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MPEG VBR Video Traffic Modeling and Classification Using Fuzzy Technique
Qilian Liang and Jerry M. Mendel

Abstract—in this paper, we present a new approach for MPEG tained after decompressing the video sequence (e.g., [6], [31]).

variable bit rate (VBR) video modeling and classification using Research on real-time video traffic classification is scarce, be-
fuzzy techniques. We demonstrate that a type-2 fuzzy member- cause:

ship function, i.e., a Gaussian MF with uncertain variance, is most . o . .
appropriate to model the log-value of I/P/B frame sizes in MPEG 1) Video traffic is compressed code and very little infor-
VBR video. The fuzzy c-means (FCM) method is used to obtain mation is available for classification (the only informa-
the mean and standard deviation (std) of I/P/B frame sizes when tion that can be used is temporal knowledge of the video
the frame category is unknown. We propose to use type-2 fuzzy traffic); and

logic classifiers (FLCs) to classify video traffic using compressed . S _ .
data. Five fuzzy classifiers and a Bayesian classifier are designed 2) video traffic is highly bursty and exhibits uncertain be-

for video traffic classification, and the fuzzy classifiers are com- havior.
pared against the Bayesian classifier. Simulation results show that ~ Patel and Sethi [25] proposed a decision tree classifier for

a type-2 fuzzy classifier in which the input is modeled as a type-2 video shot detection and characterization by examining the
fuzzy set and antecedent membership functions are modeled ascompressed video directly. For shot detection, their method

type-2 fuzzy sets performs the best of the five classifiers when the ists of ing intensit d col hist
testing video product is not included in the training products and CONSIStS Of comparing Intensity, row, and column nistograms

a steepest descent algorithm is used to tune its parameters. of successive | frames of MPEG video using thequare test.
. . - For characterization of segmented shots, they classified shot
Index Terms—Bayesian classifier, fuzzy classifier, fuzzy c-means L . . - .
(FCM), MPEG VBR video, traffic modeling, type-2 fuzzy logic sys- motion m_to different categories using a set of feat_ures derived
tems. from motion vectors of P and B frames of MPEG video.
Relatively more research exists for video traffic characteristic
modeling and predicting than for classification. Dawood and
| INTRODUCTION Ghanbari [4], [5] used linguistic labels to model MPEG video
ULTIMEDIA technologies will profoundly change the traffic, and classified them into nine classes based on texture and
way we access information, conduct business, commuotion complexity. They used crisp values obtained from the
nicate, educate, learn, and entertain. Among the various kirfdean values of training prototype video sequences to define low,
of multimedia services, video service is becoming an importamedium, and high texture and motion. Chang and Hu [3] inves-
component. Video service refers to the transmission of movitigated the applications of pipelined recurrent neural networks
images together with sound [24]. Research on video transfé@@dVIPEG video traffic prediction and modeling. Intracoded (1),
for multimedia services has been quite active in recent yeapsgdicted (P), and bidirectional (B) (I/P/B) pictures were char-
and video applications are expected to be the major sourceagferized by a general nonlinear ARMA process. Pamdhed.
traffic in future broad-band networks [29]. Video application§26] observed that & distribution fits the statistical distribution
such as video on demand, automatic surveillance systems, vigéthe packetized bits/frame of video traffic with low bit rates.
databases, industrial monitoring, video teleconferencing, etdgymanet al. [10] showed that the number of bits/frame dis-
involve storage and processing of video data. Many of these &fbution of I-frames has a lognormal distribution and its auto-
plications can benefit from retrieval of the video data based enarrelation follows a geometrical function, and they concluded
their content, but generally, any content retrieval model mutat there is no specific distribution that can fit P and B frames.
have the capacity of dealing with massive amounts of data [#Jtunz et al. [14], however, found that the lognormal distribu-
For example, how does one search for the clip “Christopht@n is the best match for all three types. All these methods be-
speaking at USC commencement” from a video archive coleng to the statistical signal processing-based approaches, which
sisting of an enormous number of tapes? match the mean and variance to a known statistical distribution.
Digital video is often compressed by exploiting the inhereiRecently, Krunz and Makowski [15] observed thet/G /oo
redundancies that are common in motion pictures. So, to clasgifput models are good candidates for modeling many types of
the compressed (such as MPEG) video traffic directly withogorrelated traffic (such as video traffic) in computer networks.
decompressing it will be an essential step for ensuring the dhese works are useful to us for understanding the characteris-
fectiveness of these systems. tics about different video traffic so that the characteristics can
Most works on video sequence classification belong to the used for classification.
content-based approach, which uses the spatial knowledge obAs noted in [22], a shortcoming to model-based statistical

. . . signal processing is.". the assumed probability model, for
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frames. Fuzzy logic systems (FLS) are model free. Their meseme range of values, i.e;, € P; (i = 1, ..., v). A primary

bership functions are not based on statistical distributions. imembership function is any one of these membership functions,

this paper, we, therefore, apply fuzzy techniques to MPEG VBRg. 14 (z|p1 = p17, ..., P, = p. ). FOr short, we usg_4(z) to

video traffic modeling and classification. denote a primary membership function. It will be subjectto some
A survey of recent advances in fuzzy logic (FL) appliedestrictions on its parameters. The family of all primary mem-

to telecommunications networks is discussed in [9]; it shovisership functions creates an FOU. Meet and join are defined and

that FL is very promising for every aspect of communicatiogxplained in great detail in [12] and [13].

networks. Recently, Tsang, Bensaou, and Lam [29] proposed

a fuzzy-based real-time MPEG video rate control scheme II. INTRODUCTION TOMPEG VIDEO TRAFFIC

to avoid a long delay or excessive loss at the user-networ _ . .
interface (UNI) in an ATM network. The success of fuzzy ‘WpEG (moving picture expert group) is an ISO/IEC standard

logic applied to communication networks motivates us tfc())r digital video compression coding, and has been extensively

apply FL to video traffic modeling and classification. Recentl;}JSGd to overcome the problem of storage of prerecorded video

rule-based FL classifiers are reported in [16], but they are an d_igital §torage media, _because.of'the high compression ra-
S it achieves. MPEG video traffic is composed of a group

type-1 designs. Because uncertainties are observed in vid . ; )
traffic modeling and classification, we shall use type-2 FL"?plctures (GoP) that include encoded frames: I/P/B. | frames

however, we shall compare classification results obtained frdife coded W't_h respect tp the current frame using a two-dw_nen-
classifiers based on either a type-1 or type-2 FL. sional (2-D) discrete cosine transform, and they have a relatively

In Section II, we briefly introduce MPEG video traffic. InIow compression ratio; P frames are coded with reference to

Section 11, we introduce type-2 fuzzy sets. In Section 1V, warevious | or P frames using interframe coding, and they can

model I/P/B frame sizes using supervised clustering and ung&_hleve a bgtter compression ratio than | fra”?eS; and, B frames
) . . . - are coded with reference to the next and previous | or P frames,
pervised clustering, respectively. Five fuzzy classifiers are pre-

sented in Section V. In Section VI, a Bayesian classifier is pra—nd B frames can achieve the highest compression ratio of the

posed. Performances of the six classifiers are evaluated in eaclr:?;mf;?ggﬂt} Fiﬁ: c;:faiggut?ent\?vig;f[a;?\zsssfrs;)riggl-egh%y two
tion VII. Conclusions are presented in Section VIII. b ' '

) . : the distance between | frames. The use of these three types of
In the sequel, we use the following notation and terminolog

Als a type-1 fuzzy set, and the membership grade (a synon%%mes allows MI_DI_EG to be both robust (I frames permit error
for the d f b hio) ofe X in A i hich ¥ecovery) and efficient (B and P frames have high compression
for the degree of membership) of€ X in Als ju(x), whic ratio). Variable bit-rate (VBR) MPEG video is used in ATM net-
'S a crlsp.number in [0, 1]. A type-g fuzzy .Set’ denotedis works, and constant bit-rate (CBR) MPEG video is often used
characterized by atype-2 membership funcfigriz, u), where ., .o whand ISDN. We focus on MPEG VBR video traffic.

v € Xandu € J, C [0, 1], ie A = {((z, w), pz(z, W)V |, Fig. 1, we plot the I/P/B frame sizes for 3000 frames of an
@ € X,Vu € J C /[0, 1]}, inwhich0 < pz(z, w) < \MPEG coded video oStar Wars

1. At each value ofr, sayx = z/, the 2-D plane whose axes

arevw andy ; (¢'v) is called a vertical slice of 5 (x, ). A sec- . TYPE2 Fuzzy SETS
ondary membership function is a vertical slicepof (z, w). It '
is ui(z = o/, u)forz’ € X andvu € Jo C [0, 1], ie., The concept of type-2 fuzzy sets was introduced by Zadeh

e — Ay ) o [32] as an extension of the concept of an ordinary fuzzy set,
ggc(:zus ef ; W ¥ L\j\;\e(a(;r)o th£ “C‘rflm iwn((;:;/ti)’njw Z ’[)Ojalr]d i.e., a type-1 fuzzy set [20]. Type-2 fuzzy sets have grades of
zEA P P : qu_g.U. ' embership that are themselves fuzzy [7]. A type-2 member-
refer top ; (x) as a secondary membership function; itis atype-g;]i grade can be any subset in [0, 1]—the primary member-

fuzzy set, which we also refer to as a se_condary set. Baseds%i ; and, corresponding to each primary membership, there is
the concept of secondary sets, we can reinterpret a type-2 fuzzyo o gary grade (which can also be in [0, 1]) that defines the
setas the union of all secondary sets, i.e., we can re-expiiess ., sqiijities for the primary membership. A type-1 fuzzy set
a vertical-slice manner, @ = {(z, u3(x))[V& € X}.The s 5 gpecial case of a type-2 fuzzy set: its secondary member-
domain of a secondary membership function is called the pdgi, function is a subset with only one element, unity. Type-2
mary membership of; .7, is the primary membershipefwhere - 1,77y sets allow us to handle linguistic uncertainties, as typi-
Jo € [0, 1]forVz € X. The amplitude of a secondary memberfie py the adage “words can mean different things to different
ship function is called a secondary gradg(«) is a secondary people.” A fuzzy relation of higher type (e.g., type-2) has been
grade. Uncertainty in the primary memberships of atype-2 fuzgygarded as one way to increase the fuzziness of a relation, and,
set,A, consists of a bounded region called the footprint of unzccording to Hisdal, “increased fuzziness in a description means
certainty (FOU). Itis the union of all primary memberships, i.ejncreased ability to handle inexact information in a logically
FOU(A) = |J J.. Assume that each of the secondary membegorrect manner [11].”

ship functions of a type-2 fuzzy set has only one secondary gradex general type-2 fuzzy set has lots of parameters to be deter-
thatequals 1. A principal membership function is the union of athined [12], [13], but things simplify a lot when its secondary
such points at which this occurs, i.Bprincipai(*) = [, v %/ membership functions are interval sets. Interval sets are very
wheref,. (1) = 1, and is associated with a type-1 fuzzy set. Coniseful when we have no otharpriori knowledge about mem-
siderafamily oftype-1 membershipfunctigns(x|p;, ..., p.,) bership function uncertainties. In our video traffic modeling, we
wherepy, ..., p, are parameters, some or all of which vary ovewill focus on using interval type-2 fuzzy sets. An interval type-2



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

f T ;.WMWWI

H Ty L]

] (L] 1 B F ]
Frama ok

1]

s drarma

«’KMM

1500 2000 FE

Frama s

"Rl

[ ]

[5] 1] =] ITHE] Pt EH el
¥

Fig. 1. Portions of I/P/B frame sizes &tar Warsvideo. (a) | frame. (b) P
frame. (c) B frame.
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We use an overbar (underbar) to denote the upper (lower)
MF. For example, Iefzﬁt(xk) denote the type-2 MF for theth
antecedent of théth rule, then the upper and lower MFs of
Kt (zr) arefip (zx) andﬁfi (z1), respectively, so that

pi (wr) = / 1/¢' 1)
qle[ﬁfvi (mk)zﬁfvi (=)

where [ denotes the union of individual points of each set in the
continuum.

Note that when membership function parameters are fixed,
i.e., they don't vary over a range of values, then the primary
membership function reduces to the type-1 membership func-
tion 4 ().

Example 1: Gaussian Primary MF with Uncertain Standard
Deviation: Consider the case of a Gaussian primary MF having
a fixed meann}, and an uncertain standard deviation that takes
on values inal,, ol,], i.e.,

2
1 (xp —mt
uum»=em{—§<——7—i)], ok € [ohy. o)

Ok
(2)
where k. = 1,...,p; p is the number of antecedents;
l=1,..., M;and,M is the number of rules. The upper MF,
7t (z1), is (see Fig. 2)

i (w0) = Nk, olyi ) 3)

and the lower MFy! (1), is (see Fig. 2)
i an) = N, ol ). @
O

This example illustrates how to defigeand ., so that it is
clear how to define these membership functions for other situa-
tions (e.qg., triangular, trapezoidal, bell MFs).

IV. MODELING I/P/B FRAME SIZES USING CLUSTERING

Clustering of numerical data forms the basis of many classifi-
cation and modeling algorithms. The purpose of clustering is to
distill natural groupings of data from a large data set, producing
a concise representation of a system’s behavior.

In this section, we use supervised clustering when the I/P/B
frame categories are known, and unsupervised clustering when
the 1/P/B frame categories are unknown. Both approaches ig-
nore the time-index for each frame, and represent the histograms
of I/P/B frame sizes using three fuzzy sets, one each for I, P, and
B frames. Because the I/P/B frames are mixed together in video
traffic, we use clustering to group them into |, P, or B clusters.
We then compute the mean and std of each cluster. These statis-
tics are then used to determine the footprints of uncertainty for

fuzzy set can be represented by its upper and lower membér/B clusters.

ship functions (MFs) [17]. An upper MF and a lower MF are , . ) ) )

two type-1 MFs, which are bounds for the FOU of an intervd): Modeling I/P/B Frame Sizes Using Supervised Clustering
type-2 MF. The upper MF is associated with the upper boundTo the best of our knowledge, all current approaches (e.g.,
of the FOU and, the lower MF is a subset which is associatE2b], [10], [14]) for modeling I/P/B frame sizes belong to su-
with the lower bound of the FOU. Determining the footprinpervised clustering, i.e., they assume the I/P/B frame categories
of uncertainty is crucial for the use of type-2 fuzzy sets, and &e known ahead of time; consequently, we shall first use a su-
application dependent. We establish the FOU for MPEG codpdrvised clustering algorithm, assuming there are three clusters,

videos in Section IV.

S0 as to analyze the statistical nature of these clusters.
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TABLE |
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THE ENTIRE lambs
VIDEO TRAFFIC, AND THEIR NORMALIZED STD

Video Data I Frame P Frame B Frame
mean std mean std mean std

Segment 1 4.6478 | 0.1143 | 3.7710 | 0.3643 | 3.5080 | 0.2669
Segment 2 4.5563 | 0.1032 | 3.8098 | 0.3547 | 3.4643 | 0.3058
Segment 3 4.4990 | 0.0388 | 3.3314 | 0.3065 | 3.1011 | 0.2144
Segment 4 4.5087 | 0.0657 | 3.4899 | 0.3043 | 3.2489 | 0.2231
Segment 5 4.6538 | 0.1664 | 3.9747 | 0.3943 | 3.6660 | 0.3490
Segment 6 4.5407 | 0.1496 | 3.8511 | 0.3488 | 3.5359 | 0.3011
Segment 7 4.4739 | 0.1334 | 3.5128 | 0.3754 | 3.2645 | 0.3209
Segment 8 4.5907 | 0.1087 | 3.7445 | 0.2345 | 3.4798 | 0.1694
Entire Traffic 4.5589 | 0.1326 | 3.6857 | 0.3950 | 3.4085 | 0.3251
Normalized std || 0.0147 | 0.3173 | 0.0590 { 0.1300 | 0.0545 | 0.1892

Fig. 2. The type-2 MFs for Example 1. The thick solid lines denote upp . . . .
MFs, and the thick dashed lines denote lower MFs. The shaded regions areWB'Ch means GoP size 12. Each MPEG video stream consisted

footprints of uncertainty for interval secondaries. The center of the Gaussiah40 000 video frames, which at 25 frames/s represented about
MFs is 5, and the variance varies from 1.0 to 2.0. 30 min of real-time full motion video. Fig. 1 shows portions of
the I/P/B frame size sequences of 8tarvideo.

We will show that the statistical knowledge (mean and std) Krunz et al. [14] found that the lognormal distribution is the
about the size (bits/fame) of I, P, or B clusters is distinct fd¥est match for all I/P/B frames, i.e., if the |, P, or B frame size
different groups of frames, even in the same video produét timej is s;, then
hence, this will motivate us to use type-2 fuzzy sets to model
the number of bits/frame in I/P/B traffic, and is consistent with logyo 55 ~ N (s m, o?). (5)

our belief that the frame sizes of video traffic are not reall

wide-sense stationary (WSS), and that their distribution varié\ée' therefore, tried to model the logarithm of the frame size, to
with respect to the frame index. see if a Gaussian MF can match its nature. We chose lambs, atp,
Thanks to O. Rose [27] of the University of Wurzburg, whdéalk2, and mtv2 as exam_ples. For each video traffic, we decom-
made 20 MPEG-1 video traces available on-line (FTP: //fyR0sed the I/P/B frames into eight segments, and computed the
info3.informatik.uni-wuerzburg.de/pub/MPEG/), we were abl@€anm; and std; of the logarithm of the frame size of thih
to perform our experiments. Many works by others have be&Rgment; = 1, 2, ..., 8. We also computed the meanand
done based on these resources, e.g., Rose [27] analyzed #idi of the entire video traffic in a video product. To see which
statistical properties and observed that the frame and GoP si¥a4é—m; or o;—varies more, we normalized the mean and std
can be approximated by Gamma or Lognormal distribution@f €2ch segment using; /m, ando; /o, and we then computed
Manzoniet al. [19] studied the workload models of VBR videothe std of their normalized values, andos:q. As we see from
traffic based on these video traces, and Adas [1] used adapif¥e 1ast row of Tables -1y, < o,1q. We conclude, there-
linear prediction to forecast the VBR video for dynamic band®re. thatif the I/P/B frames of each segment (short range) of the
width allocation. video traffic are lognormally distributed, then the logarithm of
We used 17 of Rose’s video traces, and subdivided them it | P» or B frame sizes in an entire video traffic (long range) is

four categories, movies, sports, news/talk show, and MTV, 48°re appropriately modeled as a Gaussian with uncertain stan-
cording to the subject of the video, i.e. dard deviation. This justifies the use of the Gaussian MFs, given

« Movies: 1) “James Bond: Goldfingerbond, 2) “Jurassic Eﬁ:rgplic}ééﬁ m?ﬁg ;Zit\i/(;ieﬁat;agggn based on the assump-
Park” (dino), 3) “The Silence of the Lambslgmbg, 4) bp P

“Star Wars® &tar), 5) “Terminator II” tern), and 6) a tion that the I/P/B catggory qfaframe is knoyvn,_whmh is aform
. . : of supervised clustering. This kind of modeling is very useful in
1994 movie previewrfiovie. . . . .
. e . network workload analysis (for dynamic bandwidth allocation),
* Sports: 7) ATP tennis final &tp), 8) Formula 1 race: GP and network control (such as connection admission control)
Hockenheim 1994réce), 9) Super Bowl final 1995: San :

Diego—San Franciscsion), o 1984 soccer e 071 525 e Kame o s ko i cae
Cup matches [103ocland 11)soc3. P 9 '

* News/Talk Show:Two German talk shows [12alk1and , i i , )
13)talk2] and two German TV news [14)ewsland 15) B. Modeling I/P/B Frame Sizes Using Unsupervised Clustering
news2. In some cases, we do not know the video traffic frame cat-

* MTV: two MTV video clips [16)mtvland 17)mtv3. egory (I, P, or B). To blindly model the statistical knowledge

The videos were compressed by Rose using an MPEGLI/P/B frames, we use fuzzy c-means (FCM) [2] clustering,
encoder using a pattern with GoP size IRBPBBPBBPBB which is an unsupervised clustering method.
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TABLE I
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THEENTIRE atp VIDEO
TRAFFIC, AND THEIR NORMALIZED STD

Video Data I Frame P Frame B Frame
mean std mean std mean std
Segment 1 4.8895 | 0.1233 | 4.4542 | 0.2112 | 4.1526 | 0.1826
Segment 2 4.8632 | 0.1444 | 4.3765 | 0.2773 | 4.0865 | 0.2614
Segment 3 4.8455 | 0.1308 | 4.3185 | 0.2289 | 4.0450 | 0.1984
Segment 4 4.8546 1 0.1195 | 4.3619 | 0.1834 | 4.0768 | 0.1714
Segment 5 4.8363 | 0.1409 | 4.3169 | 0.2618 | 4.0384 | 0.2402
Segment 6 4.8779 | 0.1006 | 4.3647 | 0.1785 | 4.0862 | 0.1354
Segment 7 4.8362 | 0.1437 | 4.2942 | 0.2791 | 4.0207 | 0.2416
Segment 8 4.8839 | 0.1078 | 4.4349 | 0.2206 | 4.1294 | 0.1850
Entire Traffic 4.8610 | 0.1288 | 4.3652 | 0.2389 | 4.0795 | 0.2101
Normalized std {| 0.0044 | 0.1287 | 0.0130 | 0.1654 | 0.0111 | 0.2020
TABLE 11l

MEAN AND STD VALUES FOREIGHT SEGMENTS AND THE ENTIRE talk2 VIDEO
TRAFFIC, AND THEIR NORMALIZED STD

Video data [ Frame P Frame B Frame
mean std mean std mean std
Segment 1 4.8883 | 0.0394 | 4.2928 | 0.1114 | 4.0883 | 0.0758
Segment 2 4.8605 | 0.0738 | 4.2450 | 0.1133 | 4.0414 | 0.0841
Segment 3 4.8176 | 0.0749 | 4.1383 | 0.1901 | 3.9662 | 0.1244
Segment 4 4.8848 | 0.0825 | 4.2360 | 0.1880 | 4.0335 | 0.1349
Segment 5 4.8533 | 0.0507 | 4.1961 | 0.1375 | 3.9970 | 0.0964
Segment 6 4.8539 | 0.0605 | 4.1845 | 0.1435 | 3.9907 | 0.0971
Segment 7 4.8438 | 0.0789 | 4.1600 | 0.1425 | 3.9646 | 0.1000
Segment 8 4.8897 | 0.0901 | 4.2792 | 0.2452 | 4.0817 | 0.1898
Entire Traffic 4.8614 | 0.0745 | 4.2165 | 0.1726 | 4.0204 | 0.1263
Normalized std || 0.0052 | 0.2307 | 0.0132 | 0.2643 | 0.0121 | 0.2904
TABLE IV

MEAN AND STD VALUES FOREIGHT SEGMENTS AND THE ENTIRE mtv2VIDEO
TRAFFIC, AND THEIR NORMALIZED STD

Video data I Frame P Frame B Frame
mean std mean std mean std

Segment 1 4.7623 | 0.1125 | 4.3718 | 0.2230 | 4.0820 | 0.2097
Segment 2 4.7517 | 0.1294 | 4.2415 | 0.3197 | 3.9157 | 0.3187
Segment 3 4.8428 | 0.1218 | 4.3807 | 0.2462 | 4.0547 | 0.2315
Segment 4 4.6683 | 0.1281 | 4.2511 | 0.2666 | 3.9438 | 0.2532
Segment 5 4.7828 | 0.1497 | 4.3012 | 0.3448 | 4.0038 | 0.3442
Segment 6 4.7201 | 0.1304 | 4.1269 | 0.3098 | 3.8307 | 0.2528
Segment 7 4.8909 | 0.1960 | 4.5381 | 0.3724 | 4.2473 | 0.3813
Segment 8 4.6516 | 0.0809 | 3.9668 | 0.2186 | 3.7039 | 0.1839
Entire Traffic 4.7590 | 0.1545 | 4.2723 | 0.3342 | 3.9727 | 0.3194
Normalized std || 0.0171 | 0.2122 | 0.0404 | 0.1718 | 0.0416 | 0.2161
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(v;) and std of the three clusters. We compute the std oftthe
cluster using

n
of =Y uindi,

Z Uik Vi (6)

k=1 k=1
where

n number of total frames;

u;x ~ membership degree of frankebelonging to cluster;

d;r  Euclidean distance between frafmand the center of

clusters.

We assume that the clusters with the largest, next to largest and
smallest mean value are |, P, and B frames, respectively. This
follows from the statistical analyzes in Tables I-IV. In Fig. 3, we
plot the performance of FCM clustering as compared with su-
pervised clustering. Observe that the mean and std of the frame
sizes obtained via the FCM approaches those obtained via su-
pervised clustering; hence, when the frame categories of video
traffic are unkown, FCM clustering can be used to extract the
mean and std of I/P/B frames.

V. FIVE Fuzzy CLASSIFIERS FORVIDEO TRAFFIC
CLASSIFICATION

In this section, we use type-1 (singleton and nonsingleton),
and interval type-2 (singleton and nonsingleton) FLSs for video
traffic classification. We do not attempt to develop a universal
classifier that can recognize and classify any video product.
Such a general-purpose (domain-independent) classifier has
been shown to be too complex for present technology [6]. We
assume that the domain of interestqviesor sportg is known
a priori, and that the video classifier is confined to work only
on movieor sportstraffic.

We chose 10 video products from the 17 video products;
five of them aremovies(video product 2—-6) and five asports
(video product 7-11). We wish to classify video traffic from the
10 video products as eithermaovieor sports which is essen-
tially a binary decision problem.

A. Singleton and Nonsingleton Type-1 FLSs

A FLS is described by fuzzy—THEN rules, which represent
input—output relations of a system. For classification, in a type-1
FLS with a rule base a#/ rules, each having antecedents, the
Ith rule B! is expressed as

R': 1 isF andzisFyand... andz, is F,
THEN yl =

inwhichl = 1, 2, ..., M, the consequent are crisp values

(e.g.,4+1 or —1 in this paper), and, F(k = 1, 2, ..., p) are

type-1 fuzzy sets. For a singleton FLS, the rule firing degree is

I = T e () @)

FCM clustering is a data clustering technique where each d#BereZ_denotes a-norm (minimum or product); for a nonsin-
point belongs to a cluster to a degree specified by a members@iigton FLS [23], the rule firing degree is

grade. This technique was originally introduced by Bezdek [2]

as an improvement on earlier clustering methods.

I = T (@) = e () ®

The FCM method clusters the video traffic into three clusterghere z;, is fuzzified to a type-1 fuzzy set (e.g., a Gaussian
which we represent as three fuzzy sets by estimating the meamtered at the measured valuerpfand with stds).
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Fig. 3. Supervised and FCM clustering for the first 6000 frames of 17 video products. (a), (c), (e) are the mean of |, P, and B fralng, gibéggme),
respectively, and (b), (d), (f) are the std of |, P, and B frame silzeg { b/frame), respectively.

In this paper, we use an unnormalized output [28] for the FLS, In Section VII, we use singleton and nonsingleton type-1

namely FLSs for video traffic classification.
M
y= Z Flf ) B. Singleton and Nonsingleton Interval Type-2 FLSs
=1 In a type-2 FLS with a rule base @f rules, in which each

because we make a decision based on the sign of the output, i@ hasp antecedents, thigh rule B!, is expressed as

normalization operation will not change the sign. If the domain . o o o
of interest had three or more choices, we would use a normalized £ ¥ #1iSF,, andz; isF,, and, ..., andz, isF,
output for decision making. tHEN ! =
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The firing degreel of rule R is Corollary 1: In an interval type-2 FLS witmonsingleton
type-1 fuzzificationand meet under minimum or product
F' = Ugex { [“Xl (x1) M fe (azl)} t-norm,f andf!, in (11) and (12), simplify to

M---n [NXP (zp) M P (371))} } (10)

- . l(x/)—sup/ / qu(xl)*qu(xl)}
whereX = X; x X, x -+ x X,, is the measurement domain x Jzi Xy ZpCXp -1
of x = [z1, z2, ..., ,]. General type-2 FLSs are computa- [ 5 }/
tionally |[nten3|ve becapu]se it is not easy to evaluaten (10). w [ () g ()] / % (17)
Things simplify a lot when secondary membership functions ared
interval sets, in which case secondary memberships are either Ofl(x’) = Sup/ .
or 1, and, as we demonstrate later, such simplifications make the x JzeXy
use of a type-2 FLS practical. ek [NXP (2p) * T (xp)} /x (18)

1) Operations Between Input and AntecedeWe can have »

three type-2 FLSs, each based on a different fuzzification of the . o
input, i.e., input fuzzified to a type-2 set, input fuzzified to &'Nerexx, (k =1,..., p) is the type-1 fuzzified input.
type-1 set, and input fuzzified to a type-0 set (i.e., singleton When asmgleton fuzzifier is used, the upper and lower MFs
fuzzification). Results that are needed about these three kiffi4x, () Merge into one crisp value, namely 1, in which case

of type-2 FLSs are summarized next, because in Section VIl w8€orem 1 simplifies further to: . ,
use them all for video traffic classification. Corollary 2: In an interval type-2 FLS W|t|$|ngleton fuzzi-

£l
Theorem 1 [17]: In an interval type-2 nonsingleton FLSflcatlonand meet under minimum or produehorm, f andf*,

with type-2 fuzzification and meet under minimum or produdf1 (11) and (12), simplify to
t-norm, the result of the input and antecedent operatibhs’)

in (10), is an interval type-1 set, i.€! (x') = [f'(x)), fl(x’)], f! = e (1) %o e () (19)
where and
rl — 7= ... 71~
Ffix) = sup/ / |:N)~(1(371)*N~l(371):| f —NFll(ail)* *NF})(aip) (20)
- x 1 CX1 z, CXp _ -
I [uj( (2p) * fij (wp)}/x (11) Wherez; (i =1, ..., p) denotes the location of the singleton.
q — - Example 1: Input and Antecedents are Gaussian Primary
an . MFs with Uncertain Standard Deviationdn this example,
Fi(x) = Sup/ |:ﬁ)"(1 (z1) * i (xl)} we computef!, and f{ when both the input fuzzy sets and
* JmEXy TpCXp antecedent MFs are Gaussian primary MFs with uncertain
doo ek [ﬁ)} (zp) *ﬁq(xp)}/x; (12) standard deviations. In this case
the supremum is attained when each term in brackets attains its 1 {26 — me 2
supremum. px, (Tr) = exp —3 <4XA> 7
The proof of this Theorem is given in [17]. Xy
Becauseus, (zx)  pp (wx) andyig, (wx) * fip () only o € [0z 0% ] (21)
k k1 k2

depend orxy, the supremum in (11) and 12)is attained when
each term in brackets attains its supremum; hence, in the infer-

ence of a type-2 FLS, we will examine nd its upper and lower MFs gfig, (z1) andux, (x4 ), respec-

tively. Thekth antecedent MF has the foIIowmg form:

Tetry 2w [ [ (o) iy 0]/ @9

o (22) [ 1 <.’17k —mp: ) 2]
it (Zp) = exp|—=z | ———— ,
Silas) = sup / ] [ﬁm(xk) * PRt (-Tk):| / zr  (14) & 2 Op;

T €Xg
. opi € |:0]57- ; O :| (22)
wherek = 1, ..., p, andx is at-norm; then,f* andi’ can be . i k2

reexpressed, as
P and, its upper and lower MFs o3 (zr) andqu (z1), respec-

F=TL 7 (15) tively.
fl=1r_ ! (16) Our type-2 input and antecedent membership functions are
12k depicted in Fig. 4. Observe, from (13), that requires the
where7 denotes-norm. calculation of the supremum of a product or minimum of the
When the input is fuzzified to a type-1 fuzzy set, so thdwo Gaussiangix, (xx) andig. (zx). Such a calculation has
ng, — bx, (k=1, ..., p), the upper and lower MFs gfy been carried out by Mouzouris and Mendel in [23] for the

merge into one I\/IF,,LXA (zx), in which case Theorem 1 s|mp|| type-1 nonsingleton case; they derive the valuepat which
fies to: SUp,, ex, Jx, [P (wx) *ppt (21)]/ 2 is achieved. Denoting
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Fi(@h) = 1%, (Zh, mae) it (24, mase)

i ol 2
1 £k,ma.x Ly,
= €exp _5 _—
TR

l 2
1 Ly max — T
exp |- <¥> (28)

ey
P

N\ 2
= exp —1 7(771?;; _ xk)
2 a% +0%7-

k1 k1

(29)

The results in this example are needed later in our type-2 FCs.
2) Output Processing:The final output of the type-2 FLS is
obtained by applying the Extension Principle [32] to (9), i.e.,

Y (x')

Fig. 4. The type-2 MFs for Example 2. The MF with the larger variance is the g g
antecedent MF, and the other is the input MF. The thick solid lines denote upper = / B /
S f

M
TM e (f) /D Fiy'
=1

MFs, and the thick dashed lines denote lower MFs. The shaded regions are the M[fM, fM]
footprints of uncertainty. - (30)
this value ofzy, aSa:LmaX, they have shown that, for productBecauser” (i = 1, 2, ..., M) are interval type-1 sets, i.e.,
t-norm pr:(f1) = 1, (30) simplifies to
l a%kszk +a§ix§€ (23) / . . ﬁl: o
xk, max — 2 2 ’ Y(X ) = / .. / 1 ]MyZ
ox, T Trt srclst, £l FMCFM, ] i=1
Denoting the value af;, at which the supremum of (13) oc- =lvi; vr]- (31)
7 i i . . P .
CUr'S asty, .., it follows from (23) and Fig. 4, that for product Becausefi € Fi = [f, F]] andy' is a crisp value, we obtain
t-norm =
[18]
2 . 2 /
PO Vi Sy el (24) =
k, max — 2 . . _ s
0% +op e w=> fy (32)

=1
Similarly, ﬁ requires the calculation of the supremum of M l
a product or minimum of the two Gaussiapg, (z;) and w=> [y (33)
pi (x1). Denoting the value of;, at which this supremum =1
— 1

OCCUI'S %), .., it again follows from (23) and Fig. 4, that for The defuzzified output of the type-2 FLSgs= (y; + u.)/2,

productt-norm ie.
2 2 /
0 Mpi +0%, T M
1 X L Fi vk _
&k,max - 0_2~ + O_g.kl . (25) Yy = Z yl (il + fl)/ 2. (34)
X1 Fa =1

From these results, itis Straightforward to Compﬁi%ndii In order to Comput@ in (34)' we just need to Compu]ﬁ and

using (13) and (14), i.e., F! based on Theorem 1, Corollary 1 or Corollary 2. O
FloaN . (=l - We have presented five FLSs, two are type-1 and three are
Ny ) = U Xy, T X, . .
Tilok) =Tix, () ! (7, ) type-2. In Section VII, we use these five FLSs as fuzzy clas-
1 (7 ! 2 sifiers for video traffic classification. Our fuzzy classifiers are
=exp|—= k,max k model-free. To compare them against a model-based classifier,
2 b we develop a Bayesian classifier in Section VI.
1 Ei — Mg 2
cexp|—= ,max & (26) VI. BAYESIAN CLASSIFIER FORVIDEO TRAFFIC
2 Ofi_ CLASSIFICATION
2 Bayesian decision theory [8] provides the optimal solution
1 (mfi — xﬁc) to the general decision-making problem. We assume that each
=exp|—5 (27)  video producty; is equiprobable, i.ep(v;) = 1/10, where

2 o2 402 . )
K2 F t€{2,..., 11} (e.g., = 2 corresponds to theovieJurassic
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Park). LetH;: movig andH»: sports sop(H1) = p(H>) = 0.5.  A. Design of Six Video Classifiers
If each component of the frame size, = [s, s, s?]7 is a 1) Design of Type-1 Fuzzy Classifier§or a type-1 fuzzy
lognormal function [14] of the |, P, and B frames of thle video  classifier, theth rule, R, is ( = 1, ..., 10):
product,i = 2, ..., 11, andx; 2 log s;, then
R': 1rlframeis E and P frame is £and B frame is £
o — 1 THEN this product is movié+1) [or sport§—1)].
p(xl|vl) - 3/2
(2m)™ 7| |12 .
1 The antecedents|Hk = 1, 2, 3) are described by a type-1
rexp| =5 (x; — m;)TS7 (%, — my) (35) Gaussian MF whose meam, and std,c}, are determined
by supervised clustering. More specificalty; ando! are the
A ) i ) mean and std of all | frames in the first 24 000 frames of video
wherem; = [m], m[”, mP]" and%; = diag{o] , o/, 07"}  productl; m}, ando?, are the mean and std of all P frames in the
are the mean vecto ( 1) and covariance matrid(x 3) of x;.  first 24 000 frames of video produttand,m$ ando are the
In this case mean and std of all B frames in the first 24 000 frames of video
product!. The consequent = ¢ in Section V-A corresponds
toy! = 1 ory! = —1 in the fuzzy classifier.
plxfvi)p(vi) (38) " For a type-1 singleton FC (type-1 SFC), its input® is
obtained from FCM clustering. For a type-1 nonsingleton FC
_ ‘ ‘ (type-1 NSFC), its three inputs are each type-1 Gaussians with
px|Ha) = ; pxfvi)p(vi). 37 meanm}, mb, mi] and stde?, 0%, %], which are obtained
from FCM clustering (6).

Based on Bayes decision theory, siptél;) = p(Hs) = 0.5, 2) Design of Type-2 Fuzzy Classifierfor type-2 fuzzy
we obtain the decision rule: classifiers, théth rule, R, is (=1,...,10):

p(x|Hy) =

-

||
[N

T

=
[N

N
Il
3

R': 1r|frameisF and P frame i§, and B frame i
THEN this product is movi€+1) [or sports(—1)].

The video traffic ismovie if

p(x|H1) > p(x|H>) (38)
The video traffic issports if The antecedenféc (k =1, 2, 3) are described by a type-2 MF,
p(x|H1) < p(x|H>) (39) I-e., a Gaussian MF with uncertain std, whose megnand

stdol, € [0}, ol,] are determined by supervised clustering.

The video traffic ismovie or sports if More specifically,m! (k = 1, 2, 3) are determined using the

p(x|Hy) =p(x|Ha). (40) ' same method as described in Section VII-A.1, ahdando?,
are determined as follows. We divided the 24 000 frames of the
This Bayesian classifier will be used in Section VII. Ith product into five equal-length (4800 frames) segments, and
computed the stdi’ of all | frames in thejth segment{ =
VII. SIMULATIONS 1,...,9). Let
We extract the general features and behavior of MPEG video ol = . _nlain 3 o-ij (42)
traffic for different video products, and determine one discrim- . IThn? .
inant rule for each kind of traffic in the domain of interest. In T2 = max oy (42)

choosing the antecedents of the fuzzy classifier, we make full
use of the statistical knowledge (mean and std) obtained fram [0}, o!,] is the range of uncertain std of | frames of the
the video traffic. Ith video product. We obtained the ranges of uncertain standard
For the ten video products we chose, we used their first 24 088viations of P framesd;, o4,]) and B frames[¢},, o4,]) in
frames for supervised clustering to establish a discriminant resimilar manner.
for that video product. All in all, we obtained 10 rules, one per For a type-2 singleton FC (type-2 SFC), its input,
product. m' = [m!, m’, mY], is also obtained from FCM. For a
To evaluate the performance of the five FC, we used tlgpe-2 nonsingleton FC with type-1 input (type-2 NSFC-1),
next 10000 (24001-34000 frames, 560 20) frames for its input is three type-1 Gaussians with mdati,, m?’, m’]
(in-product) testing, i.e., for classifying a video asrevie and std[o%, 0%, o%], which are obtained from FCM. For the
or sport We tested every 500 frames, with 20 independetytpe-2 nonsingleton FC with type-2 input (type-2 NSFC-2),
evaluations for each video product. During testing, we uséd inputs are three type-2 MFs (Gaussian MFs with mean
FCM clustering to obtain the meant = [m}, m%, m';] and [m}, mt,, m';] and uncertain stdo?, o%,, o%]). To set the
stdo® = [0}, 0%, o%;] of I/P/B frames for each 500 frames. uncertain std* we divided each testing segment (500 frames)
We also describe two other experiments performed to test fhéo four subsegments (125 frames), and used FCM clustering
robustness of the classifiers when the testing video producfés each subsegment; then, the minimum and maximum values
notincluded in the training video products (i.e., out-of-produatf the four standard deviations were used to set the range of
testing). uncertaino’, ol o]
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TABLE V
FALSE ALARM RATE (FAR) OF Six CLASSIFIERS

Classifiers FAR in Experiment I | FAR in Experiment II | FAR in Experiment III
Bayesian Classifier 11.5% 14.29% 14.29%
type-1 SFC 10.5% 15.07% 9.41%
type-1 NSFC 8.5% 14.35% 9.17%
type-2 SFC 11.5% 14.24% 13.65%
type-2 NSFC-1 7% 14.11% 8.43%
type-2 NSFC-2 8.5% 14.35% 8.03%
TABLE VI
PARAMETERS OF THEFIVE FCs THAT WERE TUNED AND THE STEP SIZE USED IN THEIR STEEPESTDESCENTTUNING ALGORITHM. THE CONSEQUENTCZ IS
INITIALLY SET 4+1 FORMOVIE AND —1 FORSPORTS A = 1,2, 3ANDI! =1,2,...,8
Classifiers Antecedents | Consequents | Step Size a | Number of parameters tuned
type-1 SFC mfﬁ, U,’c c 104 56
type-1 NSFC m, o d 104 56
type-2 SFC m, [oh;, ot d 5x 1077 80
type-2 NSFC-1 || mi, [o},,0l,)] ¢ 2% 1073 80
type-2 NSFC-2 mi, [a}cl, Ullcz] d 10-3 80

3) Design of Bayesian ClassifierObserve from (35), that 1) Robustness Testing without Parameter Adjustmevits:
the Bayesian classifier needs; = [m!, m”, mP]T andX; = used the first 24 000 frames of each of the eight training video
diag{c!", o, B }. In our design! ands! are the mean products to establish a discriminant rule for that video product
and std of all | frames in the first 24 000 frames of video producising the methods described in Sections VII-A.1 and 2. All in
i; m ando!” are the mean and std of all P frames in the firstll, we obtained eight rules, one per product. We evaluated the
24000 frames of video produitand,m? ands? are the mean performance of the six classifiers using the first 37 58@(x
and std of all B frames in the first 24 000 frames of video produ@b) frames of the two (out-of-product) testing videos, i.e., for
4; and, its inputx 2 mt, wherem? is obtained from FCM. classifying a video as aovieor sport We tested every 500
frames, with 75 independent evaluations for each video product,
so we totally evaluated the six classifi@s x 2 x 75 = 3750
times. The average FARs of these 6 classifiers for 3750 deci-
We computed the average (in-product) false-alarm rate (FARPns (Experiment Il) are summarized in Table V. From Table V,
for each fuzzy classifier, as well as for the Bayesian classifisie see that the performance of all classifiers are about the same,
in 20 x 10 = 200 independent classifications (10 video traffiovhich calls into question the use of a FC over the Bayesian clas-
products each with 20 500-frame segments). sifier. So far, though, we have not optimized the parameters of
The average FARs of these six classifiers in this experimethe FCs. We do this next, and then reexamine robustness.
(Experiment | are summarized in Table V. From this table, we 2) Robustness Testing with Parameter Adjustmeiitse
observe that a type-2 NSFC-1 performs the best. The reasdes have many parameters that must be specified, as sum-
why a type-2 NSFC-2 did not perform the best is because, fmarized in Table VI. Here we tune the parameters using the
a short range of frames (500 frames), a type-1 input Gausstsining data and a steepest descent algorithm. Parameter
MF is enough to capture its uncertainty. The type-2 NSFCaldjustments using steepest-descent algorithm for type-1 FLSs
outperformed the Bayesian classifier 1.5 — 7)/(11.5) = have been extensively used (e.g., [30]). A steepest-descent
39.13%, because apparently a stationary lognormal distributigtgorithm for tuning a type-2 FLS was proposed in [17].
is not so accurate for modeling the frame sizes of MPEG videolnitially, we used the first 24 000 frames of each of the eight
traffic. training video products to establish a discriminant rule for that
video product using the methods described in Sections VII-A.1
and 2. All in all, we obtained eight rules, one per product. We
divided the 24 000 frames of each video product into 40 groups,
To examine the robustness of the six classifiers, we desigr&@D frames per group. We extracted the mesand std> for the
them using eight video traffic, four from video products 2—&P/B frames in each group using supervised clustering. For all
(movie$, and four from video products 7-15kforty, and SFCs, we use¢h as the input, and the video product category
tested their performance using the two unused video produdtaovie +1; andsports —1) as the desired output. For type-1
one from video products 2—6, and one from video produd#SFC and type-2 NSFC-1, we used Gaussian MFs with mean
7-11. So we totally have 25 independent combinations—eigit and stds as the input, and the video product category as
video products for training plus two video products fothe desired output. For type-2 NSFC, we used Gaussian MFs
(out-of-product) testing. with meanm and uncertain std (obtained by computindor

B. Performance

C. Robustness
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each sub-group) as the input, and the video product categorys]
as the desired output. So for each FC, we obtaited 8 =

320 training prototypes. We used a steepest descent algorithn[16]
to tune the five fuzzy classifiers. The parameters that were tuned
and the step size of the 5 FCs are summarized in Table VI. We [7]
tried our best to choose the step size so that every FC achievefg]
its best performance.

After tuning, we fixed the parameters in each fuzzy classi- [°]
fier, and performed the same out-of-product testing as described
in Section VII-C-2. The average FAR of these five fuzzy clas-[10]
sifiers for 3750 decisions (Experiment Ill) are summarized in
Table V. From Table V, we see that ttype-2 NSFC-performs 19
the best. It outperforms the Bayesian classifier (in Experiment
I) by (14.29 — 8.03)/(14.29) = 43.81%, which shows that our

[12]
tuned FCs are robust.

[13]

VIII. CONCLUSION AND FUTURE WORK [14]

We have proposed two ways for modeling I/P/B frame sizes
of video traffic, using either type-1 or type-2 fuzzy sets. Wel15]
observed that for long-range video traffic, a Gaussian MF with
uncertain std is appropriate for modeling the frame sizes. Wgg)
also used FCM to cluster and model the frame sizes when the
frame category is unknown. [17]

We have classified video traffic using compressed data angds)
have proposed type-2 FLCs to do this. Five fuzzy classifiers
have been used for video traffic classification, and have showHQ]
that:

1) When the testing video product is included in the training[ZO]
products (but the testing frames are not included in the
training frames), and design of the classifiers is basedr1l
only on the statistical knowledge of training video traffic
(i.e., none of the classifier's parameters are tuned), the
type-2 NSFC-1 performs the best. [22]

2) When the testing video product is not included in the,,
training products, and the classifier's parameters are
tuned using steepest descent algorithm, the type-2
NSFC-2 performs the best. [24

We have classified a video product amavieor sport which
is essentially a binary detection problem. How to classify d?!
video productin a larger domain (such as four possible choice$)g
and keep a low FAR is our future research.

(27]
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