling, identi-
fication and control of high-speed asvs: Theory and
experiments”, in Sensing and control for autonomous

vehicles: Applications to land, water and air vehi-

cles, T. I. Fossen, K. Y. Pettersen, and H. Nijmeijer,
Eds. Cham: Springer International Publishing, 2017,
pp. 407–431.

[17] A. N. Cockcroft and J. N. F. Lameijer, A guide to the

collision avoidance rules. Elsevier, 2004.
[18] R. Hartley and A. Zisserman, Multiple view geometry

in computer vision. Cambridge University Press, 2003.


