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MPEG VBR Video Traffic Modeling and Classification Using Fuzzy Technique
Qilian Liang and Jerry M. Mendel

Abstract—In this paper, we present a new approach for MPEG
variable bit rate (VBR) video modeling and classification using
fuzzy techniques. We demonstrate that a type-2 fuzzy member-
ship function, i.e., a Gaussian MF with uncertain variance, is most
appropriate to model the log-value of I/P/B frame sizes in MPEG
VBR video. The fuzzy c-means (FCM) method is used to obtain
the mean and standard deviation (std) of I/P/B frame sizes when
the frame category is unknown. We propose to use type-2 fuzzy
logic classifiers (FLCs) to classify video traffic using compressed
data. Five fuzzy classifiers and a Bayesian classifier are designed
for video traffic classification, and the fuzzy classifiers are com-
pared against the Bayesian classifier. Simulation results show that
a type-2 fuzzy classifier in which the input is modeled as a type-2
fuzzy set and antecedent membership functions are modeled as
type-2 fuzzy sets performs the best of the five classifiers when the
testing video product is not included in the training products and
a steepest descent algorithm is used to tune its parameters.

Index Terms—Bayesian classifier, fuzzy classifier, fuzzy c-means
(FCM), MPEG VBR video, traffic modeling, type-2 fuzzy logic sys-
tems.

I. INTRODUCTION

M ULTIMEDIA technologies will profoundly change the
way we access information, conduct business, commu-

nicate, educate, learn, and entertain. Among the various kinds
of multimedia services, video service is becoming an important
component. Video service refers to the transmission of moving
images together with sound [24]. Research on video transfers
for multimedia services has been quite active in recent years,
and video applications are expected to be the major source of
traffic in future broad-band networks [29]. Video applications
such as video on demand, automatic surveillance systems, video
databases, industrial monitoring, video teleconferencing, etc.,
involve storage and processing of video data. Many of these ap-
plications can benefit from retrieval of the video data based on
their content, but generally, any content retrieval model must
have the capacity of dealing with massive amounts of data [6].
For example, how does one search for the clip “Christopher
speaking at USC commencement” from a video archive con-
sisting of an enormous number of tapes?

Digital video is often compressed by exploiting the inherent
redundancies that are common in motion pictures. So, to classify
the compressed (such as MPEG) video traffic directly without
decompressing it will be an essential step for ensuring the ef-
fectiveness of these systems.

Most works on video sequence classification belong to the
content-based approach, which uses the spatial knowledge ob-
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tained after decompressing the video sequence (e.g., [6], [31]).
Research on real-time video traffic classification is scarce, be-
cause:

1) video traffic is compressed code and very little infor-
mation is available for classification (the only informa-
tion that can be used is temporal knowledge of the video
traffic); and

2) video traffic is highly bursty and exhibits uncertain be-
havior.

Patel and Sethi [25] proposed a decision tree classifier for
video shot detection and characterization by examining the
compressed video directly. For shot detection, their method
consists of comparing intensity, row, and column histograms
of successive I frames of MPEG video using the-square test.
For characterization of segmented shots, they classified shot
motion into different categories using a set of features derived
from motion vectors of P and B frames of MPEG video.

Relatively more research exists for video traffic characteristic
modeling and predicting than for classification. Dawood and
Ghanbari [4], [5] used linguistic labels to model MPEG video
traffic, and classified them into nine classes based on texture and
motion complexity. They used crisp values obtained from the
mean values of training prototype video sequences to define low,
medium, and high texture and motion. Chang and Hu [3] inves-
tigated the applications of pipelined recurrent neural networks
to MPEG video traffic prediction and modeling. Intracoded (I),
predicted (P), and bidirectional (B) (I/P/B) pictures were char-
acterized by a general nonlinear ARMA process. Panchaet al.
[26] observed that a distribution fits the statistical distribution
of the packetized bits/frame of video traffic with low bit rates.
Heymanet al. [10] showed that the number of bits/frame dis-
tribution of I-frames has a lognormal distribution and its auto-
correlation follows a geometrical function, and they concluded
that there is no specific distribution that can fit P and B frames.
Krunz et al. [14], however, found that the lognormal distribu-
tion is the best match for all three types. All these methods be-
long to the statistical signal processing-based approaches, which
match the mean and variance to a known statistical distribution.
Recently, Krunz and Makowski [15] observed that
input models are good candidates for modeling many types of
correlated traffic (such as video traffic) in computer networks.
These works are useful to us for understanding the characteris-
tics about different video traffic so that the characteristics can
be used for classification.

As noted in [22], a shortcoming to model-based statistical
signal processing is “ the assumed probability model, for
which model-based statistical signal processing results will be
good if the data agrees with the model, but may not be so good if
the data does not.” In real variable bit rate (VBR) video traffic,
the traffic is highly bursty, and we believe that no statistical
model can really demonstrate the uncertain nature of the I/P/B
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frames. Fuzzy logic systems (FLS) are model free. Their mem-
bership functions are not based on statistical distributions. In
this paper, we, therefore, apply fuzzy techniques to MPEG VBR
video traffic modeling and classification.

A survey of recent advances in fuzzy logic (FL) applied
to telecommunications networks is discussed in [9]; it shows
that FL is very promising for every aspect of communication
networks. Recently, Tsang, Bensaou, and Lam [29] proposed
a fuzzy-based real-time MPEG video rate control scheme
to avoid a long delay or excessive loss at the user-network
interface (UNI) in an ATM network. The success of fuzzy
logic applied to communication networks motivates us to
apply FL to video traffic modeling and classification. Recently,
rule-based FL classifiers are reported in [16], but they are all
type-1 designs. Because uncertainties are observed in video
traffic modeling and classification, we shall use type-2 FL;
however, we shall compare classification results obtained from
classifiers based on either a type-1 or type-2 FL.

In Section II, we briefly introduce MPEG video traffic. In
Section III, we introduce type-2 fuzzy sets. In Section IV, we
model I/P/B frame sizes using supervised clustering and unsu-
pervised clustering, respectively. Five fuzzy classifiers are pre-
sented in Section V. In Section VI, a Bayesian classifier is pro-
posed. Performances of the six classifiers are evaluated in Sec-
tion VII. Conclusions are presented in Section VIII.

In the sequel, we use the following notation and terminology.
A is a type-1 fuzzy set, and the membership grade (a synonym
for the degree of membership) of in A is , which
is a crisp number in [0, 1]. A type-2 fuzzy set, denotedA, is
characterized by a type-2 membership function , where

and , i.e.,A ,
, , in which

. At each value of , say , the 2-D plane whose axes
are and is called a vertical slice of . A sec-
ondary membership function is a vertical slice of . It
is for and , i.e.,

, .
Because , we drop the prime notation on , and
refer to as a secondary membership function; it is a type-1
fuzzy set, which we also refer to as a secondary set. Based on
the concept of secondary sets, we can reinterpret a type-2 fuzzy
set as the union of all secondary sets, i.e., we can re-expressA in
a vertical-slice manner, asA . The
domain of a secondary membership function is called the pri-
marymembershipof; is theprimarymembershipof,where

for . The amplitude of a secondary member-
ship function is called a secondary grade; is a secondary
grade. Uncertainty in the primary memberships of a type-2 fuzzy
set,A, consists of a bounded region called the footprint of un-
certainty (FOU). It is the union of all primary memberships, i.e.,
FOU . Assume that each of the secondary member-
ship functions of a type-2 fuzzy set has only one secondary grade
that equals 1. A principal membership function is the union of all
such points at which this occurs, i.e.,
where , and is associated with a type-1 fuzzy set. Con-
siderafamilyof type-1membership functions
where are parameters, some or all of which vary over

some range of values, i.e., ( ). A primary
membership function is any one of these membership functions,
e.g., . For short, we use to
denote a primary membership function. It will be subject to some
restrictions on its parameters. The family of all primary mem-
bership functions creates an FOU. Meet and join are defined and
explained in great detail in [12] and [13].

II. I NTRODUCTION TOMPEG VIDEO TRAFFIC

MPEG (moving picture expert group) is an ISO/IEC standard
for digital video compression coding, and has been extensively
used to overcome the problem of storage of prerecorded video
on digital storage media, because of the high compression ra-
tios it achieves. MPEG video traffic is composed of a group
of pictures (GoP) that include encoded frames: I/P/B. I frames
are coded with respect to the current frame using a two-dimen-
sional (2-D) discrete cosine transform, and they have a relatively
low compression ratio; P frames are coded with reference to
previous I or P frames using interframe coding, and they can
achieve a better compression ratio than I frames; and, B frames
are coded with reference to the next and previous I or P frames,
and B frames can achieve the highest compression ratio of the
three frame types. The sequence of frames is specified by two
parameters: the distance between I and P frames; and,
the distance between I frames. The use of these three types of
frames allows MPEG to be both robust (I frames permit error
recovery) and efficient (B and P frames have high compression
ratio). Variable bit-rate (VBR) MPEG video is used in ATM net-
works, and constant bit-rate (CBR) MPEG video is often used
in narrowband ISDN. We focus on MPEG VBR video traffic.
In Fig. 1, we plot the I/P/B frame sizes for 3000 frames of an
MPEG coded video ofStar Wars.

III. T YPE-2 FUZZY SETS

The concept of type-2 fuzzy sets was introduced by Zadeh
[32] as an extension of the concept of an ordinary fuzzy set,
i.e., a type-1 fuzzy set [20]. Type-2 fuzzy sets have grades of
membership that are themselves fuzzy [7]. A type-2 member-
ship grade can be any subset in [0, 1]—the primary member-
ship; and, corresponding to each primary membership, there is
a secondary grade (which can also be in [0, 1]) that defines the
possibilities for the primary membership. A type-1 fuzzy set
is a special case of a type-2 fuzzy set; its secondary member-
ship function is a subset with only one element, unity. Type-2
fuzzy sets allow us to handle linguistic uncertainties, as typi-
fied by the adage “words can mean different things to different
people.” A fuzzy relation of higher type (e.g., type-2) has been
regarded as one way to increase the fuzziness of a relation, and,
according to Hisdal, “increased fuzziness in a description means
increased ability to handle inexact information in a logically
correct manner [11].”

A general type-2 fuzzy set has lots of parameters to be deter-
mined [12], [13], but things simplify a lot when its secondary
membership functions are interval sets. Interval sets are very
useful when we have no othera priori knowledge about mem-
bership function uncertainties. In our video traffic modeling, we
will focus on using interval type-2 fuzzy sets. An interval type-2
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Fig. 1. Portions of I/P/B frame sizes ofStar Warsvideo. (a) I frame. (b) P
frame. (c) B frame.

fuzzy set can be represented by its upper and lower member-
ship functions (MFs) [17]. An upper MF and a lower MF are
two type-1 MFs, which are bounds for the FOU of an interval
type-2 MF. The upper MF is associated with the upper bound
of the FOU and, the lower MF is a subset which is associated
with the lower bound of the FOU. Determining the footprint
of uncertainty is crucial for the use of type-2 fuzzy sets, and is
application dependent. We establish the FOU for MPEG coded
videos in Section IV.

We use an overbar (underbar) to denote the upper (lower)
MF. For example, letF denote the type-2 MF for theth
antecedent of theth rule, then the upper and lower MFs of

are and , respectively, so that

(1)

where denotes the union of individual points of each set in the
continuum.

Note that when membership function parameters are fixed,
i.e., they don’t vary over a range of values, then the primary
membership function reduces to the type-1 membership func-
tion .

Example 1: Gaussian Primary MF with Uncertain Standard
Deviation: Consider the case of a Gaussian primary MF having
a fixed mean and an uncertain standard deviation that takes
on values in , i.e.,

(2)
where ; is the number of antecedents;

; and, is the number of rules. The upper MF,
, is (see Fig. 2)

(3)

and the lower MF, , is (see Fig. 2)

(4)

This example illustrates how to defineand , so that it is
clear how to define these membership functions for other situa-
tions (e.g., triangular, trapezoidal, bell MFs).

IV. M ODELING I/P/B FRAME SIZES USING CLUSTERING

Clustering of numerical data forms the basis of many classifi-
cation and modeling algorithms. The purpose of clustering is to
distill natural groupings of data from a large data set, producing
a concise representation of a system’s behavior.

In this section, we use supervised clustering when the I/P/B
frame categories are known, and unsupervised clustering when
the I/P/B frame categories are unknown. Both approaches ig-
nore the time-index for each frame, and represent the histograms
of I/P/B frame sizes using three fuzzy sets, one each for I, P, and
B frames. Because the I/P/B frames are mixed together in video
traffic, we use clustering to group them into I, P, or B clusters.
We then compute the mean and std of each cluster. These statis-
tics are then used to determine the footprints of uncertainty for
I/P/B clusters.

A. Modeling I/P/B Frame Sizes Using Supervised Clustering

To the best of our knowledge, all current approaches (e.g.,
[26], [10], [14]) for modeling I/P/B frame sizes belong to su-
pervised clustering, i.e., they assume the I/P/B frame categories
are known ahead of time; consequently, we shall first use a su-
pervised clustering algorithm, assuming there are three clusters,
so as to analyze the statistical nature of these clusters.
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Fig. 2. The type-2 MFs for Example 1. The thick solid lines denote upper
MFs, and the thick dashed lines denote lower MFs. The shaded regions are the
footprints of uncertainty for interval secondaries. The center of the Gaussian
MFs is 5, and the variance varies from 1.0 to 2.0.

We will show that the statistical knowledge (mean and std)
about the size (bits/fame) of I, P, or B clusters is distinct for
different groups of frames, even in the same video product;
hence, this will motivate us to use type-2 fuzzy sets to model
the number of bits/frame in I/P/B traffic, and is consistent with
our belief that the frame sizes of video traffic are not really
wide-sense stationary (WSS), and that their distribution varies
with respect to the frame index.

Thanks to O. Rose [27] of the University of Wurzburg, who
made 20 MPEG-1 video traces available on-line (FTP: //ftp-
info3.informatik.uni-wuerzburg.de/pub/MPEG/), we were able
to perform our experiments. Many works by others have been
done based on these resources, e.g., Rose [27] analyzed their
statistical properties and observed that the frame and GoP sizes
can be approximated by Gamma or Lognormal distributions,
Manzoniet al. [19] studied the workload models of VBR video
traffic based on these video traces, and Adas [1] used adaptive
linear prediction to forecast the VBR video for dynamic band-
width allocation.

We used 17 of Rose’s video traces, and subdivided them into
four categories, movies, sports, news/talk show, and MTV, ac-
cording to the subject of the video, i.e.,

• Movies:1) “James Bond: Goldfinger” (bond), 2) “Jurassic
Park” (dino), 3) “The Silence of the Lambs” (lambs), 4)
“Star Wars” (star), 5) “Terminator II” (term), and 6) a
1994 movie preview (movie).

• Sports: 7) ATP tennis final (atp), 8) Formula 1 race: GP
Hockenheim 1994 (race), 9) Super Bowl final 1995: San
Diego—San Francisco (sbowl), two 1994 soccer World
Cup matches [10)soc1and 11)soc2].

• News/Talk Show:Two German talk shows [12)talk1and
13) talk2] and two German TV news [14)news1and 15)
news2].

• MTV: two MTV video clips [16)mtv1and 17)mtv2].
The videos were compressed by Rose using an MPEG-1

encoder using a pattern with GoP size 12,IBBPBBPBBPBB.

TABLE I
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THEENTIRE lambs

VIDEO TRAFFIC, AND THEIR NORMALIZED STD

Which means GoP size 12. Each MPEG video stream consisted
of 40 000 video frames, which at 25 frames/s represented about
30 min of real-time full motion video. Fig. 1 shows portions of
the I/P/B frame size sequences of thestar video.

Krunz et al. [14] found that the lognormal distribution is the
best match for all I/P/B frames, i.e., if the I, P, or B frame size
at time is , then

(5)

We, therefore, tried to model the logarithm of the frame size, to
see if a Gaussian MF can match its nature. We chose lambs, atp,
talk2, and mtv2 as examples. For each video traffic, we decom-
posed the I/P/B frames into eight segments, and computed the
mean and std of the logarithm of the frame size of theth
segment, . We also computed the mean and
std of the entire video traffic in a video product. To see which
value— or —varies more, we normalized the mean and std
of each segment using , and , and we then computed
the std of their normalized values and . As we see from
the last row of Tables I–IV, . We conclude, there-
fore, that if the I/P/B frames of each segment (short range) of the
video traffic are lognormally distributed, then the logarithm of
the I, P, or B frame sizes in an entire video traffic (long range) is
more appropriately modeled as a Gaussian with uncertain stan-
dard deviation. This justifies the use of the Gaussian MFs, given
in Example 1, to model the video traffic.

The approach in this section has been based on the assump-
tion that the I/P/B category of a frame is known, which is a form
of supervised clustering. This kind of modeling is very useful in
network workload analysis (for dynamic bandwidth allocation),
and network control (such as connection admission control).

In some cases, the frame category is unknown, in which case
we need to use unsupervised clustering to model them.

B. Modeling I/P/B Frame Sizes Using Unsupervised Clustering

In some cases, we do not know the video traffic frame cat-
egory (I, P, or B). To blindly model the statistical knowledge
of I/P/B frames, we use fuzzy c-means (FCM) [2] clustering,
which is an unsupervised clustering method.
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TABLE II
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THEENTIRE atp VIDEO

TRAFFIC, AND THEIR NORMALIZED STD

TABLE III
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THEENTIRE talk2 VIDEO

TRAFFIC, AND THEIR NORMALIZED STD

TABLE IV
MEAN AND STD VALUES FOREIGHT SEGMENTS AND THEENTIRE mtv2VIDEO

TRAFFIC, AND THEIR NORMALIZED STD

FCM clustering is a data clustering technique where each data
point belongs to a cluster to a degree specified by a membership
grade. This technique was originally introduced by Bezdek [2]
as an improvement on earlier clustering methods.

The FCM method clusters the video traffic into three clusters,
which we represent as three fuzzy sets by estimating the mean

( ) and std of the three clusters. We compute the std of theth
cluster using

(6)

where
number of total frames;
membership degree of framebelonging to cluster;
Euclidean distance between frameand the center of
cluster .

We assume that the clusters with the largest, next to largest and
smallest mean value are I, P, and B frames, respectively. This
follows from the statistical analyzes in Tables I–IV. In Fig. 3, we
plot the performance of FCM clustering as compared with su-
pervised clustering. Observe that the mean and std of the frame
sizes obtained via the FCM approaches those obtained via su-
pervised clustering; hence, when the frame categories of video
traffic are unkown, FCM clustering can be used to extract the
mean and std of I/P/B frames.

V. FIVE FUZZY CLASSIFIERS FORVIDEO TRAFFIC

CLASSIFICATION

In this section, we use type-1 (singleton and nonsingleton),
and interval type-2 (singleton and nonsingleton) FLSs for video
traffic classification. We do not attempt to develop a universal
classifier that can recognize and classify any video product.
Such a general-purpose (domain-independent) classifier has
been shown to be too complex for present technology [6]. We
assume that the domain of interest (moviesor sports) is known
a priori, and that the video classifier is confined to work only
on movieor sportstraffic.

We chose 10 video products from the 17 video products;
five of them aremovies(video product 2–6) and five aresports
(video product 7–11). We wish to classify video traffic from the
10 video products as either amovieor sports, which is essen-
tially a binary decision problem.

A. Singleton and Nonsingleton Type-1 FLSs

A FLS is described by fuzzyIF–THEN rules, which represent
input–output relations of a system. For classification, in a type-1
FLS with a rule base of rules, each havingantecedents, the
th rule is expressed as

is F and is F and and is F

in which , the consequent are crisp values
(e.g., or in this paper), and, F are
type-1 fuzzy sets. For a singleton FLS, the rule firing degree is

(7)

where denotes a-norm (minimum or product); for a nonsin-
gleton FLS [23], the rule firing degree is

(8)

where is fuzzified to a type-1 fuzzy set (e.g., a Gaussian
centered at the measured value ofand with std ).
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Fig. 3. Supervised and FCM clustering for the first 6000 frames of 17 video products. (a), (c), (e) are the mean of I, P, and B frame sizes (log b/frame),
respectively, and (b), (d), (f) are the std of I, P, and B frame sizes (log b/frame), respectively.

In this paper, we use an unnormalized output [28] for the FLS,
namely

(9)

because we make a decision based on the sign of the output, and
normalization operation will not change the sign. If the domain
of interest had three or more choices, we would use a normalized
output for decision making.

In Section VII, we use singleton and nonsingleton type-1
FLSs for video traffic classification.

B. Singleton and Nonsingleton Interval Type-2 FLSs

In a type-2 FLS with a rule base of rules, in which each
rule has antecedents, theth rule , is expressed as

is F and is F and and is F
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The firing degree of rule is

(10)

where is the measurement domain
of . General type-2 FLSs are computa-
tionally intensive because it is not easy to evaluatein (10).
Things simplify a lot when secondary membership functions are
interval sets, in which case secondary memberships are either 0
or 1, and, as we demonstrate later, such simplifications make the
use of a type-2 FLS practical.

1) Operations Between Input and Antecedent:We can have
three type-2 FLSs, each based on a different fuzzification of the
input, i.e., input fuzzified to a type-2 set, input fuzzified to a
type-1 set, and input fuzzified to a type-0 set (i.e., singleton
fuzzification). Results that are needed about these three kinds
of type-2 FLSs are summarized next, because in Section VII we
use them all for video traffic classification.

Theorem 1 [17]: In an interval type-2 nonsingleton FLS
with type-2 fuzzification and meet under minimum or product
-norm, the result of the input and antecedent operations,

in (10), is an interval type-1 set, i.e., ,
where

(11)

and

(12)

the supremum is attained when each term in brackets attains its
supremum.

The proof of this Theorem is given in [17].
Because and only

depend on , the supremum in (11) and (12) is attained when
each term in brackets attains its supremum; hence, in the infer-
ence of a type-2 FLS, we will examine

(13)

(14)

where , and is a -norm; then, and can be
reexpressed, as

(15)

(16)

where denotes -norm.
When the input is fuzzified to a type-1 fuzzy set, so that

( ), the upper and lower MFs of
merge into one MF, , in which case Theorem 1 simpli-
fies to:

Corollary 1: In an interval type-2 FLS withnonsingleton
type-1 fuzzificationand meet under minimum or product
-norm, and , in (11) and (12), simplify to

(17)

and

(18)

where ( ) is the type-1 fuzzified input.
When a singleton fuzzifier is used, the upper and lower MFs

of merge into one crisp value, namely 1, in which case
Theorem 1 simplifies further to:

Corollary 2: In an interval type-2 FLS withsingleton fuzzi-
ficationand meet under minimum or product-norm, and ,
in (11) and (12), simplify to

(19)

and

(20)

where ( ) denotes the location of the singleton.
Example 1: Input and Antecedents are Gaussian Primary

MFs with Uncertain Standard Deviations:In this example,
we compute and when both the input fuzzy sets and
antecedent MFs are Gaussian primary MFs with uncertain
standard deviations. In this case

(21)

and, its upper and lower MFs are and , respec-
tively. The th antecedent MF has the following form:

(22)

and, its upper and lower MFs are and , respec-
tively.

Our type-2 input and antecedent membership functions are
depicted in Fig. 4. Observe, from (13), that requires the
calculation of the supremum of a product or minimum of the
two Gaussians and . Such a calculation has
been carried out by Mouzouris and Mendel in [23] for the
type-1 nonsingleton case; they derive the value ofat which

is achieved. Denoting
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Fig. 4. The type-2 MFs for Example 2. The MF with the larger variance is the
antecedent MF, and the other is the input MF. The thick solid lines denote upper
MFs, and the thick dashed lines denote lower MFs. The shaded regions are the
footprints of uncertainty.

this value of as , they have shown that, for product
-norm

(23)

Denoting the value of at which the supremum of (13) oc-
curs as , it follows from (23) and Fig. 4, that for product
-norm

(24)

Similarly, requires the calculation of the supremum of
a product or minimum of the two Gaussians and

. Denoting the value of at which this supremum

occurs as , it again follows from (23) and Fig. 4, that for
product -norm

(25)

From these results, it is straightforward to computeand
using (13) and (14), i.e.,

(26)

(27)

(28)

(29)

The results in this example are needed later in our type-2 FCs.
2) Output Processing:The final output of the type-2 FLS is

obtained by applying the Extension Principle [32] to (9), i.e.,

(30)

Because ( ) are interval type-1 sets, i.e.,
, (30) simplifies to

(31)

Because and is a crisp value, we obtain
[18]

(32)

(33)

The defuzzified output of the type-2 FLS is ,
i.e.,

(34)

In order to compute in (34), we just need to compute and
based on Theorem 1, Corollary 1 or Corollary 2.
We have presented five FLSs, two are type-1 and three are

type-2. In Section VII, we use these five FLSs as fuzzy clas-
sifiers for video traffic classification. Our fuzzy classifiers are
model-free. To compare them against a model-based classifier,
we develop a Bayesian classifier in Section VI.

VI. BAYESIAN CLASSIFIER FORVIDEO TRAFFIC

CLASSIFICATION

Bayesian decision theory [8] provides the optimal solution
to the general decision-making problem. We assume that each
video product is equiprobable, i.e., , where

(e.g., corresponds to themovieJurassic
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Park). Let : movie, and : sports, so .
If each component of the frame size, is a
lognormal function [14] of the I, P, and B frames of theth video
product, , and , then

(35)

where and
are the mean vector ( ) and covariance matrix ( ) of .
In this case

(36)

(37)

Based on Bayes decision theory, since ,
we obtain the decision rule:

The video traffic ismovie if

(38)

The video traffic issports if

(39)

The video traffic ismovie or sports if

(40)

This Bayesian classifier will be used in Section VII.

VII. SIMULATIONS

We extract the general features and behavior of MPEG video
traffic for different video products, and determine one discrim-
inant rule for each kind of traffic in the domain of interest. In
choosing the antecedents of the fuzzy classifier, we make full
use of the statistical knowledge (mean and std) obtained from
the video traffic.

For the ten video products we chose, we used their first 24 000
frames for supervised clustering to establish a discriminant rule
for that video product. All in all, we obtained 10 rules, one per
product.

To evaluate the performance of the five FC, we used the
next 10 000 (24 001–34 000 frames, 500 20) frames for
(in-product) testing, i.e., for classifying a video as amovie
or sport. We tested every 500 frames, with 20 independent
evaluations for each video product. During testing, we used
FCM clustering to obtain the mean and
std of I/P/B frames for each 500 frames.

We also describe two other experiments performed to test the
robustness of the classifiers when the testing video product is
not included in the training video products (i.e., out-of-product
testing).

A. Design of Six Video Classifiers

1) Design of Type-1 Fuzzy Classifiers:For a type-1 fuzzy
classifier, the th rule, , is ( ):

I frame is F and P frame is Fand B frame is F

this product is movie or sports

The antecedents F( ) are described by a type-1
Gaussian MF whose mean, , and std, , are determined
by supervised clustering. More specifically, and are the
mean and std of all I frames in the first 24 000 frames of video
product ; and are the mean and std of all P frames in the
first 24 000 frames of video product; and, and are the
mean and std of all B frames in the first 24 000 frames of video
product . The consequent in Section V-A corresponds
to or in the fuzzy classifier.

For a type-1 singleton FC (type-1 SFC), its input is
obtained from FCM clustering. For a type-1 nonsingleton FC
(type-1 NSFC), its three inputs are each type-1 Gaussians with
mean and std , which are obtained
from FCM clustering (6).

2) Design of Type-2 Fuzzy Classifiers:For type-2 fuzzy
classifiers, theth rule, , is ( ):

I frame isF and P frame isF and B frame isF

this product is movie or sports

The antecedentsF ( ) are described by a type-2 MF,
i.e., a Gaussian MF with uncertain std, whose meanand
std are determined by supervised clustering.
More specifically, ( ) are determined using the
same method as described in Section VII-A.1, andand
are determined as follows. We divided the 24 000 frames of the
th product into five equal-length (4800 frames) segments, and

computed the std of all I frames in the th segment (
). Let

(41)

(42)

so is the range of uncertain std of I frames of the
th video product. We obtained the ranges of uncertain standard

deviations of P frames ( ) and B frames ( ) in
a similar manner.

For a type-2 singleton FC (type-2 SFC), its input,
, is also obtained from FCM. For a

type-2 nonsingleton FC with type-1 input (type-2 NSFC-1),
its input is three type-1 Gaussians with mean
and std , which are obtained from FCM. For the
type-2 nonsingleton FC with type-2 input (type-2 NSFC-2),
its inputs are three type-2 MFs (Gaussian MFs with mean

and uncertain std ). To set the
uncertain std we divided each testing segment (500 frames)
into four subsegments (125 frames), and used FCM clustering
for each subsegment; then, the minimum and maximum values
of the four standard deviations were used to set the range of
uncertain .
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TABLE V
FALSE ALARM RATE (FAR) OF SIX CLASSIFIERS

TABLE VI
PARAMETERS OF THEFIVE FCS THAT WERE TUNED AND THE STEP SIZE USED IN THEIR STEEPESTDESCENTTUNING ALGORITHM. THE CONSEQUENTc IS

INITIALLY SET+1 FOR MOVIE AND �1 FOR SPORTS; k = 1; 2; 3 AND l = 1; 2; . . . ; 8

3) Design of Bayesian Classifier:Observe from (35), that
the Bayesian classifier needs and

. In our design, and are the mean
and std of all I frames in the first 24 000 frames of video product
; and are the mean and std of all P frames in the first

24 000 frames of video product; and, and are the mean
and std of all B frames in the first 24 000 frames of video product
; and, its input , where is obtained from FCM.

B. Performance

We computed the average (in-product) false-alarm rate (FAR)
for each fuzzy classifier, as well as for the Bayesian classifier
in independent classifications (10 video traffic
products each with 20 500-frame segments).

The average FARs of these six classifiers in this experiment
(Experiment I are summarized in Table V. From this table, we
observe that a type-2 NSFC-1 performs the best. The reason
why a type-2 NSFC-2 did not perform the best is because, for
a short range of frames (500 frames), a type-1 input Gaussian
MF is enough to capture its uncertainty. The type-2 NSFC-1
outperformed the Bayesian classifier by

%, because apparently a stationary lognormal distribution
is not so accurate for modeling the frame sizes of MPEG video
traffic.

C. Robustness

To examine the robustness of the six classifiers, we designed
them using eight video traffic, four from video products 2–6
(movies), and four from video products 7–11 (sports), and
tested their performance using the two unused video products,
one from video products 2–6, and one from video products
7–11. So we totally have 25 independent combinations—eight
video products for training plus two video products for
(out-of-product) testing.

1) Robustness Testing without Parameter Adjustments:We
used the first 24 000 frames of each of the eight training video
products to establish a discriminant rule for that video product
using the methods described in Sections VII-A.1 and 2. All in
all, we obtained eight rules, one per product. We evaluated the
performance of the six classifiers using the first 37 500 (

) frames of the two (out-of-product) testing videos, i.e., for
classifying a video as amovieor sport. We tested every 500
frames, with 75 independent evaluations for each video product,
so we totally evaluated the six classifiers
times. The average FARs of these 6 classifiers for 3750 deci-
sions (Experiment II) are summarized in Table V. From Table V,
we see that the performance of all classifiers are about the same,
which calls into question the use of a FC over the Bayesian clas-
sifier. So far, though, we have not optimized the parameters of
the FCs. We do this next, and then reexamine robustness.

2) Robustness Testing with Parameter Adjustments:The
FCs have many parameters that must be specified, as sum-
marized in Table VI. Here we tune the parameters using the
training data and a steepest descent algorithm. Parameter
adjustments using steepest-descent algorithm for type-1 FLSs
have been extensively used (e.g., [30]). A steepest-descent
algorithm for tuning a type-2 FLS was proposed in [17].

Initially, we used the first 24 000 frames of each of the eight
training video products to establish a discriminant rule for that
video product using the methods described in Sections VII-A.1
and 2. All in all, we obtained eight rules, one per product. We
divided the 24 000 frames of each video product into 40 groups,
600 frames per group. We extracted the meanand std for the
I/P/B frames in each group using supervised clustering. For all
SFCs, we used as the input, and the video product category
(movie, 1; andsports, 1) as the desired output. For type-1
NSFC and type-2 NSFC-1, we used Gaussian MFs with mean

and std as the input, and the video product category as
the desired output. For type-2 NSFC, we used Gaussian MFs
with mean and uncertain std (obtained by computingfor
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each sub-group) as the input, and the video product category
as the desired output. So for each FC, we obtained

training prototypes. We used a steepest descent algorithm
to tune the five fuzzy classifiers. The parameters that were tuned
and the step size of the 5 FCs are summarized in Table VI. We
tried our best to choose the step size so that every FC achieved
its best performance.

After tuning, we fixed the parameters in each fuzzy classi-
fier, and performed the same out-of-product testing as described
in Section VII-C-2. The average FAR of these five fuzzy clas-
sifiers for 3750 decisions (Experiment III) are summarized in
Table V. From Table V, we see that thetype-2 NSFC-2performs
the best. It outperforms the Bayesian classifier (in Experiment
II) by %, which shows that our
tuned FCs are robust.

VIII. C ONCLUSION AND FUTURE WORK

We have proposed two ways for modeling I/P/B frame sizes
of video traffic, using either type-1 or type-2 fuzzy sets. We
observed that for long-range video traffic, a Gaussian MF with
uncertain std is appropriate for modeling the frame sizes. We
also used FCM to cluster and model the frame sizes when the
frame category is unknown.

We have classified video traffic using compressed data and
have proposed type-2 FLCs to do this. Five fuzzy classifiers
have been used for video traffic classification, and have shown
that:

1) When the testing video product is included in the training
products (but the testing frames are not included in the
training frames), and design of the classifiers is based
only on the statistical knowledge of training video traffic
(i.e., none of the classifier’s parameters are tuned), the
type-2 NSFC-1 performs the best.

2) When the testing video product is not included in the
training products, and the classifier’s parameters are
tuned using steepest descent algorithm, the type-2
NSFC-2 performs the best.

We have classified a video product as amovieor sport, which
is essentially a binary detection problem. How to classify a
video product in a larger domain (such as four possible choices)
and keep a low FAR is our future research.
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