
 Open access Journal Article DOI:10.1007/S10550-007-0083-8

mPower -- a component-based development framework for multi-agent systems to
support business processes — Source link

J. W. Shepherdson, Habin Lee, P. Mihailescu

Published on: 01 Jul 2007 - Bt Technology Journal (Kluwer Academic Publishers)

Topics: Multi-agent system, Interaction protocol, Component (UML), Component-based software engineering and
Software development

Related papers:

 Infrastructure issues and themes for scalable multi-agent systems

 Multi-agent Systems Society for Power and Energy Systems Simulation.

 Cooperative Business Intelligence Model Using a Multiagent Platform

 Modelling the Replication Management in Information Systems

 Building adaptive context-aware service-based smart systems

Share this paper:

View more about this paper here: https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-
4kz6bclh87

https://typeset.io/
https://www.doi.org/10.1007/S10550-007-0083-8
https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87
https://typeset.io/authors/j-w-shepherdson-2tv5iihis7
https://typeset.io/authors/habin-lee-3p7lt09t5v
https://typeset.io/authors/p-mihailescu-55td6u2610
https://typeset.io/journals/bt-technology-journal-3mpw86zj
https://typeset.io/topics/multi-agent-system-37vxqxp8
https://typeset.io/topics/interaction-protocol-m87my5t7
https://typeset.io/topics/component-uml-3bq2ifwa
https://typeset.io/topics/component-based-software-engineering-34zosnte
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/papers/infrastructure-issues-and-themes-for-scalable-multi-agent-3tyukz6tlq
https://typeset.io/papers/multi-agent-systems-society-for-power-and-energy-systems-3pidcyu8k5
https://typeset.io/papers/cooperative-business-intelligence-model-using-a-multiagent-ybst9o5tu1
https://typeset.io/papers/modelling-the-replication-management-in-information-systems-4r2wq1xj9p
https://typeset.io/papers/building-adaptive-context-aware-service-based-smart-systems-1mqi7a9afw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87
https://twitter.com/intent/tweet?text=mPower%20--%20a%20component-based%20development%20framework%20for%20multi-agent%20systems%20to%20support%20business%20processes&url=https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87
https://typeset.io/papers/mpower-a-component-based-development-framework-for-multi-4kz6bclh87

mPower: A Component-based Development

Framework for Multi-agent Systems to Support

Business Processes

H Lee, P Mihailescu, and J. W. Shepherdson

One of the obstacles preventing the widespread adoption of multi-agent systems in industry is the difficulty of implementing

heterogeneous interactions among participating agents via asynchronous messages. This difficulty arises from the need to

understand how to combine elements of various content languages, ontologies, and interaction protocols in order to construct

meaningful and appropriate messages. In this paper mPower, a component-based layered framework for easing the

development of multi-agent systems, is described, and the facility for customising the components for reuse in similar domains

is explained. The framework builds on the JADE-LEAP platform, which provides a homogeneous layer over diverse operating

systems and hardware devices, and allows ubiquitous deployment of applications built on multi-agent systems both in wired

and wireless environments. The use of the framework to develop mPowermobile , a multi-agent system to support mobile

workforces, is reported.

1 Introduction

Multi-agent system technology has been used on many

occasions to automate business processes [][][][]. In such

cases, a business process is frequently viewed as a collection

of autonomous problem solving entities that negotiate with

one another and come to a mutually acceptable agreement

detailing how to co-ordinate their independent sub-activities.

Multi-agent system technology is preferred as it is deemed to

provide greater immunity against changes in business

process definition compared with other computing

technologies [6].

Not withstanding these advantages, the

development of multi-agent systems is considered difficult

because of its reliance on message-based communication.

The creation and interpretation of a message requires an

understanding of agent communication languages and their

associated ontologies, content languages and interaction

protocols [], which can be difficult for novice agent

programmers to grasp. Furthermore, due to a reliance on

asynchronous communication, the management of

conversations among participating agents can be a burden

for developers.

This paper describes a component-based framework that is

intended to ease the development of multi-agent systems

when automating business processes. This framework

utilises reusable conversational components (C-COMs) that

provide services for the execution of business tasks via

interaction with other agent roles (such as ‘Initiator’ or

‘Respondent’ which are described in section 3.2). These C-

COMs hide all the message composition and interpretation

details from developers and manage the interaction states

between collaborating agents. This framework also provides

a set of generic workflows that consists of one or more C-

COMs, which can be used as templates to automate domain-

or organisation-specific business processes. The generic

workflows can be used as an architectural pattern [], which is

applied to business processes that have different

requirements by replacing (or customising) one or more of

their components. The framework is based on JADE-LEAP

[] and is known as ‘mPower’. This paper consists of five

sections. The next section briefly reviews related work,

whilst section 3 describes the mPower framework which

shows the relationship between components, architecture,

and applications. Section 4 illustrates how a multi-agent

system (mPowermobile) to support mobile workforces, was

derived from the mPower framework. Finally, section 5

summarises this paper.

2 Literature review

Multi-agent systems are used as a core technology in various

applications, ranging from information retrieval [] to

business process automation []. Many multi-agent system

platforms are based on Java and must be run on

‘heavyweight’ (e.g. desktop or server) devices using Java 2

Standard Edition (J2SE) - examples include the Comtec

Agent Platform [] and Zeus []. This paper favours JADE-

1

LEAP [][] as a multi-agent system implementation platform

as it enables the key components of the system to run on a

wide range of computing devices. Therefore a mobile worker

can use a highly portable device (such as a PDA or mobile

phone) to access business process automation applications,

in preference to a luggable laptop computer when working

‘up poles and down holes’ or on a Customer’s premises.

Agent technology has long been used to support

business processes. Huhns and Singh [] summarise the state

of the art in agent-based workflows. Shepherdson et al. []

use a multi-agent system for the co-ordination of cross-

organisational workflows. Jennings et al. [] insist that a

multi-agent system has the necessary features for the support

of modern dynamic business processes and propose a

suitable multi-agent system architecture.

Multi-agent system reuse has been studied in some

detail. Kendal et al. [] applied object oriented design patterns

to implement agent concurrency, collaboration, and

reasoning. They put forward an agent pattern or architecture

which can be used for the development of multi-agent

systems in similar domains. On the other hand, Brazier et al.

[] propose a generic co-operative agent model that can be

refined to generate application-specific multi-agent systems.

The LEAP project introduced the concept of a

generic service component (GSC) [], which is a reusable

software component that provides a service through message

exchange with sub-components that implement one or more

agent roles. The C-COMs described within this paper are an

extension of the LEAP GSC concept.

A component-based approach to supporting

business processes has already been adopted by some

commercial companies. IBM’s SanFrancisco [] is a

framework that provides reusable components such as

business objects, functions, and core workflows. SAP [] also

provides reusable business components from which a

business application can be easily customised. The mPower

framework has a similar layered architecture to

SanFrancisco. However, the components used in mPower

have a different structure compared to those in SanFrancisco

and SAP because they abstract and implement the business

conversations among process actors, rather than business

objects or functions.

Foundation Layer

(Message Transportation, Ontology,

Language, Behaviours)

Components Layer

(Ontology Components,

Service Components)

Generic Workflow

Layer

(Job mgt, Travel mgt.,

etc.)

Application

Layer

(a)

MH MH
IPSIPS

AP APII

EI

II
Initiator Respondent

ISMISM

(b)

(c)

Element

Content

Element

Predicate Content

Element

List

Term

Agent

Action

IRE Concept

Primitive

Aggregate

Variable

Fig 1 (a) layered architecture of the mPower framework, (b) structure of a conversational component,

(c) hierarchy of ontology element in Jade [].

3 mPower: A reusable framework for the
development of multi-agent systems

The basic principle of mPower for supporting a business

process is to view the latter as a linked set of

conversations among participating process actor roles.

From this point of view, the application reuse means the

reuse of conversations occurring in the target

application. Hence the rationale of using a MAS as a

key technology to support business processes.

Fig. 1(a) shows a layered view of the mPower

framework, which is used to develop component-based

multi-agent systems. This framework consists of four

layers: foundation, components, generic workflow and

applications. The foundation layer contains all the

supporting functionality for a multi-agent system, such

as message transportation, ontology support, language

support etc.

The components layer consists of basic

ontology and C-COMs that are common across a

number of mobile workforce applications. The ontology

components are reusable ontology items such as

Customer, Job, and Shift etc. Each C-COM provides a

2

standard mechanism for accessing a service such as

work assignment, route planning and attendance

management.

The ontology components are used by C-

COMs to standardise and understand the contents of

service request and service response messages. The

generic workflow layer is a set of pre-composed

components (both of type ontology and service) that

support generic business processes. At the application

layer, a system is a customised collection of

components from the layers beneath it.

3.1 Foundation layer

The mPower framework has been implemented using

JADE-LEAP, which provides the foundation services,

thereby reducing the effort required to develop multi-

agent systems. JADE-LEAP provides the following

benefits: First, it complies with the FIPA Abstract

Architecture Specification; Second, it provides agent

management services such as agent

registration/deregistration and support for agent

lifecycle management; Third, application developers are

able to extend a generic agent provided by the JADE-

LEAP platform and customise it to meet the specific

requirements of a given application. The generic agent

is equipped with a behaviour scheduler which controls

the goal achieving behaviour of the agent; Finally,

JADE-LEAP provides support for the use of FIPA agent

communication languages used during inter-agent

communication, as it provides ontology support, allows

the use of content languages (FIPA SL and LEAP) and

comes complete with a number of FIPA-compliant

interaction protocols. With this support, developers are

more easily able to create messages that are exchanged

asynchronously among agents.

3.2 Components layer

The components layer consists of two types of

components (ontology and conversational) which are

based on the foundation services. The implementation

of the ontology components - an abstraction of the

JADE-LEAP common ontology items - is based on the

underlying ontology support schema. The hierarchy of

the ontology items supported by JADE-LEAP is shown

in Fig 2 (c). The ontology components map the common

ontology items into the hierarchy’s predefined

categories and detail the attributes of the items in target

domains, whereas C-COMs abstract and implement the

common message-based interactions among

participating agents in target domains. The content of a

message refers to the ontology components in order to

represent the intention of the message sender. From an

application developers’ point of view, a C-COM is a

black box that hides the details of the creation and

interpretation of a set of messages that need to be

exchanged by agents in order to achieve a service goal.

The two main building blocks of a C-COM are

an interaction protocol and the role components. The

interaction protocol defines the sequence of

asynchronous messages sent between the role

components, and the role components perform the

actions necessary at each stage of the interaction

protocol to achieve the service goal. The role

components are installed into, and executed by, one or

more agents. Fig. 1(b) shows the internal structure of a

C-COM. There are two generic role components for

each C-COM - Initiator and Respondent. The Initiator

component starts an interaction by sending a message

and the Respondent component is activated when it

receives a message from an Initiator component. These

two generic role components can be specialised

according to the requirements of a given C-COM. Each

role component consists of an Interaction Protocol

Scheduler (labelled ‘IPS’ in Fig. 1), a Message Handler

(MH), an Action Pool (AP) and one or more Interfaces.

Each role component is in effect a Finite State Machine,

driven by internal state changes, and has a different set

of internal states according to the role the component

plays in the interaction protocol employed for a given

C-COM. The Interaction Protocol Scheduler schedules

and executes all the actions stored in the Action Pool of

a role component according to internal state changes.

For this purpose, each role component maintains an

Interaction State, which is managed by the Interaction

State Manager (ISM). The Message Handler is

responsible for validating outgoing messages and

interpreting incoming messages. A role component

provides a number of interfaces (i.e. sets of method

signatures) for customisation purposes. An Initiator role

component has two kinds of interfaces: External and

Internal (EI and II respectively). An External Interface

(which has a single method, named ‘execute’) defines

the input data and the service result which is returned to

the service consumer. An Initiator role component

contains the implementation of the External Interface.

The External Interface is a trigger for the entire C-

COM. Calling the execute method in the External

Interface activates the Initiator role component which

then activates all its other Respondent role components

in order. An Internal Interface is called by the role

component itself, and an agent (which installs the role

component) provides the implementation of that

interface. For example, if a Respondent needs access to

a knowledge source to retrieve information to populate a

response message, the developer should provide the

Respondent component with an implementation of an

interface when s/he installs the Respondent component

in an agent. Then the Respondent component interacts

with the application-specific interface implementation

to retrieve the required information. From this,

applications supporting different mobile business

processes can customise the same C-COM by providing

different implementations of the interface, which reflect

application specific contexts such as different

3

knowledge sources, business rules, and legacy system

APIs etc.

The implementation of C-COM was based on

the interaction protocol support within JADE-LEAP, as

the latter provides useful components that can be

extended to implement application-specific interaction

protocols: namely Achieve Rational Effect

Initiator/Respondent and Contract Net

Initiator/Respondent. These components have been

extended by specialising the actions executed at each

stage of the interaction protocol (via changes to agent

behaviour and ontology component selection) for each

target business process.

3.3 Generic workflow layer

A generic workflow is a set of linked C-COMs,

which can be reused to support similar business

processes in the same domain. shows an example of

generic workflow components for job management.

Each rectangle represents a C-COM and double

arrowhead represents the control transition between C-

COMs. The first conversation is between the roles Job

Distributor and Job Owner. Then, the Job Owner has

two options to start the next conversation, that is, Job

Trade or Job Update. The Job Owner role assumes a Job

Giver role in the JobTrade conversation and a Job

Executor role in the JobUpdate conversation. The

JobClose conversation can be reached only from the

JobUpdate conversation. This control flow enables an

agent to determine the next conversation that a human

worker might want to execute.

Job

Owner

Job

Giver

Job

Taker

Job

Executor Job

Manager

Job

Executor

Job

Manager

JobDelivery

JobTrade

JobUpdate

JobClose

T1

T2

T3

T4

Job

Distributor

Fig 2 A generic workflow component for job

management.

The following shows an example specification

of the generic workflow shown in Fig 2.

<Workflow name=”job management cycle”>

<C-COM name=”JobDelivery”>

<Role name=”JobDistributor” type=”Initiator”/>

<Role name=”JobOwner” type=”Respondent” />

</C-COM>

<C-COM name=”JobUpdate”>

<Role name=”JobExecutor” type=”Initiator”/>

<Role name=”JobManager” type=”Respondent” />

</C-COM>

<C-COM name=”JobTrade”>

<Role name=”JobGiver” type=”Initiator”/>

<Role name=”JobTaker” type=”Respondent” />

</C-COM>

<C-COM name=”JobClose”>

<Role name=”JobExecutor” type=”Initiator”/>

<Role name=”JobManager” type=”Respondent” />

</C-COM>

<Transition id=”T1” type=”XOR”>

<Resource id=”ontology.job_management.Job” />

<PreConversation name=”JobDelivery”

 linker=”JobOwner”/>

<PostConversation name=”JobUpdate”

 linker=”JobExecutor” />

<PostConversation name=”JobTrade”

 linker=”JobGiver”/>

</Transition>

<Transition id=”T2” type=”XOR”>

<Resource id=”ontology.job_management.Job” />

<PreConversation name=”JobUpdate”

 linker=”JobOwner”/>

<PostConversation name=”JobUpdate”

 linker=”JobExecutor” />

<PostConversation name=”JobTrade”

 linker=”JobGiver”/>

</Transition>

…

</Workflow>

Fig 3 Generic workflow specification example.

From Fig 3, it can be seen that each C-COM is

represented by a name, initiator role, and respondent

role. A Transition tag specifies a transition from one

conversation (specified by the PreConversation tag) to

another (specified by the PostConversation tag). The

selection of a conversation from multiple post-

conversations is done by checking the relationship

4

between the pre-conversation and potential post-

conversations. From the above specification, the

transition “T1” mandates that only one post-conversation

can be performed. Also job information (accessible via

the ontology.job_management.Job attribute in the

ontology base of the agent) is transferred from the pre-

conversation to the post-conversation. On the other

hand, the transition “T2” states that the JobUpdate

conversation can be performed iteratively (as JobUpdate

is one of the possible post-conversations) before it

transits to the JobClose post-conversation.

Each workflow specification is shared by all

the agents participating in that workflow, and is used to

schedule the relevant C-COMs at run time. For

example, if an agent receives a job assignment for its

user as the result of the JobDelivery conversation, then

it enables the GUI menu items that allow its user to

launch the JobTrade and JobUpdate conversations,

while disabling the menu item that launches the

JobClose conversation.

5

Table 1: Identified services for mobile workforces.

Domain Services Description

Teamwork

Coordination

Schedule

Work

Request

Given a pool of work-requests, enable a mobile worker to add a work-request to his/her

current schedule. The pool of work-requests that a mobile worker sees may not be all of

those currently available. Only those work requests that a particular mobile worker is

can perform will be shown to him/her (this can be due to constraints imposed by the

current schedule, by the mobile worker’s experience and qualifications, and so on.)

GenerateWork

Schedule
Given a set of work requests, find a work schedule in which all of the constraints in the work

requests (times, distances, etc) are satisfied and find routes

TradeWork

Request

Enables mobile workers to swap work-requests from their current schedules.

Coordinate

SocialActivity

Enables mobile workers to arrange social meetings such as a lunch during the working day.

This may provide facilities for suggesting possible locations for lunch, determining who can

attend lunch at some location (given constraints of time and distance), finding routes to

locations and so on.

SwapShift Each Mobile Worker has an attendance pattern that defines the shifts they will work. A

MW wants to swap a shift on some day for some other shift (on possibly the same day).

Trade

Overtime

A Mobile Worker has registered for overtime that they are no longer able to complete. The

deadline for cancelling overtime has past, so the MW wants to find another MW willing to

do the overtime.

RequestLeave

Change

A Mobile Worker wants to book leave for some date but is declined due to colleagues

having leave booked for that date. The Mobile Worker can issue a request for colleagues to

change the dates of their leave.

CallFor

Overtime

Registrations

When a lot of unforeseen and urgent work arises, a Manager can request that Mobile

Workers register for Overtime. This may be further refined to allow the Manager to

target Mobile Workers with specific skills.

CallToCancel

Leave

Bookings

When a lot of unforeseen and urgent work arises, a Manager can request that Mobile

Workers forego LeaveBookings. This may be further refined to allow the Manager to

target Mobile Workers with specific skills.

Request

Expertise

When a mobile worker has a problem that they cannot solve alone, this service will

enable them to ask for help with the problem from an expert in the given problem area.

Communicate

WithMentor

As an inexperienced employee will often benefit from a mentoring relationship with a

more experienced colleague, this service component enables mobile workers to

communicate with a mentor.

MakeCollecti-

veDecision

Called by other agent service components in order to mediate the interactions between

mobile workers when a collective decision is necessary.

Travel

Management

PlanRoute Given two locations A and B, calculate a route between A and B, subject to any given

constraints (e.g. shortest distance, least time taken, must pass through intermediate

‘waypoints’ etc.)

RePlanRoute Following the initial generation of a route plan, the system identifies that the mobile

worker is no longer on schedule. This may be due to a number of reasons: the work

schedule being changed, new traffic information being received, the mobile worker

being delayed, and so on.

EstimateRoute

Cost

Given a route consisting of a set of legs and using information about current conditions,

calculate the cost of the route in terms of nominated dimensions such as time, mileage,

etc.

Knowledge

Management

Decompose

Job

Given a job request, identify one or more work-requests that need to be issued and

performed in order for the job to be completed.

FindRelevant

Information

Called by other agent service components in order to proactively provide mobile workers

with information relevant to the performance of their work.

Update

Knowledge

Base

Enable a mobile worker in the field to add knowledge to the knowledge base. Types of

knowledge identified so far include feedback from the customer, work reports,

technical experience and information about the customer.

FindExpert Given a problem, use the knowledge base to identify a colleague who is likely to be able to

help in the given problem domain

6

Fig 4 Some of the ontology components used to support mobile workforces.

4. mPowermobile : Customising mPower for mobile
workforces

The mPower customisation process, to derive an

application specific multi-agent system, consists of four

steps: Identification of Services, Identification and

Customisation of Components, Agent Identification, and

Component Distribution. This sub-section details the

process by illustrating how the generic components (C-

COM and ontology components) and workflows were

developed for mPowermobile, a multi-agent system to support

mobile workforces.

4.1 Identification of services

The first step was to identify the services required in the

target application. Consideration of the nature and activities

of mobile workforces pointed to four important service

groupings.

• Teamwork co-ordination - empowering

individuals to collectively co-ordinate activities

(e.g. by trading jobs, automatically negotiating for

work, and expressing personal preferences) within

an agreed policy framework; facilitating

‘buddying’ between mobile workers where team

members can exchange tacit knowledge, for

example between experienced and trainee workers.

• Travel management - providing up-to-date

information and guidance on travel planning.

Ensuring travel time is minimised, thus saving

resource and reducing traffic congestion. The

Travel Management service anticipates a mobile

worker’s travel needs, providing guidance and

time estimation so as to synchronise the

movements of virtual teams working over vast

geographic areas.

• Knowledge management - anticipating a mobile

worker’s knowledge requirements by accessing

and customising knowledge (based on the mobile

worker’s skill, location, current job and type of

display) and providing access to collective

knowledge assets in the team (e.g. by putting

novices in touch with experts, as and when

required).

• Job Management – providing support for

delivering jobs to assigned workers on the fly,

updating job progress status, and closing

assigned jobs with complete job closure data.

On closer inspection, each of the Job

Management services turned out to be similar to services

in one of the other three groupings, and as such could be

developed by simply customising other services. Table 1

details the services from the three remaining groupings.

7

Equipment

name : String

Party

name : String
CustomerKnowledge

knowledgeOf : Customer

Customer

hasService : Service
10..1 10..1

Service

name : String

0..*

1..*

0..*

1..*

WorkItemKnowledge

knowledgeOf : WorkItem

Tool

ServiceProvider

providesService : Service

hasWorkRequestPool : WorkRequestPool

1..*

1

1..*

1

Employee

employeeReference : String

hasManager : Manager

hasMentor : Employee

hasWorkSchedule : WorkSchedule

hasAttendancePattern : AttendancePattern

hasLeaveAllocation : Integer

hasLeaveBooking : LeaveBooking

hasOvertimeRegistration : OvertimeRegistration

hasAbility : Knowledge

hasP references : EmployeePolicy

employedBy : ServiceProvider

0..1

0..*

0..1

hasMentor
0..*

1
0..*

1
0..*

Job

requiredFor : Customer

hasWorkRequest : WorkRequest

obligationUnder : Service

referenceNumber : String

1

0..*

1

0..* 1..*

0..*

1..*

0..*

WorkReport

forWorkRequest : WorkRequest

WorkItem

requiresTool : Tool

requiresKnowledge : WorkItemKnowledge

1

0..*

1

0..*

0..*

0..*

0..*

0..*

WorkRequestPool

hasWorkRequest : WorkRequest

1

1..*

1

1..*

RoutePlan

forRoute : Route

trafficConditions : TrafficCondition

estimatedDuration : Duration

WorkSchedule

hasWorkRequest : WorkRequest

hasRoutePlan : RouteP lan

isValid : Boolean
1

0..1

1

0..1

0..*

1

0..*

1

Site

hasLocation : Location

description : String

WorkRequest

hasPriority : Integer

isFixed : Boolean

forWorkItem : WorkItem

startTime : Time

estimatedEndTime : Time

atSite : Site

status : String
0..*

1
0..*

1

1

0..1

1

0..1

1
0..*

1
0..*

0..*

0..1

0..*

0..1 0..* 0..10..* 0..1

1

0..*

1

0..*

4.2. Identification and customisation of components

The next stage was to identify mPower components to

implement the services identified in the first stage. As the

services identified in the previous stage are generic, they

were implemented using functionality from the Foundation

layer and added to the components layer of mPower. First,

the ontology components that the necessary C-COMs rely

on were identified and implemented using the ontology

support provided by JADE-LEAP. Fig 3 shows an example

of the implemented ontology components. Second, based

on the ontology components, the necessary C-COMs were

implemented to produce the services identified in the

previous stage. Third, job management related C-COMs

were identified and customised from existing C-COMs

(JobDelivery from AchieveReInitiator/Respondent in the

Foundation layer, JobUpdate and JobClose from

UpdateKnowledgeBase C-COM in the Components Layer,

and JobTrade from TradeWorkRequest in the Components

Layer). These job management related C-COMs were

linked to form a generic workflow, as shown in Fig 2.

4.3 Agent identification

Having identified the reusable components, the agents were

designed to take on the roles involved in those components.

Usually, an agent takes more than one role, which means it

is involved in multiple conversations. Furthermore, it is

possible for an agent to take on all the roles in a given

conversation. To support mobile workforces, four types of

agent were designed. First, a Personal Agent which plays a

personal assistant role to support a mobile worker for the

execution of their assigned tasks. The support includes

receipt of assigned tasks from other agents, update of job

status according to progress, delivery of relevant

information from knowledge sources, and coordination with

other personal agents to reassign jobs, organise group

meetings, swap shifts, swap annual leave, and so on.

Second, a Workflow (WF) Agent which is responsible for

interacting with a legacy Workflow Management System

(WFMS) via a predefined API. It retrieves all the tasks

assigned to a mobile team or a team member. The retrieved

tasks are stored in a local database that is managed by the

WF Agent, and notification sent to the Personal Agent of

the worker that the job is assigned to, either on occurrence

(push) or on demand (pull), as required. Task status is

updated via the interaction between a Personal Agent and

the WF Agent. Third, a Library Agent is an administrative

agent which should be present in every application as it is

responsible for the management of a library that contains

the C-COMs used for conversations between the

application agents. As all communication between

participating agents is performed via C-COMs, modifying

the conversation mechanisms used by the agents is

achieved by updating the C-COM library. Then, the

participating agents update corresponding C-COMs by

version checking. Finally, an Information Agent collects

information from various information sources, such as Web

services, Corporate knowledge management systems, and

Intranet directory services etc. As each knowledge source

potentially uses a different interaction protocol to provide

information to its client, the Information Agent must

register a C-COM with the Library Agent for the Personal

Agent to install and execute, in order to interact with it.

4.4. Component distribution

The last task is to install the identified components in the

various agents according to the roles played by the agents

in each conversation. This task is fairly straightforward,

however the developer should ensure that the linkage

between any two components corresponds to their

respective interface definitions.

Personal

Agent

Personal

Agent

WF

Agent

Information

Agent

Job

Distributor

Job

Taker

Job

Taker

Job

Giver

Job

Giver

Job

Owner

Job

Manager

Job

Executor

Job

Delivery

Job

Update

Job

Trade

Job

Close

FindRelevanInformation

Knowledge

Hunter

Knowledge

Consumer

Fig 5 Components distribution diagram.

Fig 5 shows an example diagram for component

distribution among identified agents. A component

distribution diagram shows a structural view of

conversations among participating agents in a target

application in terms of C-COM. Each black box represents

an agent, and each agent is annotated with its role

components in its participating conversations. An initiator

role component is represented by a small circle and a

respondent role component by a small grey rectangle. A

conversation between roles is represented as a dotted arrow

with a rectangle attached in the middle. From Fig 5, it can

be seen that the Personal Agent has three initiator

components, namely JobExecutor, KnowledgeConsumer,

and JobGiver, and two respondent components, namely

JobOwner and JobTaker.

4.5 Personal agent architecture for the management

of C-COM and generic workflows

The Personal Agent is comprised of four individual

modules, each of which supports a specific functional area:

User Manager is responsible for managing a user’s

preferences by monitoring their interaction with the user

interface. Through observing a user’s interaction behaviour

over a period of time, the User Manager is better able to

tailor the application’s functionality to meet the needs of

the user. For example, if the User Manager observes that

the user seldom views the routing information for a job, it

8

may decide to only download this information on demand

and not when the job details are first downloaded.

Coordination Manager is responsible for fulfilling a

service request by selecting a goal plan that meets the

requirements of the requested service from a list of

available goal plans. Each goal plan contains details of the

tasks involved and their execution sequence. Typically a

task will execute one or more C-COMs, or access a

resource from the Resource Manager or interact with the

user during its execution. The Coordination Manager is able

to execute multiple goal plans concurrently, and is able to

dynamically install new goal plans.

Resource Manager is responsible for managing all the

resources required to support the execution of the Personal

Agent, and application specific components. Resources can

be classified into one of three types: 1) Information

objects, 2) Executable objects, and 3) External objects.

Information objects represent a piece of information, such

as a list of user jobs, or a list of team members. Executable

objects are C-COMs which are used during the completion

of a service request. External objects are third party

programs such as Microsoft Pocket Word™ which can be

utilised to enhance the functionality of an existing service.

User Interface Manager is responsible for managing the

flow of information between the user and the Personal

Agent without restricting a user’s freedom. A non-blocking

approach is employed which does not force a user to wait

for a service to complete before they can interact with the

user interface. Instead, a user is able to launch multiple

service requests from one part of the user interface and still

be able to interact with another part of the user interface.

The four modules are able to directly interact with one

another by passing events. Currently there are three

recognised event types:

1. User interface event: This event is used to request a

change in the current state of the user interface. For

example, a goal plan may request a screen transition to

show the results from a completed service.

2. Goal event: This event is used to request the execution

of a service, and to report the status of an executing

service. For example, a user may request a job trade

service via the user interface to trade a job with other

team members.

3. Resource event: This event is used to request access to

a resource. For example, a task within a goal plan may

request access to an installed C-COM in order to

complete its execution.

External components such as an application user

interface screen, or an external program are not permitted to

directly interact with any of the four Personal Agent

modules. Instead all events generated from external

components are captured centrally by the Personal Agent

which may perform any event filtering before dispatching

the event to the appropriate module, as shown in Fig. 5.

Each event type contains the following five properties:

1. Sender ID: This identifies where the event originated.

2. Type: This identifies the event type.

3. Action: This identifies the type of action requested,

which is dependent on the event type. For example, a

goal event requesting the execution of a service will

contain the ‘achieve goal’ value within its action

property, whereas a user interface event requesting a

screen transition will contain ‘transition’ within its

action property.

4. Action arguments: This is an optional property which

may contain multiple arguments, that are dependent on

the type of action. For example, a user interface event

with an action property set to ‘change cursor’, may

contain the ‘wait cursor’ value within its action

arguments properties.

User arguments: This is an optional property which may

contain multiple user-defined arguments that are dependent

on the event type and action. For example, a goal event

with the ‘achieve goal’ value within its action property may

contain some input values for the goal plan that will be

selected to fulfil this service request.

Table. 2 provides an example of some of the pre-

defined actions available for the three recognised event

types. The Personal Agent supports both asynchronous and

synchronous event delivery mode.

Event type Action

User interface Change cursor, transition, screen action

Goal Achieve goal, goal success, goal failure

Resource Put resource, get resource, delete resource

Table 2 List of pre-defined actions for event types.

Fig 5 Personal Agent event dispatching model.

An example of the flow of events that occur within the

Personal Agent architecture during a sample service request

9

User Interface Event
Goal Event

UI Event Goal Event

Resource Event

Resource

Event

Personal

Agent

User

Manager

Coordination

Manager

Resource

Manager

Agent External

Agent Internal

User

Preference

C-COM

Pool

Personal

Job Queue

Coordination

Engine

Goal

Plan

Exception

Handler

UI

Manager

Screen

Registry

UI

State
UI Event

will now be presented. The simulated service is called

‘deliver jobs’, and retrieves all jobs that have been assigned

to a user. The flow of events is shown in Fig. 6, and

discussed below:

Fig 6 Sample service request event interaction scenario.

1. The service request is initiated by the User Manager

which sends a goal event direct to the Coordinator

Manager. The goal event contains the following

properties: (Sender: User Manager, Type: Goal Event,

Action: Achieve goal, Action arguments: Retrieve

jobs, User arguments: Blank).

2. Upon receiving the goal event the Coordination

Manager selects the most appropriate goal plan to

complete this service request and executes it.

3. During the goal plan’s execution it sends a user

interface event to the User Manager, requesting that a

progress bar is displayed in order to provide visual

feedback to the user on the progress of the service. The

user interface event contains the following properties:

(Sender: Goal Plan ID, Type: User interface event,

Action: Screen action, Action arguments: Job Queue

Screen, User arguments: Show progress bar). The

user interface event is then forwarded to the User

Interface Manager which will hand the event to the

user interface screen for processing.

4. The goal plan then dispatches a resource event to the

Resource Manager to retrieve an executable object.

The resource event contains the following properties:

(Sender: Goal Plan ID, Type: Resource event, Action:

Get resource, Action arguments: C-COM Retrieve

Jobs, User arguments: blank). Once the C-COM is

obtained it will be executed.

5. When the goal plan has fulfilled the service request it

dispatches a user interface event to the User Manager

requesting that the visual progress bar is removed. The

user interface event contains the following properties:

(Sender: Goal Plan ID, Type: User interface event,

Action: Screen action, Action arguments: Job Queue

Screen, User arguments: Remove progress bar). The

user interface event is then forwarded to the User

Interface Manager which will hand the event to the

user interface screen for processing.

6. Finally the goal plan sends a goal event to the

Coordination Manager informing it that it has

successfully completed the requested service. The

properties of the goal event are: (Sender: Goal Plan

ID, type: Goal event, Action: Goal success, Action

arguments: User Manager, User arguments: Service

result). The Coordination Manager may then choose to

release any resources which the goal plan may still

have open before forwarding the goal event to the User

Manager.

5. Conclusion

One of the critical success factors for the widespread

adoption of multi-agent system technology in industry is to

provide application developers with supporting tools that

reduce the burden of building multi-agent systems. The

mPower framework described in this paper aims to enable

application developers to assemble a multi-agent system by

customising pre-built components according to application

specific requirements.

The framework provides three layers of

components. The foundation layer provides the basic

functional components, via the JADE-LEAP platform. The

components layer provides ontology components and C-

COMs that abstract and implement the frequently used

interactions among participating roles for each business

domain. The generic workflow layer provides workflow

components that consist of two or more C-COMs to achieve

a business objective. A multi-agent system-based

application can be derived by reusing the components in

each layer (or by mixing components in different layers).

This paper has shown how the mPowermobile application was

derived from the mPower framework to support mobile

workforces. Finally, a Personal Agent architecture has been

proposed to explain how the components of mPower can be

installed and used by an agent to provide services to mobile

workforces.

Acknowledgements

The work described here was funded by BT Exact’s OSS

and Customer Satisfaction Venture – many thanks to Paul

O’Brien for his advice and guidance.

References

1. FIPA: The Foundation for Intelligent Physical Agents.

http://www.fipa.org/ (2002)

2. Berger, M., Buckland, B., Bouzid, M., Lee, H., Lhuillier, N.,

Olpp, D., Picault, J., and Shepherdson, J.W.: An Approach to

Agent-based Service Composition and it’s Application to

10

Forward (UI Event)

Forward (UI Event)

Inform

Goal Success

Goal Event:

Goal Success

Process

UI Event

UI Event:

Screen Action

Execute

C-COM

Resource Event:

Access Resource

Process

UI Event

UI Event:

Screen Action

Execute

Goal Event:

Achieve Goal

User

Manager

Coordination

Manager

Goal

Plan

UI

Manager

Resource

Manager

UI

Screen

http://www.fipa.org/

Mobile Business Processes. IEEE Transactions on Mobile

Computing, 2 (3), 2003.

3. Bose, R.: Intelligent Agent Framework for development

knowledge-based decision support system for collaborative

organisational processes. Expert Systems with Applications,

11 (3), (1996) 247-261

4. Brazier, F.M.T., Cornelissen, F., Jonker, C.M., and, Treur,

J.: Compositional Specification of a Reusable Co-operative

Agent Model. International Journal of Cooperative

Information Systems, 9, (2000) 171-207

5. Buschmann, F. et. al.: A System of Patterns – Pattern

Oriented Software Architecture. Wiley, ISBN 0-471-95869-

71 (1996)

6. Caire, Giovanni: JADE Tutorial –Application defined

content languages and ontologies. http://jade.cselt.it/ (2002)

7. Chang, J.W. and Scott, C.T.: Agent-based workflow: TRP

support environment (TSE). Computer Networks and ISDN

Systems. 28, (1996) 1501-1511

8. Klusch, M.: Intelligent Information Agents : Agent-based

Information Discovery and Management on the Internet.

Springer, Berlin-Heidelberg-New York, (1999)

9. Jennings, N. R., Norman, T. J., Faratin, P., O’Brien P., and

Odgers, B.: Autonomous agents for business process

management. Int. Journal of Applied AI 14(2), (2000) 145—

189

10. Comtec Agent Platform. http://ias.comtec.co.jp/ap/

11. Collis, J., Ndumu, D., Nwana, H., and Lee, L.: The Zeus

Agent Building Tool-Kit. BT Technology Journal, 16(3),

July (1998) 60-68

12. LEAP: Lightweight Extensible Agent Platform.

http://leap.crm-paris.com, (2002)

13. Huhns, M.N. and Singh, M.P.: Workflow Agents. IEEE

Internet Computing, 2 (4), (1998) 94-96

14. Shepherdson J.W., Thompson S.G. and Odgers B.: Cross

Organisational Workflow Co-ordinated by Software Agents.

WACC ‘99 (Work Activity Co-ordination and

Collaboration) Workshop Paper, February (1999)

15. Caire, G., Lhuillier, N. and Rimassa G.: A communication

protocol for agents on handheld devices. In Proceedings of

Workshop on ubiquitous agents on embedded, wearable, and

mobile devices, held in conjunction with the 2002 Conf. On

Autonomous Agents & Multiagent systems, Bologna, Italy,

(2002)

16. Kendall, E., Malkoun, M.T., and Jiang, C.H.: Multiagent

System Design Based on Object Oriented Patterns. The

Report on Object Oriented Analysis and Design in

conjunction with The Journal of Object Oriented

Programming, June (1997)

17. Rubin, B.S., Christ, A.R., and Bohrer, K.A.: Java and IBM

San Francisco Project, IBM Systems Journal, 37 (3), (1998)

18. SAP, http://www.sap.com/, 2003.

11

http://www.sap.com/
http://leap.crm-paris.com/
http://ias.comtec.co.jp/ap/
http://jade.cselt.it/

