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ABSTRACT

For enabling virtual reality on natural content, Depth Image-

Based Rendering (DIBR) techniques have been steadily de-

veloped over the past decade, but their quality highly depends

on that of the depth estimation. This paper is an attempt to

deliver good-quality Depth Estimation Reference Software

(DERS) that is well-structured for further use in the world-

wide MPEG standardization committee.

The existing DERS has been refactored, debugged and ex-

tended to any number of input views for generating accurate

depth maps. Their quality has been validated by synthesiz-

ing DIBR virtual views with the Reference View Synthesizer

(RVS) and the Versatile View Synthesizer (VVS), using the

available MPEG test sequences. Resulting images and run-

times are reported.

Index Terms— MPEG, Depth Estimation, RDE, View

Synthesis, RVS

1. INTRODUCTION

The Moving Picture Experts Group (MPEG) is a consortium

which has the task of standardizing codecs and tools for the

video community. The MPEG-I (MPEG-Immersive) subgroup

was set up to develop virtual reality techniques that synthesize

virtual views from a sparse set of fixed input camera views.

Software packages have recently been released, in particu-

lar the Reference View Synthesizer (RVS) and the Versatile

View Synthesizer (VVS). The MPEG-I group also generated

test material for testing and validation.

Estimating high-quality depth remains a delicate process,

but it is also crucial for creating synthesized views, where

any depth imperfection may have a detrimental impact on the

output quality [7, 6]. So far, the Depth Estimation Reference

Software (DERS) has been used (and reused from previous

activities) for over 7 years and a lot of work has been invested,

currently ending up in a quite powerful software: DERS8.0.

However, hundreds of man hours of poorly-coordinated work

resulted in a hardly extensible software package, with a lot

of dead code. We therefore decided to refactor and improve

this software - the subject of the present paper - keeping the

same overall performance in output quality while obtaining a

simpler code.

Finally, aiming at developing the MPEG-I Depth Estima-

tion Reference Software (DERS), we modified the configura-

tion files and the images reading/writing code to be the one

of RVS, one of the two formerly cited view synthesis tools.

This ensures seamless integration into a full reference soft-

ware package that can be eventually provided to the MPEG-I

community.

ALGORITHM 1

General Overview

Require: R = reference image, I = search images, N =
Number of labels

for all l ∈ [0, N ] do

for all i ∈ I do

for all p ∈ R do

compute error[p][l][i] based on motion R[p]

end for

E[p][l] = mini(error[p][l][i])
end for

end for

graphCut(E)

2. METHOD

The algorithms explained in this section are based on DERS

8.0 [12, 11], which core functionalities are succinctly described.

The original DERS8.0 code was refactored, debugged and

generalized to work with any number of input views (origi-

nally, up to 4 input views were allowed).

The depth estimation algorithm is made of three main

parts: the matching cost, the temporal enhancement and the

graph cut. As shown in Algorithm 1, we compute an error

cost for each pixel of the reference image, using all possible

labels (or depth). This error is computed for each search im-

age, and is based on a motion map of the reference image.

The final error per pixel and label is set as the minimum error
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Fig. 1: Cost matching illustration between the reference view

with 4 upsampled neighboring search views, on the PlaneA

dataset[10].

among the image pairs. This is then given to the graph cut

optimization that will find the best depth estimation per pixel.

2.1. Sub-pixel accuracy and image resizing

Baselines can be very different from one dataset to the other,

ranging from less than a millimeter to meters. When the base-

line is very small, pixels displacement is likely to be smaller

than one pixel. Sub-pixel accuracy is therefore needed in or-

der to obtain a good depth estimation. We use a sub-pixel

precision by upsampling the input images. Senoh et al. [11]

used a bi-cubic interpolation between the pixels with a preci-

sion up to 1/8 pixel.

2.2. Matching cost

This part of the algorithm computes the cost of assigning a

label l (representing the depth) to a given pixel (i, j) in the

reference image r, leading to a correspondent pixel (u, v) in

the search image s. This is done using a modified version

of the Sum of Absolute Difference (SAD) between the two

images within a 3× 3 window w centered on the pixels. Any

configuration of input views can be used such as in Fig. 1 or

Fig. 2. This cost is composed of three costs, each one based

on a different channel of the YUV image :

Csr
ij (l) = CY + CU + CV (1)

where

CY =
∑

K ⊙ |Y s
w(u, v)− Y r

w(i, j)| (2)

CU = 0.15× |Us(u, v)− Ur(i, j)| (3)

CV = 0.15× |V s(u, v)− V r(i, j)| (4)

In equation (2), ⊙ is an element-wise matrix multiplica-

tion, and K is a normally distributed kernel used to give more

Reference
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Fig. 2: Cost matching illustration between the reference view

with 3 upsampled neighboring search views.

importance to the pixels closer to the center of the window

with the following values :

K =





0.05 0.09 0.05
0.09 0.14 0.09
0.05 0.09 0.05



 (5)

This is done for each pixel of the reference image, e.g. the

one we want to compute the depth for, with each one of the n
search images as shown in Fig. 1. Then, the final cost for the

pixel (i, j) and the depth z is the minimal cost among all the

search images :

Cij(l) = min
n

(Cnr
ij (l)) (6)

Doing this insures that we have found the best correspond-

ing pixel, and not to take into account wrongly matched pixels

due to occlusions.

2.3. Temporal coherence

In order to deal with video content, the depth estimation of

two consecutive frames has to be coherent. If it was not the

case, when using them to synthesize views, the user would see

the same pixel in two consecutive frames with variating depth,

giving the impression that all pixels’ distance is changing over

time in the scene leading to a non realistic 3D experience.

This temporal coherence between frames is based on a

motion map. If it is not the first frame of the video, we com-

pare its reference image with the one of the previous frame.

We take a patch centered on each pixel in both images and

compute the average difference in the luma component. If

that difference is bigger than a threshold, we set the motion

map of all the pixels within that patch to true.

Once we know which pixels have changed during the tran-

sition between the two frames, we can enforce non moving

pixels to have similar depth values. Indeed, in the case of

moving pixel the cost is re-computed as explained in 2.2,

while if there was no motion for a given pixel, its cost is com-

puted based on the depth of the previous frame as follows :

Cij(lt) =

{

0, if lt = lt−1

Cij(lt−1) + |lt − lt−1|, otherwise
(7)



2.4. Graph cut

A first depth map approximation could be computed in a winner-

takes-all approach, by keeping the label with the smallest cost

for each pixel. However, this would result in a local per pixel

estimation without any depth coherence between neighbors.

To obtain a better depth map, we initialize a Markov Random

Field (MRF) graph with the costs of each pixels and labels,

and use Graph cut with α-expansion as an energy minimiza-

tion technique to find the best cut in the graph leading to a

good global depth estimation [2, 4].

The main point of the graph cut algorithm is to find a sat-

isfying energy function for the problem at hand. We can find

a review of useful energy functions for the depth estimation

problem in [4] where for a two input views they use:

E(d) =
∑

p∈P

D(p, dp) +
∑

q∈N

K(p,q) · T (dp 6= dq) (8)

Where dp is the disparity label of a pixel p in the set of

pixels P in the left image and D(p,d) the cost for assigning it

the label d. q i

However, this simple approach doesn’t take into account

the occlusions nor the n-view camera problem. Kolmogorov

et al. [9] solved the two problems at the same time using:

E(f) = Edata(f) + Esmoothness(f) + Evisibility(f) (9)

where Edata(f) is the photo-consistency:

Edata(f) =
∑

<p1,f(p)>,<q,f(q)>∈I

D(p, q) (10)

Esmoothness(f) a smoothness parameter to improve the

coherence between neighboring pixels and Evisibility(f) in-

crease the error if the pixel is occluded.

Instead of this visibility parameter, our function uses a

reliability map and a smoothing map that will be explained in

Section 2.5.

Our energy can be expressed as:

E∗(l) = D∗ ×MR × Cij(l) (11)

Where E∗(l) is the smallest error among the different

search images for label l. It is computed using D∗ as the

baseline between the reference image and the search image

from which we selected E∗(l), MR as the reliability map and

Cij(l) as the matching costs found in (6).

The smoothing is inserted as a new node in the MRF rep-

resentation between the source and the Edata node. It is com-

puted using:

Esmoothing(l) = λs × Ed (12)

Where Ed is a factor giving more importance to close la-

bels. The λs is a factor which represents the importance of the

(a) Reliability weight (b) Smoothing weight

Fig. 3: Reliability and Smoothing weights[11]

smoothing error term against the data term in the optimization

process.

Further parallelizations will be made to faster the code in

a future iteration.

2.5. Reliability and smoothing map

When an image is untextured, finding the best match is a chal-

lenge as multiple depth level will have the same error cost.

To avoid this, [11] used a reliability map which weights the

matching error based on the color slopes between adjacent

pixels of the reference image. It can be seen in Fig. 3a that

the reliability weight decreases when the slope increases. In a

very textured part of the image, the color slope will be higher

and the estimation is likely to be correct; therefore, we put a

small weight on the matching cost of that pixel. Algorithm 2

describes the procedure to compute the reliability map where

gapY is a weighted averages of the pixels in a 3 × 3 win-

dow and gapU, gapV are left/right differences for an horizon-

tal pair and up/bottom for a vertical pair and Ep is the final

matching error for pixel p. The same approach is used to

compute the smoothing map.

ALGORITHM 2

Reliability map computation

Require: T = threshold, min = arbitrary minimum (0.3),

for all p ∈ ReferenceView do

gap = gapY + gapU + gapV

if gap < min then

W = T
min

end if

if min ≤ gap < T then

W = T
gap

end if

if T ≤ gap then

W = 1
end if

if gap == 0 andE == 0 then

Ep = W
min

end if

end for



3. DATASETS AND CONFIGURATION FILES

Our algorithm was tested on several well known MPEG datasets,

whose properties are shown in Table 1. In addition, all the

configuration files and camera parameter files are included in

an online repository1.

4. RESULTS

The quality of RDE depth maps was tested synthesizing vir-

tual views using both RVS and VVS for the frames of interest.

Then, these views were compared to their corresponding orig-

inal views using the Weighted-to-Spherically-Uniform Peak-

Signal-to-Noise-Ratio (WS-PSNR) metric [1]. With these val-

ues, an average PSNR was calculated for each dataset gen-

erating the final results included in Table 2. The same pro-

cess was followed to obtain the DERS PSNR results, which

were used to obtain the delta PSNR value in percentage (with

DERS 8.0 as reference).

These results show that the two algorithms obtain a PSNR

difference below 5%, both for VVS and RVS, which have

similar results for all the datasets. These slight differences be-

tween synthesis programs are not considered important given

they are the result of an averaging process. This means that,

for the same dataset, some views obtained better PSNR results

using VVS whilst others obtained better results using RVS.

As an example, Fig. 4 provides one depth map for each

one of the datasets tested. It shows the subjective degree of

quality and the smoothness achieved with RDE.

In addition, Fig. 5 depicts the synthesis detail for one view

within the TechnicolorPainter dataset. In this example, the

differences between VVS and RVS can be noticed in the back-

ground green strip and also in the edges of the man’s face.

Although these differences are subtle, they show how the dif-

ferent synthesizers treat tough areas of the image and explain

the different PSNR values obtained in Table 2.

Figure 5 also displays the subjective level of quality for

VVS and RVS synthesis provided that the detail chosen is

considered to be the most noticeable error in the view.

Finally, this work includes the time consumed by RDE,

DERS 8.0, VVS and RVS in order to provide insights on

the temporal magnitude order of the problem. All the tests

were made using a Linux 18.04 computer with an Intel(R)

Core(TM) i7-6700 CPU @ 3.40GHz and 64 GB GDDR4 RAM

@ 2133 MHz.

The results obtained are gathered in Table 3. On the one

hand, the time results for RDE and DERS 8.0 are divided

into (i) the time needed per view, (ii) the time needed for the

first frame and (iii) the time needed for one of the follow-

ing frames. On the other hand, the time results for VVS and

RVS only include (i) the time needed per view and (ii) per

frame. This difference is given by the temporal enhancement

1https://cutt.ly/bjUxSR

(a) TechnicolorPainter (b) ULBUnicornA

(c) ULBUnicornB (d) ETRIChef3

(e) OrangeShaman (f) OrangeDancing

(g) OrangeKitchen (h) IntelFrog

Fig. 4: Depth maps for one frame for the tested datasets.

(a) VVS (b) RVS

(c) Original (d) RDE Depth map

Fig. 5: Detail of TechnicolorPainter for the images generated

by VVS and RVS along with the original view and the depth

map generated by RDE.



Dataset Scene type Configuration Frames Frames of interest Resolution

TechnicolorPainter natural array 4× 4 371 (30 fps) 60-67 (8) 2048× 1088
ULBUnicornA natural array 5× 5 1 (1) 1 (1) 1920× 1080
ULBUnicornB natural array 5× 3 1 (1) 1 (1) 1920× 1080

ETRIChef3 natural array 5× 5 300 (30 fps) 60-67 (8) 1920× 1080
OrangeShaman synthetic array 5× 5 300 (30 fps) 20-27 (8) 1920× 1080
OrangeDancing synthetic arc 14× 3 300 (30 fps) 50-57 (8) 1920× 1080
OrangeKitchen synthetic array 5× 5 90 (30 fps) 50-57 (8) 1920× 1080

IntelFrog natural linear 14× 1 300 (30 fps) 140-147 (8) 1920× 1080

Table 1: Overview of the used datasets to synthesize novel depths[10, 8].

Dataset

RDE DERS 8.0

VVS PSNR (dB) RVS PSNR (dB) VVS ∆PSNR (%) RVS ∆PSNR (%)

Y U V Y U V Y U V Y U V

TechnicolorPainter 37.138 34.679 37.424 36.771 34.719 37.699 0.54 2.09 1.26 0.91 3.90 3.67

ULBUnicornA 31.155 44.295 44.402 30.667 44.694 44.750 -0.52 -0.17 -0.05 -0.58 -0.21 -0.13

ULBUnicornB 31.364 44.102 44.395 31.425 44.631 44.869 -1.61 -0.02 -0.07 -0.68 0.14 0.05

ETRIChef3 33.940 40.748 41.466 33.571 40.968 41.564 -1.66 -2.07 -0.86 -3.37 -1.00 -0.38

OrangeShaman 39.304 49.326 47.230 39.576 49.940 47.963 3.39 3.00 3.68 3.17 3.28 4.26

OrangeDancing 31.783 48.910 50.403 32.327 49.472 50.911 1.75 2.08 1.95 1.28 1.70 1.70

OrangeKitchen 31.878 47.081 50.107 33.093 48.288 51.126 0.12 -0.42 -0.90 1.57 -0.13 -0.52

IntelFrog 26.861 41.182 40.140 26.821 41.117 39.837 -0.02 0.51 2.39 -0.42 0.15 2.02

Table 2: Average PSNR results for VVS and RVS for the used datasets.

Dataset RDE time (s) DERS 8.0 time (s) VVS time (s) RVS time (s)

View Frame 0 Frame 1+ View Frame 0 Frame 1+ View Frame View Frame

TechnicolorPainter 3307 678 380 1726 546 165 111 14 135 17

ULBUnicornA 1075 1075 1075 718 718 718 8 8 15 15

ULBUnicornB 832 832 832 810 810 810 7 7 15 15

ETRIChef3 4239 1025 461 1706 753 136 170 21 152 19

OrangeShaman 2018 710 193 1997 1438 78 225 28 128 16

OrangeDancing 2644 912 256 4440 2585 255 307 39 136 17

OrangeKitchen 2746 1085 239 1942 1165 111 88 11 130 16

IntelFrog 4598 846 530 3840 866 436 141 18 160 20

Table 3: Results of time for the tested datasets. Synthesis times for VVS and RVS refers to the time needed by these synthesizers

using RDE depthmaps. The time consumed by them when using DERS 8.0 depthmaps is similar, and it is not included here

due to space limitations.

feature that implements RDE and DERS 8.0, speeding up the

calculation of the consecutive frames. Despite this fact, the

time consumed by RDE and DERS 8.0 is by far the largest,

needing more than half an hour to generate a sequence of 8

frames. In the case of the synthesizers, the time per frame is

around one order of magnitude less, with more variable times

for VVS than for RVS.

We have shown that RDE and DERS 8.0 give similar qual-

ity results. However, the amount of code was divided by a fac-

tor 10, and no speed optimization was done for the moment.

This will be done in a future iteration of this work.

5. CONCLUSIONS

This work presents a refactored, debugged and well struc-

tured depth estimation software called Reference Depth Es-

timation (RDE), which offers equivalent results to the MPEG

Depth Estimation Reference Software (DERS 8.0). This is

shown by applying two view synthesis algorithms to well-

known datasets and both DERS and RDE computed depth

maps. This improves the analysis and understanding of the

code, allowing the interest of new researchers in the tool. This

first step toward a robust and easy to use depth estimation al-

gorithm shows promising results and improves the potential

of future extensions.
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