mPL6: Enhanced Multilevel Mixed-Size Placement

Tony F. Chan,! Jason Cong, Joseph R. Shinnerl, Kenton Sze," and Min Xie
{cong,romesis,shinnerl,xie}@cs.ucla.edu

UCLA Computer Science Department
t UCLA Mathematics Department

ABSTRACT

The multilevel placement package mPL6 combines improved
implementations of the global placer mPL5 (ISPD05) and
the XDP legalizer and detailed placer (ASPDACO06). It
consistently produces robust, high-quality solutions to diffi-
cult instances of mixed-size placement in fast and scalable
run time. Best-choice clustering (ISPD05) is used to con-
struct a hierarchy of problem formulations. Generalized
force-directed placement guides global placement at each
level of the cluster hierarchy. During the declustering pass
from coarsest to finest level, large movable objects are gradu-
ally fixed in positions without overlapping with one another.
This progressive legalization of large objects during contin-
uous optimization supports determination of a completely
overlap-free configuration as close as possible to the contin-
uous solution. Various discrete heuristics are applied to this
legalized placement in order to improve the final wirelength.

Categoriesand Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—placement and
routing; G.4 [Mathematical Software]: Algorithm De-
sign and Analysis; J.6 [Computer-Aided Engineering)]:
Computer-Aided Design

General Terms
Algorithms, Design

Keywords

Mixed-Size Placement, Legalization, Multilevel Optimiza-
tion, Force-Directed Placement, Helmholtz Equation

1. INTRODUCTION

mPL6 consists of three basic ingredients: global place-
ment by multilevel nonlinear programming [8], discrete graph-
based macro legalization and greedy standard-cell legaliza-
tion [10], and detailed placement [10]. It is designed for
speed and scalability, low wirelength results, adaptability to
complex constraints, and robustness under low white space.
Compared to the 2005 implementation [7], the main im-
provements to mPL6 are as follows.

(i) improved clustering by the “best-choice” heuristic [1];
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(ii) 2x reduction in the number of levels of clusters;
(iii) more aggressive weighting of wirelength relative to over-
lap removal during optimization at each level;

a faster single-V-cycle iteration flow;

(iv)
)

gradual determination of the locations of large objects
earlier in the multilevel flow;

(vi)
(vii)

density-sensitive legalization and detailed placement;

improved handling of unconnected filler cells support-
ing convergence to nonuniform module-area distribu-
tions.

Given a weighted hypergraph-netlist circuit representa-
tion H = (V, E), mPL6 formulates constrained placement
as a nonlinear programming problem of weighted wirelength
minimization subject to generalized density constraints. For
computational modeling, the placement region R is divided
into a regular bin grid. Let  denote an arbitrary location in
R, let x denote the vector holding cells’ current locations in
R, and let z; denote the location of the ith cell (z; is also a
vector, with ng components, ng equal to the number of spa-
tial dimensions — 2 or 3). Constraint values d; are scalar
fields over R that need be determined only to the resolution
appropriate for a given level of hierarchy. Symbolically, we
express placement as follows.

e cells i,j€e

min - fu(z) = > wle)t(e)
nets e
= D nets  w(€) max |(@i)k — («’Ej)kl} : (1)

subject to maxzer di(z) < u;
for ¢ € {overlap, routability, temperature, ...}

The net weights w(e) can be chosen dynamically to capture
a wide variety of objectives, including timing performance.
Function #(e) is an estimate of the wirelength of net e. The
u; are fixed upper bounds.

The functions w, £, and d; are continuous but not neces-
sarily smooth. Some facts from partial differential equations
(PDE) are used to obtain smooth reformulations of the con-
straints. The Poisson equation associates a smooth, scalar
potential function ¢(Z) with a given density function d(Z):
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As observed by Eisenmann and Johannes [11], the Poisson

equation applies generally to a wide variety of “supply-and-
demand” formulations of placement constraints. Although
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density gradients Vd; often do not exist, density-balancing
forces V¢ always exist and can be calculated in fast linear
time by good numerical solvers [15].

2. GLOBAL PLACEMENT

Global placement in mPL6 is based on multilevel opti-
mization (Figure 1): recursive aggregation followed by in-
terleaved optimization and disaggregation at every level [3,
9]. The multilevel hierarchy is built by best-choice cluster-
ing [1]; the target ratio of the number of nodes at each level
to its adjacent coarser level is set to 4x. Intralevel optimiza-
tion, known as relazation, is by generalized force-directed
placement [8], described below. Disaggregation is called
interpolation and is based on ideas from Algebraic Multi-
grid [5, 6]. Multilevel optimization strongly supports (i)
scalability and parallelizability; (ii) correct handling of com-
plex constraints, including timing, routability, heat dissipa-
tion, noise, etc.; (iii) the incorporation of multiple, diverse,
and complementary optimization heuristics; (iv) adaptabil-
ity to rapidly changing formulations of multiple objectives
and constraints.

Initial Fine-Grain Problem

Final Fine-Grain Problem
Relaxation; Detailed

\ aggregate Placement.
/ interpolate

\ aggregate . Relaxation
interpolate

ete. ... ete. ...

\ aggregate / interpolate
: Intermediate Level
\ aggregate / interpolate

Coarse-Grain Problem
Multiple, detailed, global
solution candidates

Figure 1: Multilevel Optimization V-Cycle and It-
erated Multilevel Flow

mPL6’s approach to placement generalizes the force-directed

framework of Eisenmann and Johannes in two ways [8].
First, mPL6 incorporates force-directed placement within
a multilevel-placement engine as intralevel relaxation. This
approach leads to improvement in both scalability and so-
lution quality. Second, mPL6 reformulates force-directed
placement within a systematic nonlinear-programming model.

This reformulation gives a systematic means of scaling density-

balancing forces before combining them with the wirelength
gradients and removes the need for extensive ad-hoc tuning.
A brief overview of the reformulation is given below. For
further details, see the paper on mPL5 [8].

At each level of the cluster hierarchy, placement objectives
and constraints are approximated by smooth functions. A
bounding-box weighted half-perimeter wirelength objective
is approximated by the log-sum-exp model [16, 13]

W(x,y) =
v > |log ¥ exp(wk/v) +log X exp(—zk/v)
nets ec E nodes vi€e vk €e

+ log > exp(yx/7v) +1log > exp(—yx/7) |,

v €e v €e
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where x and y denote vectors of cell x- and y-coordinates.
The smaller the parameter -, the more accurate the approx-
imation. Area-density constraints are imposed separately in
each rectangular bin of a uniform grid laid over the place-
ment region. Let D;; denote the cell-area density of bin
B;; and let K denote total cell area divided by the total
placement area. The area-density constraints are initially
expressed simply as D;; = K over all bins B;;. Viewing
the D;; as a discretization of a continuous density func-
tion d(z,y) defined at points (z,y) € R, these constraints
are smoothed by approximating d by the solution ¥ to the
Helmholtz equation

{ AQ/’(% y) _ij;w(x7y) = d(x7y)7

0, (z,y)€0R
where € > 0, v is the outer unit normal, R is the boundary
of the placement region R, d(z,y) is the continuous density
function at a point (x,y) € R, and A is the Laplacian opera-

tor A = 86—;2 + %
fined by solving (3) is well defined, because (3) has a unique
solution for any ¢ > 0. As the solution of (3) has two more
derivatives than d(z,y) (e.g., [12]), ¥ is a smoothed ver-
sion of d. Discretized versions of (3) can be solved rapidly
by fast numerical multilevel methods. Recasting the den-
sity constraints as a discretization of ¢ gives the nonlinear
programming problem

(z,y) € R (3)

ov

. The smoothing operator A7 d(x,y) de-

s.t. Yy = —K/E,

where the 1);; are obtained by solving (3) with the discretiza-
tion defined by the given bin grid. Interpolation from the ad-
jacent coarser level defines a starting point. This nonlinear-
programming problem is solved by the Uzawa iterative algo-
rithm [2], which does not require second derivatives or large
linear-system solves.

When available white space exceeds 2% of the area of
placement region, unconnected artificial “filler” cells are added
to underutilized regions in order to allow the given, inter-
connected cells to assume non-uniform configurations. The
formulation of both the initial placement and subsequent
handling of these filler cells is still under investigation.

min W (x,y) 1<i<m1<j<n,

3. LEGALIZATION

mPL6 combines top-down hierarchical macro legalization
and flat, post-global-placement legalization of standard cells.
Following iterative improvement at each cluster level, all
overlap among movable macros larger than approximately
25 times the average cluster area is removed, and these large
macros are subsequently held fixed during iterative refine-
ment at finer levels. However, all movable macros are al-
lowed to move at subsequent levels during macro legaliza-
tion at those levels. On test cases with low white space (e.g.,
[18]), this gradual macro legalization is observed to reduce
final wirelength by 10%-15%.

The method of removing overlap among macros is based
on a constraint-graph formulation [10] similar to those used
in floorplanning. Two directed acyclic graphs are constructed,
G}, representing horizontal adjacency (z-direction) and G,
representing vertical adjacency (y-direction). Vertices in the
graphs are macros in a given global placement; edges rep-
resent relative order along a coordinate direction. Edge e;;
in G indicates that macro v; lies to the left of v;; pairs
of nearby macros are constrained not to overlap by either



an edge in G, or an edge in G, but not both. As in tim-
ing analysis, the edges are weighted to facilitate calculation
of critical paths, i.e., sequences of adjacent macros whose
combined total length is maximal. Iterations in the macro
legalization proceed by moving edges between G}, and G, in
a way that reduces critical path lengths until all macros fit in
the given placement region. E.g., moving an edge from G}, to
G, allows adjacent macros to overlap in the horizontal direc-
tion but forces them not to overlap in the vertical direction,
thus shortening the longest path in GG;, and possibly increas-
ing some path in G,,. Edges to move are selected as cut sets
from min-cut partitioning on the zero-slack subgraphs of G,
and G,. These subgraphs consist of all modules and edges
occurring in paths exceeding the given core-region width or
length, respectively.

Once legal, non-overlapping relative x and y orderings
of all large macros at a given cluster level has been deter-
mined, the actual locations of these macros are determined
by displacement-minimizing linear programming which pre-
serves the given x and y orderings.

Legalization of standard cells and small macros proceeds
only on the finest level, after global placement, and after
all large-macro locations have been determined. To legalize
these remaining movable small objects (collectively called
“cells”), a greedy technique similar to that in [14] is ap-
plied, but with both front-end and back-end contours of
placed objects maintained. Cell displacement costs are a
combination of scaled half-perimeter wirelength increase and
spatial displacement from their positions in the global place-
ment.! Depending on cells’ relative locations and the order
in which they are legalized, some subregions between fixed
objects may not have sufficient available space for the cells
assigned to them during this step. In this case, network-
flow-based cell redistribution [17, 4] is applied to even out
the area density between different chip subregions, with dy-
namic programming used to select cells for movement be-
tween subregions.

4. DETAILED PLACEMENT

Detailed placement begins only once a strictly legal con-
figuration of macros and cells is obtained. Its objective is
the reduction of scaled half-perimeter wirelength over both
macros and cells. We apply window-based cell swapping to
further reduce wirelength. All the cell permutations within
the window are examined, and the one giving the shortest
scaled wirelength is accepted. The window will be slid by
half of its width after the swapping within it is done.

5. SUMMARY

Compared to the 2005 implementation of mPL6 on the
ISPD 2005 suite, the current, 2006 implementation produces
gains of approximately 10-30% when both placers are run
in default mode. The 2005 contest results for mPL6 were
obtained only after instance-specific parameter tuning. The
results are shown in Table 1 below.

'For the ISPD 2006 placement contest entry, the wirelength
scaling incorporates runtime and the 60% bin-density-
utilization target.
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mPL6-2006 mPL6-2005 WL
circuit DP HPWL cpu || Default | Tuned
adaptecl 7.87TE407 3066 1.14 1.07
adaptec2 9.65E4-07 3518 1.04 1.03
adaptec3 2.21E408 11700 1.28 1.14
adaptecd 2.00E+408 13643 1.03 1.02
bigbluel 9.87E+07 4100 1.05 1.02
bigblue2 1.54E408 11857 1.30 1.17
bigblue3 3.54E408 19845 1.24 1.09
bigblue4 8.46E+08 40901 1.16 1.09

Table 1: Improvement in mPL6-2006 (default mode)
vs. mPL6-2005 (default and hand-tuned). The run
time also has been reduced over 3x.
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