
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

2000

MPJ: MPI-like message passing for Java MPJ: MPI-like message passing for Java

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center

Vladimir Getov
University of Westminster, School of Computer Science

Glenn Judd
Brigham Young University, Computer Science Department

Anthony Skjellum
MPI Software Technology, Inc.

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Carpenter, Bryan; Getov, Vladimir; Judd, Glenn; Skjellum, Anthony; and Fox, Geoffrey C., "MPJ: MPI-like
message passing for Java" (2000). Northeast Parallel Architecture Center. 64.
https://surface.syr.edu/npac/64

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/64?utm_source=surface.syr.edu%2Fnpac%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

MPJ: MPI-like Message Passing for JavaBryan Carpenter1, Vladimir Getov2�, Glenn Judd3,Anthony Skjellum4 and Geo�rey Fox11NPAC, Syrause University, Syrause, USA2Shool of Computer Siene, University of Westminster, London, UK3Computer Siene Department, Brigham Young University, Provo, USA4MPI Software Tehnology, In., Starkville, USAAbstratReently, there has been a lot of interest in using Java for parallel programming.E�orts have been hindered by lak of standard Java parallel programming APIs. Toalleviate this problem, various groups started projets to develop Java message pass-ing systems modelled on the suessful Message Passing Interfae (MPI). OÆial MPIbindings are urrently de�ned only for C, Fortran, and C++, so early MPI-like envi-ronments for Java have been divergent. This paper relates an e�ort undertaken by aworking group of the Java Grande Forum, seeking a onsensus on an MPI-like API, toenhane the viability of parallel programming using Java.1 Introdution and BakgroundA likely prerequisite for parallel programming in a distributed environment is a good messagepassing API. Java omes with various ready-made pakages for ommuniation, notably aneasy-to-use interfae to BSD sokets, and the Remote Method Invoation (RMI) mehanism.Interesting as these interfaes are, it is questionable whether parallel programmers will�nd them espeially onvenient. Sokets and remote proedure alls have been around forapproximately as long as parallel omputing has been fashionable, and neither of them hasbeen popular in that �eld. Both of these ommuniation models are optimized for lient-server programming, whereas the parallel omputing world is mainly onerned with a moresymmetri model, where ommuniations our in groups of interating peers.This peer-to-peer model of ommuniation is aptured in the suessful Message Pass-ing Interfae (MPI) standard, established in 1994 [15℄. MPI diretly supports the SingleProgram Multiple Data (SPMD) model of parallel omputing, wherein a group of proessesooperate by exeuting idential program images on loal data values. Reliable point-to-point ommuniation is provided through a shared, group-wide ommuniator, instead ofsoket pairs. MPI allows numerous bloking, non-bloking, bu�ered or synhronous ommu-niation modes. It also provides a library of true olletive operations (broadast is the mosttrivial example). An extended standard, MPI-2 [16℄, allows for dynami proess reationand aess to memory in remote proesses.�Correspondene to: Vladimir Getov, Shool of Computer Siene, University of Westminster, HarrowHA1 3TP, U.K.Contrat grant sponsor: National Siene Foundation, Division of Advaned Computational Infras-truture and Researh; Contrat grant number 9872125.Contrat grant sponsor: Higher Eduation Funding Counil for England (U.K.) under the NFF ini-tiative. 1

The MPI standard douments provided a language-independent spei�ation as well aslanguage-spei� (C and Fortran) bindings [15℄. While the MPI-2 release of the standardadded a C++ binding [16℄, no Java binding has been o�ered or is planned by the MPIForum. With the evident suess of Java as a programming language, and its inevitable usein onnetion with parallel as well as distributed omputing, the absene of a well-designedlanguage-spei� binding for message-passing with Java will lead to divergent, non-portablepraties. Indeed MPI-like binding for Java were developed independently by several teams.These will be briey reviewed in the next setion.Over the last three years supporters of the Java Grande Forum [8℄ have been workingatively to address some of the issues involved in using Java for tehnial omputation.The goal of the forum has been to develop onsensus and reommendations on possible en-hanements to the Java language and assoiated Java standards, for large-sale (\Grande")appliations. Through a series of ACM-supported workshops and onferenes the forum hashelped stimulate researh on Java ompilers and programming environments. The Message-Passing Working Group of the Java Grande Forum was formed just over a year ago as aresponse to the appearane of the various APIs for message-passing. An immediate goalwas to disuss a ommon API for MPI-like Java libraries. An initial draft for a ommonAPI spei�ation was distributed at Superomputing '98 [5℄. Sine then the working groupmet in San Franiso and Syrause, and a Birds of a Feather meeting was held at Superom-puting '99. Minutes of meetings are available at [9, 10℄. To avoid onfusion with standardspublished by the original MPI Forum the nasent API is alled MPJ (Message Passinginterfae for Java).2 Earlier WorkAt the time the working group was reated there were several known e�orts towards the de-sign of early MPI-like interfaes for Java with three fully funtional but di�erent implement-ations|mpiJava [3℄, JavaMPI [17℄, and MPIJ [12℄. The implementation of mpiJava is basedon the use of native methods to build a wrapper to existing MPI library (MPICH). A ompa-rable approah has been followed in the development of JavaMPI, but the JavaMPI wrapperswere automatially generated by a speial-purpose ode generator. A large subset of MPI-like funtions alled MPIJ is implemented in pure Java within the DOGMA system forJava-based parallel programming. MPI Software Tehnology, In. announed a ommeriale�ort to develop a message-passing framework and parallel support environment for Javaalled JMPI [6℄. Some of these \proof-of-onept" implementations have been availablesine 1997 with suessful ports on lusters of workstations running Solaris, Windows NT,Irix, AIX, HP-UX, MaOS, and Linux, as well as the IBM SP2, SGI Origin-2000, FujitsuAP3000, and Hitahi SR2201 parallel platforms.2.1 The mpiJava wrapperThe mpiJava software [3℄ implements a Java binding for MPI proposed late in 1997. TheAPI is modeled as losely as pratial on the C++ binding de�ned in the MPI 2.0 standard,spei�ally supporting the MPI 1.1 subset of that standard. In some ases the extra runtimeinformation available in Java objets allows argument lists to be simpli�ed relative to theC++ binding. In other ases restritions of Java, espeially the fat that all arguments arepassed by value in Java, fores some hanges to argument lists. But in general mpiJavaadheres losely to earlier standards.The implementation of mpiJava is through JNI wrappers to native MPI software. In-terfaing Java to MPI is not always trivial. We often see low-level onits between theJava runtime and the interrupt mehanisms used in MPI implementations. The situation isimproving as JDK matures, and the mpiJava software now works reliably on top of SolarisMPI implementations and various shared memory platforms. A port to Windows NT (basedon WMPI) is available, and other ports are in progress.2

Other work in progress inludes development of demonstrator appliations, and Java-spei� extensions suh as support for diret ommuniation of serializable objets.2.2 JavaMPI|automati generation of MPI wrappersIn priniple, the binding of existing MPI library to Java using JNI amounts to either dy-namially linking the library to the Java virtual mahine, or linking the library to the objetode produed by a stand-alone Java ompiler. Compliations stem from the fat that Javadata formats are in general di�erent from those of C. Java implementations will have to useJNI whih allows C funtions to aess Java data and perform format onversion if nees-sary. Suh an interfae is fairly onvenient for writing new C ode to be alled from Java,but is not adequate for linking existing native ode.Clearly an additional interfae layer must be written in order to bind a legay libraryto Java. A large library like MPI has over a hundred exported funtions, therefore it ispreferable to automate the reation of the additional interfae layer. The Java-to-C interfaegenerator (JCI) [7℄ takes as input a header �le ontaining the C funtion prototypes of thenative library. It outputs a number of �les omprising the additional interfae: a �le ofC stub-funtions; �les of Java lass and native method delarations; shell sripts for doingthe ompilation and linking. The JCI tool generates a C stub-funtion and a Java nativemethod delaration for eah exported funtion of the MPI library. Every C stub-funtiontakes arguments whose types orrespond diretly to those of the Java native method, andonverts the arguments into the form expeted by the C library funtion.As the JavaMPI bindings have been generated automatially from the C prototypes ofMPI funtions, they are very lose to the C binding. However, there is nothing to preventfrom parting with the C{style binding and adopting a Java-style objet{oriented approahby grouping MPI funtions into a hierarhy of lasses.2.3 MPIJ|MPI-like implementation in pure JavaMPIJ is a ompletely Java-based implementation of MPI whih runs as part of the Dis-tributed Objet Group Metaomputing Arhiteture (DOGMA) system. MPIJ implementsa large subset of MPI-like funtionality inluding all modes of point-to-point ommuniation,intra-ommuniator operations, groups, and user-de�ned redution operations. Notable a-pabilities that are not yet implemented inlude proess topologies, inter-ommuniators,and user-de�ned data types but these are arguably needed for legay ode only.MPIJ ommuniation uses native marshaling of primitive Java types. On Win32 plat-forms this tehnique allows MPIJ to ahieve ommuniation speeds omparable to, andin some instanes exeeding, native MPI implementations [13℄. Our performane evalua-tion experiments show that Java ommuniation speed would be greatly inreased if nativemarshaling were a ore Java funtion.A key feature of a pure Java MPI-like implementation is the ability to funtion on applet-based nodes. In MPIJ, this provides a exible method for reating lusters of workstationswithout the need to install any system or user software related to the message-passingenvironment on the partiipating nodes.3 The MPJ API Spei�ation3.1 RationaleThe MPI standard is expliitly objet-based. The C and Fortran bindings rely on \opaqueobjets" that an be manipulated only by aquiring objet handles from onstrutor fun-tions, and passing the handles to suitable funtions in the library. The C++ binding spei-�ed in the MPI-2 standard ollets these objets into suitable lass hierarhies and de�nes3

Status

Datatype

Group

Comm

Request

MPJ

mpj Intercomm

Intracomm

Prequest

package

Graphcomm

Cartcomm

Figure 1: Prinipal lasses of MPJmost of the library funtions as lass member funtions. The draft MPJ API spei�ationfollows this model, lifting the struture of its lass hierarhy diretly from the C++ binding.The initial spei�ation builds diretly on the MPI-1 infrastruture provided by the MPIForum, together with language bindings motivated by the C++ bindings of MPI-2. Thepurpose of this phase of the e�ort is to provide an immediate, ad ho standardization forommon message passing programs in Java, as well as to provide a basis for onversionbetween C, C++, Fortran 77, and Java. Eventually, support for other parts of MPI-2 alsobelong here, partiularly dynami proess management1. The position of the working groupwas that the initial MPI-entri API should subsequently be extended with more objet-oriented, Java-entri features, although the exat requirements for this later phase havenot yet been established.The major lasses of the MPJ spei�ation are illustrated in Figure 1. The lass MPJonly has stati members. It ats as a module ontaining global servies, suh as initial-ization, and many global onstants inluding the default ommuniator COMM WORLD. Themost important lass in the pakage is the ommuniator lass Comm. All ommuniationfuntions in MPJ are members of Comm or its sublasses. As usual in MPI, a ommuniatorstands for a \olletive objet" logially shared by a group of proessors. The proessesommuniate, typially by addressing messages to their peers through the ommon ommu-niator. A lass that will be important in the following disussion is the Datatype lass.This desribes the type of the elements in the message bu�ers passed to send, reeive, andall other ommuniation funtions.3.2 Example and data typesIn general the point-to-point ommuniation operations are realized as methods of the Commlass. The basi point-to-point ommuniation operations are send and reeive. Their use isillustrated in Figure 2. Consider, for example, the MPJ analogue of the operation MPI SEND.The method prototype is:void Comm.send(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag)1Given its spartan implementation in the non-Java spae, we may not need the whole of MPI-2.4

import mpj.* ;lass Hello {stati publi void main(String[℄ args) {MPJ.init(args) ;int myrank = MPJ.COMM_WORLD.rank() ;if(myrank == 0) {har [℄ message = "Hello, there".toCharArray() ;MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99) ;}else {har [℄ message = new har [20℄ ;MPJ.COMM_WORLD.rev(message, 0, 20, MPJ.CHAR, 0, 99) ;System.out.println("reeived:" + new String(message) + ":") ;}MPJ.finish();}} Figure 2: Example MPJ programbuf send bu�er arrayoffset initial o�set in send bu�erount number of items to senddatatype data type of eah item in send bu�erdest rank of destinationtag message tagThe data part of the message onsists of a sequene of ount values, eah of the typeindiated by datatype. The atual argument assoiated with buf must be an array withelements of orresponding type. The value offset is a subsript in this array, de�ning theposition of the �rst item of the message.The elements of buf may have primitive type or lass type. If the elements are ob-jets, they must be serializable objets. If the datatype argument represents an MPI-ompatible basi type, its value must be onsistent with the element type of buf. Thus,the basi data type values inluded in the MPJ API spei�ation are MPJ.BYTE, MPJ.CHAR,MPJ.SHORT, MPJ.BOOLEAN, MPJ.INT, MPJ.LONG, MPJ.FLOAT, MPJ.DOUBLE, and MPJ.OBJECT.If the datatype value is MPJ.OBJECT the objets in the bu�er are transparently serializedand unserialized inside the ommuniation operations.The datatype argument is not redundant in the urrent spei�ation of MPJ, beausethe proposal inludes support for an analogue of MPI derived types. The derived types ofMPJ are restrited to have a unique base type, one of the nine types enumerated above. If thedatatype argument of a ommuniation funtion represents an MPJ derived type, its basetype must agree with the Java element type of the assoiated buf argument. Alternatively,if it was deided to remove derived types from MPJ, datatype arguments ould be removedfrom many funtions, and Java runtime inquiries ould be used internally to extrat theelement type of the bu�er2.2Or methods like send ould be overloaded to aept bu�ers with elements of the nine basi types. Thedisadvantage of this approah is that it leads to a major proliferation in the number of methods.
5

3.3 MPJ as an MPI-like language bindingMPJ does not have the status of an oÆial language binding for MPI. But, as a matter ofinterest, this setion will ompare some surfae features of the Java API with standard MPIlanguage bindings.All MPJ lasses belong to the pakage mpj. Conventions for apitalization, et, in lassand member names generally follow the reommendations of Sun's Java ode onventions[19℄. In general these onventions are onsistent with the naming onventions of the MPI2.0 C++ standard. Exeptions to this rule inlude the use of lower ase for the �rst lettersof method names, and avoidane of undersore in variable names.With MPI opaque objets replaed by Java objets, MPI destrutors an be absorbedinto Java objet destrutors (finalize methods), alled automatially by the Java garbageolletor. MPJ adopts this strategy as the general rule. Expliit alls to destrutor funtionsare typially omitted from the Java user ode. An exeption is made for the Comm lasses.In MPI the destrutor for a ommuniator is a olletive operation, and the user mustensure that alls are made at onsistent times on all proessors involved. Automati garbageolletion would not guarantee this. Hene the MPJ Comm lass has an expliit free method.Some options allowed for derived data types in the C and Fortran bindings are absentfrom MPJ. In partiular, the Java virtual mahine does not support any onept of a globallinear address spae. Therefore, physial memory displaements between �elds in objets areunavailable or ill-de�ned. This puts some limits on the possible uses of any analogues of theMPI TYPE STRUCT type onstrutor. In pratie the MPJ strut data type onstrutorhas been further restrited in a way that makes it impossible to send mixed basi data typesin a single message. However, this should not be a serious problem, sine the set of basidata types in MPJ is extended to inlude serializable Java objets.Array size arguments are often omitted in MPJ, beause they an be piked up withinthe funtion by reading the length member of the array argument. A ruial exeption isfor message bu�ers, where an expliit ount is always given. Message bu�ers aside, typialarray arguments to MPI funtions (e.g., vetors of request strutures) are small arrays. Ifsubsetions of these must be passed to an MPI funtion, the setions an be opied to smallerarrays at little ost. In ontrast, message bu�ers are typially large and opying them isexpensive, so it is worthwhile to pass an extra size argument to selet a subset. (Moreover,if derived data types are being used, the required value of the ount argument is alwaysdi�erent to the bu�er length.) C and Fortran both have ways of treating a setion of anarray, o�set from the beginning of the array, as if it was an array in its own right. Java doesnot have any suh mehanism. To provide the same exibility in MPJ, an expliit integeroffset parameter also aompanies any bu�er argument. This de�nes the position in theJava array of the �rst element atually treated as part of the bu�er.The C and Fortran languages de�ne a straightforward mapping (or \sequene assoi-ation") between their multidimensional arrays and equivalent one-dimensional arrays. InMPI a multidimensional array passed as a message bu�er argument is generally treatedlike a one-dimensional array with the same element type. O�sets in the bu�er (suh aso�sets ourring in derived data types) behave like o�sets in the e�etive one-dimensionalarray. In Java the relationship between multidimensional arrays and one dimensional ar-rays is di�erent. An \n-dimensional array" is equivalent to a one-dimensional array of(n � 1)-dimensional arrays. In the MPJ interfae message bu�ers are always treated asone-dimensional arrays. The element type may be an objet, whih may have array type.Hene, multidimensional arrays an appear as message bu�ers, but the interpretation andbehaviour is signi�antly di�erent.Unlike the standard MPI interfaes, MPJ methods do not return expliit error odes.Instead, the Java exeption mehanism is used to report errors.
6

3.4 Complete draft APIThe appendix of this paper lists the publi interfaes of all the lasses. Of ourse this onlyde�nes syntax. A more omplete desription of the semantis of all methods is available in[5℄.4 Open IssuesThe API desribed in [5℄ is not assumed to be \�nal". It was originally presented as astarting point for disussion. In this setion we will mention some areas we onsider to beopen to improvement.4.1 Derived data typesIt is unlear whether a Java interfae should support MPI-like derived data types. A pro-posal for a Java-ompatible subset of derived types is inluded in the draft spei�ationdoument [5℄, but deleting it would simplify the API signi�antly. In partiular datatypearguments for bu�ers ould be dropped.One fator in favor of inluding MPI-like derived data types in MPJ is the support forlegay MPI appliations. The possible need to interat with native ode that uses deriveddata types is probably best supported by inluding derived data types in the MPJ APIspei�ation.It has been argued that the funtionality of derived data types is already provided byJava objets, and supporting both only adds unneeded omplexity. But in fat there aregood reasons to retain some additional funtionality of derived data types. Any sienti�ode, written in Java or otherwise, will bene�t from the ability to eÆiently and onvenientlysend setions (subsets) of program arrays. In MPI, this is one of the most useful roles of theso-alled derived data types, and MPJ objet data types do not address this requirement.The disussion of whether derived data types are to be supported in MPJ should thereforebe losely linked with the disussion of how true \sienti�" (multi-dimensional) arrays,allowing Fortran-90-like setioning operations, should be handled.4.2 Multidimensional arraysSome spei� support for ommuniating multidimensional arrays would be desirable. In theurrent proposal, sending a multidimensional array involves either sending one row at a timeor using Java objet serialization, both of whih will introdue performane bottleneks. Forinstane, our experiene has shown that MPIJ sends a 200x200 array of doubles over FastEthernet muh faster when multidimensional array support is inluded than when individualrows are sent. More detailed analysis of this problem is presented in [4, 13℄.Trying to �x the problem for standard Java multidimensional arrays is probably thewrong approah. There is a deeper problem that the Java \array-of-arrays" model for mul-tidimensional arrays is not espeially well-suited for \sienti�" omputation. This issue isbeing atively addressed by other groups in the Java Grande Forum. In partiular the workby IBM on the Array pakage [18℄, whih has been adopted by the Java Grande Numerisworking group, is very relevant. A more omplete MPJ spei�ation should probably in-lude mehanisms for eÆiently ommuniating standardized \sienti�" arrays, and theirsetions.In fat, if a standard like the Array pakage were adopted, and if it supported desriptionof array setions (without opying elements), it is quite likely that the remaining argumentsin favour of keeping an MPI-like derived data type mehanism would go away.
7

4.3 Overloaded ommuniation operationsIt has been suggested that many of the ommuniation operations should be overloaded toprovide simpli�ed variants that omit arguments like offset, ount (and possibly datatype).This suggestion is not inluded in the urrent proposal, but it ould be added. The primaryargument in favor is that it simpli�es user ode. For instane,MPJ.COMM_WORLD.send(message, 0, message.length, MPJ.CHAR, 1, 99);beomesMPJ.COMM_WORLD.send(message, MPJ.CHAR, 1, 99);The obvious ounter-argument is that this very signi�antly inreases the total number ofmethods in the API. A possible ompromise is to provide overloaded versions only of spei�ommon funtions suh as point-to-point ommuniation funtions (the argument againstthis, in turn, is that it looks inonsistent).4.4 Other issuesThe urrent draft MPJ spei�ation supports all MPI-like error handling using the Javaexeption model. An alternative suggestion that has been put forward is that all MPJ ex-eptions be derived from two lasses: MPJExeption and MPJRuntimeExeption. Sublassesof MPJExeption would represent errors that the user would be required to ath whereassublasses of MPJRuntimeExeption would represent unommon or unusual errors. It hasalso been suggested that ertain MPJ exeptions ould arry sub-exeptions when the auseof the error is another exeption. Whether, or not, to utilize MPI-like user-de�ned andprede�ned error handlers is also an open question. In priniple, these error handlers ouldstill serve a purpose in addition to the exeption mehanism mentioned above.It has been suggested that the spei�ation of user-de�ned operations ould be sim-pli�ed. In the urrent proposal, whih is modelled after a proedural approah, a moreomplex or unique operation an be reated in two phases. Initially users de�ne funtionsand then reate a new operation lass (Op). This results in the reation of an extra lass(UserDefinedOperation) whih is not really neessary. An alternative approah would beto simply have users de�ne sublasses of the lass Op with a named method (for example,all). This design would also eliminate the overhead assoiated with method invoation.A pro�ling interfae for MPJ has not yet been de�ned. A possible general design ap-proah is for pro�ling lass and method names to exatly math those of the non-pro�linglasses and methods. Implementors would then plae the ompiled binary �les in di�erentloations. As Java linking is always dynami, this would allow users to enable or disablepro�ling simply seleting the appropriate ode base (e.g. by hanging the CLASSPATHenvironment variable).5 Disussion and ConlusionAn initial goal of the Java Grande Message Passing working group was to promote a stan-dardized MPI binding for Java. It beame apparent that this road was likely to produe aollision of interest with the existing MPI ommunity, and the name of the new API washanged to MPJ. MPJ was designated an \MPI-like" spei�ation. The urrent spei�a-tion is available in [5℄. This spei�ation is essentially omplete and self-ontained, but asdisussed in setion 4, it is not neessarily onsidered \�nal".Beause the proposed API was designed on objet-oriented priniples, most of the orig-inal MPI spei�ation atually maps very naturally into Java. So long as one aepts theJava Grande premise that Java is an exellent basis for tehnial omputing, an MPI-likeapproah to parallel omputing seems very promising|more promising than some haveassumed. But there remain non-obvious issues about supporting basi MPI funtionality.8

Some of the more diÆult ones boil down to the lak of a good model of sienti� arraysin Java. This issue is somewhat outside the purview of this working group, but is beingatively disussed by the Java Grande Numeris working group [11℄.Referene implementations of the MPJ spei�ation are urrently (Marh, 2000) underdevelopment. An implementation based on JNI wrappers to native MPI will be reated byadapting the mpiJava wrappers [3℄. While this is a good approah in some situations, it hasvarious disadvantages and onits with the ethos of Java, where pure-Java, write-one-run-anywhere software is the order of the day. A design for a pure-Java referene implementationof MPJ has also been outlined [2℄. In this ase, design goals were that the system shouldbe as easy to install on distributed systems as we an reasonably make it, and that it besuÆiently robust to be usable in an Internet environment.Bak in 1994, MPI-1 was originally designed with relatively stati platforms in mind. Tobetter support omputing in volatile Internet environments, modern message passing designsfor Java will have to support (at least) features suh as dynami spawning of proess groupsand parallel lient/server interfaes as introdued in the MPI-2 spei�ation. In addition,a natural framework for dynamially disovering new ompute resoures and establishingonnetions between running programs already exists in Sun's Jini projet [1℄, and one lineof investigation is into MPJ implementations operating in the Jini framework.Closely modelled as it is on the MPI standards, the existing MPJ spei�ation shouldbe regarded as a �rst phase in a broader program to de�ne a more Java-entri high perfor-mane message-passing environment. In future a detahment from legay implementationsinvolving Java on top of native methods will be emphasized. We should onsider the possibil-ity of layering the messaging middleware over standard transports and other Java-ompliantmiddleware (like CORBA). In a sense, the middleware developed at this level should o�era hoie of emphasis between performane or generality, while always supporting portabil-ity. We note an opportunity to study and standardize aspets of real-time and fault-awareprograms, drawing on the onepts learned in the MPI/RT ativity [14℄. For performane,we should seek to take advantage of what has been learned sine MPI-1 and MPI-2 were �-nalized, or ignored in MPI standardization for various reasons|for instane drawing on thebody of knowledge ompleted within the MPI/RT Forum. From here we may at least gleandesign hints onerning hannel abstrations, and the more diret use of objet-orienteddesign for message passing than was seen in MPI-1 or MPI-2. The value of this type ofmessaging middleware in the embedded and real-time Java appliation spaes should alsobe onsidered.Of ourse, a primary goal in the above mentioned, both urrent and future work, shouldbe the aim to o�er MPI-like servies to Java programs in an upward ompatible fashion.The purposes are twofold: performane and portability.6 AknowledgementsThe authors would like to thank all the ative members of the Java Grande Message-PassingWorking Group for the fruitful disussions of the topis overed in this paper.Referenes[1℄ Ken Arnold, Bryan O'Sullivan, Robert Sheier, Jim Waldo, and Ann Wollrath. TheJini Spei�ation. Addison Wesley, 1999.[2℄ Mark Baker and Bryan Carpenter. MPJ: A proposed Java message-passing API andenvironment for high performane omputing. In International Workshop on Java forParallel and Distributed Computing, Canun, Mexio, May 2000. To be presented.[3℄ Mark Baker, Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Xinying Li.mpiJava: A Java interfae to MPI. In First UK Workshop on Java for9

High Performane Network Computing, September 1998. mpiJava Home Page:http://www.npa.syr.edu/projets/pr/HPJava/mpiJava.html.[4℄ Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Sang Lim. Objet serialization formarshalling data in a Java interfae to MPI. In ACM 1999 Java Grande Conferene.ACM Press, June 1999.[5℄ Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony Skjellum, and Geo�rey Fox.MPI for Java: Position Doument and Draft Spei�ation. Tehnial report, JavaGrande Forum, November 1998. http://www.javagrande.org/reports.htm.[6℄ George Crawford III, Yoginder Dandass, and Anthony Skjellum. The JMPIommerial message passing environment and spei�ation: Requirements, de-sign, motivations, strategies, and target users, Deember 1997. http://www.mpi-softteh.om/publiations/JMPI 121797.html.[7℄ Vladimir Getov, Paul Gray, Sava Minthev, and Vaidy Sunderam. Multi-language pro-gramming environments for high performane java omputing. Sienti� Programming,7(2):139{146, 1999.[8℄ Java Grande Forum. http://www.javagrande.org.[9℄ Java Grande Message Passing Working Group. Minutes of Jun 14, 1999 meeting in SanFraniso. http://www.npa.syr.edu/projets/java-mpi/jul99/msg00000.html.[10℄ Java Grande Message Passing Working Group. Minutes of Ot 1, 1999 meeting inSyrause. http://www.npa.syr.edu/projets/java-mpi/ot99/msg00000.html.[11℄ Java Grande Numeris Working Group. http://math.nist.gov/javanumeris/.[12℄ Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed Objet GroupMetaomputing Arhiteture. Conurreny: Pratie and Experiene, 10(11/13):977{983, 1998. MPIJ Home Page: http://.s.byu.edu/DOGMA/.[13℄ Glenn Judd, Mark Clement, Quinn Snell, and Vladimir Getov. Design issues for eÆientimplementation of mpi in java. In Proeedings of ACM 1999 Java Grande Conferene,pages 58{65. ACM Press, 1999.[14℄ Arkady Kanevsky, Anthony Skjellum, and Anna Rounbehler. MPI/RT|an emerg-ing standard for high-performane real-time systems. In 31st Hawaii InternationalConferene on System Sienes, volume III, January 1998. MPI/RT Home Page:http://www.mpirt.org.[15℄ Message Passing Interfae Forum. MPI: A message-passing interfae standard. Inter-national Journal of Superomputer Appliations, 8(3/4), 1994.[16℄ Message Passing Interfae Forum. MPI-2: Extension to the message passing interfae.Tehnial report, University of Tennessee, July 1997. http://www.mpi-forum.org.[17℄ Sava Minthev and Vladimir Getov. Towards portable message passing in Java: BindingMPI. In M. Bubak, J. Dongarra, and J. Wa�sniewski, editors, Reent Advanes in PVMand MPI, volume 1332 of Leture Notes in Computer Siene, pages 135{142. SpringerVerlag, 1997. JavaMPI Home Page: http://perun.hss.wmin.a.uk/JavaMPI/.[18℄ Jose Moreira, Sam Midki�, Manish Gupta, and Rik Lawrene. High performaneomputing with the array pakage for Java: A ase study using data mining. In Super-omputing 99, November 1999.[19℄ Sun Mirosystems. Java ode onventions. http://java.sun.om/dos/odeonv/.10

A Publi Interfae of Classes in MPJ Draft Spei�a-tionA.1 MPJpubli lass MPJ {publi stati Intraomm COMM_WORLD;publi stati Datatype BYTE, CHAR, SHORT, BOOLEAN, INT, LONG,FLOAT, DOUBLE, OBJECT, PACKED, LB, UB ;publi stati int ANY_SOURCE, ANY_TAG ;publi stati int PROC_NULL ;publi stati int BSEND_OVERHEAD ;publi stati int UNDEFINED ;publi stati Op MAX, MIN, SUM, PROD, LAND, BAND,LOR, BOR, LXOR, BXOR, MINLOC, MAXLOC ;publi stati Datatype SHORT2, INT2, LONG2, FLOAT2, DOUBLE2 ;publi stati Group GROUP_EMPTY ;publi stati Comm COMM_SELF ;publi stati int IDENT, CONGRUENT, SIMILAR, UNEQUAL ;publi stati int GRAPH, CART ;publi stati ErrHandler ERRORS_ARE_FATAL, ERRORS_RETURN ;publi stati int TAG_UB, HOST, IO ;// Buffer alloation and usagepubli stati void bufferAttah(byte [℄ buffer) throws MPJExeption {...}publi stati byte [℄ bufferDetah() throws MPJExeption {...}// Environmental Managementpubli stati String [℄ init(String[℄ argv) throws MPJExeption {...}publi stati void finish() throws MPJExeption {...}publi stati String getProessorName() throws MPJExeption {...}publi stati double wtime() throws MPJExeption {...}publi stati double wtik() throws MPJExeption {...}publi stati boolean initialized() throws MPJExeption {...}...}A.2 Commpubli lass Comm {// Communiator Management 11

publi int size() throws MPJExeption {...}publi int rank() throws MPJExeption {...}publi Group group() throws MPJExeption {...} // (setion "Group management" of spe)publi stati int ompare(Comm omm1, Comm omm2) throws MPJExeption {...}publi Objet lone() {...}publi void free() throws MPJExeption {...}// Inter-ommuniationpubli boolean testInter() throws MPJExeption {...}publi Interomm reateInteromm(Comm loalComm, int loalLeader,int remoteLeader, int tag) throws MPJExeption {...}// Cahingpubli Objet attrGet(int keyval) throws MPJExeption {...}// Bloking Send and Reeive operationspubli void send(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Status rev(Objet buf, int offset, int ount,Datatype datatype, int soure, int tag) throws MPJExeption {...}// Communiation Modespubli void bsend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi void ssend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi void rsend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}// Nonbloking ommuniationpubli Request isend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Request ibsend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Request issend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Request irsend(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Request irev(Objet buf, int offset, int ount,Datatype datatype, int soure, int tag) throws MPJExeption {...}// Probe and anel 12

publi Status iprobe(int soure, int tag) throws MPJExeption {...}publi Status probe(int soure, int tag) throws MPJExeption {...}// Persistent ommuniation requestspubli Prequest sendInit(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Prequest bsendInit(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Prequest ssendInit(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Prequest rsendInit(Objet buf, int offset, int ount,Datatype datatype, int dest, int tag) throws MPJExeption {...}publi Prequest revInit(Objet buf, int offset, int ount,Datatype datatype, int soure, int tag) throws MPJExeption {...}// Send-reeivepubli Status sendrev(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,int dest, int sendtag,Objet revbuf, int revoffset, int revount, Datatype revtype,int soure, int revtag) throws MPJExeption {...}publi Status sendrevReplae(Objet buf, int offset, int ount, Datatype datatype,int dest, int sendtag,int soure, int revtag) throws MPJExeption {...}// Pak and unpakpubli int pak(Objet inbuf, int offset, int inount, Datatype datatype,byte [℄ outbuf, int position) throws MPJExeption {...}byte[℄ pak(Objet inbuf, int offset, int inount, Datatype datatype)throws MPJExeption {...}publi int unpak(byte [℄ inbuf, int position,Objet outbuf, int offset, int outount, Datatype datatype)throws MPJExeption {...}publi int pakSize(int inount, Datatype datatype) throws MPJExeption {...}// Proess Topologiesint topoTest() throws MPJExeption {...}// Environmental Managementpubli stati void errorhandlerSet(Errhandler errhandler) throws MPJExeption {...}publi stati Errhandler errorhandlerGet() throws MPJExeption {...}void abort(int errorode) throws MPJExeption {...}...}
13

A.3 Intraomm and Interommpubli lass Intraomm extends Comm {publi Objet lone() { ... }publi Intraomm reate(Group group) throws MPJExeption {...}publi Intraomm split(int olour, int key) throws MPJExeption {...}// Colletive ommuniationpubli void barrier() throws MPJExeption {...}publi void bast(Objet buffer, int offset, int ount,Datatype datatype, int root) throws MPJExeption {...}publi void gather(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int revount, Datatype revtype,int root) throws MPJExeption {...}publi void gatherv(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int [℄ revount, int [℄ displs,Datatype revtype, int root) throws MPJExeption {...}publi void satter(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int revount, Datatype revtype,int root) throws MPJExeption {...}publi void satterv(Objet sendbuf, int sendoffset, int [℄ sendount, int [℄ displs,Datatype sendtype,Objet revbuf, int revoffset, int revount, Datatype revtype,int root) throws MPJExeption {...}publi void allgather(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int revount, Datatype revtype)throws MPJExeption {...}publi void allgatherv(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int [℄ revounts, int [℄ displs,Datatype revtype) throws MPJExeption {...}publi void alltoall(Objet sendbuf, int sendoffset, int sendount, Datatype sendtype,Objet revbuf, int revoffset, int revount, Datatype revtype)throws MPJExeption {...}publi void alltoallv(Objet sendbuf, int sendoffset, int [℄ sendount, int [℄ sdispls,Datatype sendtype,Objet revbuf, int revoffset, int [℄ revount, int [℄ rdispls,Datatype revtype) throws MPJExeption {...}publi void redue(Objet sendbuf, int sendoffset, Objet revbuf, int revoffset,int ount, Datatype datatype, Op op, int root) throws MPJExeption {...}publi void allredue(Objet sendbuf, int sendoffset, Objet revbuf, int revoffset,int ount, Datatype datatype, Op op) throws MPJExeption {...}publi void redueSatter(Objet sendbuf, int sendoffset,Objet revbuf, int revoffset,int [℄ revounts, Datatype datatype,Op op) throws MPJExeption {...}publi void san(Objet sendbuf, int sendoffset, Objet revbuf, int revoffset,int ount, Datatype datatype, Op op) throws MPJExeption {...}// Topology Construtors 14

publi Graphomm reateGraph(int [℄ index, int [℄ edges,boolean reorder) throws MPJExeption {...}publi Cartomm reateCart(int [℄ dims, boolean [℄ periods,boolean reorder) throws MPJExeption {...}...}publi lass Interomm extends Comm {publi Objet lone() { ... }// Inter-ommuniationpubli int remoteSize() throws MPJExeption {...}publi Group remoteGroup() throws MPJExeption {...}publi Intraomm merge(boolean high) throws MPJExeption {...}...}A.4 Oppubli lass Op {Op(UserFuntion funtion, boolean ommute) throws MPJExeption {...}void finalize() {...}...}A.5 Grouppubli lass Group {// Group Managementpubli int size() throws MPJExeption {...}publi int rank() throws MPJExeption {...}publi int [℄ translateRanks(Group group1, int [℄ ranks1) throws MPJExeption {...}publi stati int ompare(Group group1, Group group2) throws MPJExeption {...}publi stati Group union(Group group1, Group group2) throws MPJExeption {...}publi stati Group intersetion(Group group1, Group group2) throws MPJExeption {...}publi stati Group differene(Group group1, Group group2) throws MPJExeption {...}publi Group inl(int [℄ ranks) throws MPJExeption {...}publi Group exl(int [℄ ranks) throws MPJExeption {...}publi Group rangeInl(int [℄ [℄ ranges) throws MPJExeption {...}publi Group rangeExl(int [℄ [℄ ranges) throws MPJExeption {...}publi void finalize() {...}...} 15

A.6 Statuspubli lass Status {publi int index ;// Bloking Send and Reeive operationspubli int getCount(Datatype datatype) throws MPJExeption {...}publi int getSoure() throws MPJExeption {...}publi int getTag() throws MPJExeption {...}// Nonbloking ommuniationpubli int getIndex() throws MPJExeption {...}// Probe and Canelpubli boolean testCanelled() throws MPJExeption {...}// Derived datatypespubli int getElements(Datatype datatype) throws MPJExeption {...}...}A.7 Request and Prequestpubli lass Request {// Nonbloking ommuniationpubli Status wait() throws MPJExeption {...}publi Status test() throws MPJExeption {...}publi Request() throws MPJExeption {...}publi void finalize() {...}publi boolean isVoid() throws MPJExeption {...}publi stati Status waitAny(Request [℄ arrayOfRequests) throws MPJExeption {...}publi stati Status testAny(Request [℄ arrayOfRequests) throws MPJExeption {...}publi stati Status [℄ waitAll(Request [℄ arrayOfRequests) throws MPJExeption {...}publi stati Status [℄ testAll(Request [℄ arrayOfRequests) throws MPJExeption {...}publi stati Status [℄ waitSome(Request [℄ arrayOfRequests) throws MPJExeption {...}publi stati Status [℄ testSome(Request [℄ arrayOfRequests) throws MPJExeption {...}// Probe and anelpubli void anel() throws MPJExeption {...}...}publi lass Prequest extends Request { 16

// Persistent ommuniation requestspubli void start() throws MPJExeption {...}publi stati void startAll(Request [℄ arrayOfRequests) throws MPJExeption {...}...}A.8 Datatypepubli lass Datatype {// Derived datatypespubli Datatype ontiguous(int ount) throws MPJExeption {...}publi Datatype vetor(int ount, int bloklength, int stride) throws MPJExeption {...}publi Datatype hvetor(int ount, int bloklength, int stride) throws MPJExeption {...}publi Datatype indexed(int [℄ arrayOfBloklengths,int [℄ arrayOfDisplaements) throws MPJExeption {...}publi Datatype hindexed(int [℄ arrayOfBloklengths,int [℄ arrayOfDisplaements) throws MPJExeption {...}publi stati Datatype strut(int [℄ arrayOfBloklengths,int [℄ arrayOfDisplaements,Datatype [℄ arrayOfTypes) throws MPJExeption {...}publi int extent() throws MPJExeption {...}publi int size() throws MPJExeption {...}publi int lb() throws MPJExeption {...}publi int ub() throws MPJExeption {...}publi void ommit() throws MPJExeption {...}publi void finalize() {...}...}A.9 Classes for virtual topologiespubli lass Cartomm extends Intraomm {publi Objet lone() { ... }// Topology Construtorsstati publi dimsCreate(int nnodes, int [℄ dims) throws MPJExeption {...}publi CartParms get() throws MPJExeption {...}publi int rank(int [℄ oords) throws MPJExeption {...}publi int [℄ oords(int rank) throws MPJExeption {...}publi ShiftParms shift(int diretion, int disp) throws MPJExeption {...}publi Cartomm sub(boolean [℄ remainDims) throws MPJExeption {...}publi int map(int [℄ dims, boolean [℄ periods) throws MPJExeption {...}17

}publi lass CartParms {// Return type for Cartomm.get()publi int [℄ dims ;publi booleans [℄ periods ;publi int [℄ oords ;}publi lass ShiftParms {// Return type for Cartomm.shift()publi int rankSoure ;publi int rankDest ;}publi lass Graphomm extends Intraomm {publi Objet lone() {...}// Topology Construtorspubli GraphParms get() throws MPJExeption {...}publi int [℄ neighbours(int rank) throws MPJExeption {...}publi int map(int [℄ index, int [℄ edges) throws MPJExeption {...}}publi lass GraphParms {// Return type for Graphomm.get()publi int [℄ index ;publi int [℄ edges ;}

18

	MPJ: MPI-like message passing for Java
	Recommended Citation

	tmp.1285694644.pdf.pOPH_

