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Abstract

Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable

imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk.

Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless,

the successful translation of new technologies into clinical practice remains challenging. To date, the initial

availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present

preview was on the initial applicability in current clinical practice and on future perspectives of this new technology

for different treatment sites.

MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards

an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily

online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided

radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some

concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the

gating and tracking procedures and the interpretation of functional MR imaging markers and their potential

changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-

scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT

in the evolving oncological environment.

Keywords: MR-guided radiotherapy, Image-guided, radiotherapy, MR-IGRT, MR-Linac, adaptive radiotherapy, Inter-

fraction variability, Intra-fraction fraction variability, MRI, outcome

Introduction

Advanced radiation techniques, including intensity mo-

dulated radiation therapy (IMRT), volumetric modulated

arc therapy (VMAT) or high-dose stereotactic body

radiotherapy (SBRT) pursue the goal of delivering high

doses to the tumor, while sparing the surrounding

tissues and organs at risk (OARs). To ensure a precise

dose delivery, image-guided radiotherapy (IGRT) has been

developed and widely introduced into clinical practice.

Current IGRT techniques using on-board cone-beam CT

(CBCT) are already very effective, but are limited due to

the reduced soft-tissue contrast. Frequently, it remains

challenging to distinguish tumor from normal tissues,

with the consequence that dose escalation strategies are

not readily feasible, or generous planning target volume

(PTV) margins are applied to account for uncertainties in

gross tumor volume (GTV) delineation, dose delivery and

target coverage.

On-board real-time Magnetic Resonance Imaging

(MRI)-guided radiotherapy (MRgRT) with hybrid MR-

linear accelerator (MRL) systems marks the beginning of

a new era. MRI is the most versatile and suitable

imaging modality for RT, as it provides direct visualization

of the tumor and surrounding tissue anatomy. Moreover,
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it provides real-time imaging to characterize and eventu-

ally track anatomical motion. Respiratory gating by MRI is

particularly advantageous in several aspects for high dose

SBRT [1, 2]. It enables motion mitigation and a reduction

of PTV margins and allows for an accurate dose delivery

to the PTV by reducing dose exposure of OARs. Certain

anatomical sites or specific organs affected by motion

from different sources (e.g. breathing, bowel displacement

/bladder filling) may benefit from MR-guided gating tech-

niques: thoracic tumors, including lung or mediastinal

lesions, breast cancer, and abdominal or pelvic tumors,

such as liver or pancreatic lesions and prostate cancer.

Moreover, real-time plan adaptation, while the patient is

on the treatment table, is a disruptive concept of the

innovative MR-linear accelerator (MRL) workflow [3]. This

new key feature will allow physicians to optimize dose

escalation strategies, as there is a further potential for

reducing dose to OARs, especially when a precise

localization and real-time tracking of the tumor is ensured.

Clinical sites

Successful translation of new technologies into clinical

practice remains challenging. To date, the initial avail-

ability of next-generation hybrid MR-linac systems is still

limited and therefore, the focus of the present preview is

on the initial applicability in current clinical practice and

on future perspectives of this new technology for diffe-

rent treatment sites.

Brain

Tumors of the central nervous system (CNS) are fre-

quently treated with RT. Specific entities are metastases,

primary brain tumors (low-grade gliomas, anaplastic as-

trocytomas, oligodendrogliomas, glioblastomas), extra-

axial tumors such as meningioma, and other benign

entities including pituitary adenomas and vestibular

schwannomas. A MRI-based planning workflow could

potentially be both, cost- and time-saving while reducing

uncertainties associated with CT-MRI registration [4].

MRI already represents the gold-standard imaging

method for brain tumor diagnosis and the assessment of

treatment response [5]. In this context, MRgRT allows for

the first time to obtain both, structural and functional

information during RT and to manage the adaptation

of the prescribed dose during the treatment, in order

to optimize outcome. To date, in daily clinical prac-

tice, a recent MRI is usually co-registered to bony

structures of a simulation CT, achieving a high degree

of confidence. Thus, due to these consolidated pro-

cedures, RT is already commonly delivered with a

high level of precision to brain targets. Therefore, as

well as hypothesized after the introduction of PET-MRI, a

lot of concerns could be related to the real usefulness of

MRgRT in brain RT.

However, a crucial difference emerges: the MRL sys-

tems enable a rapid adaptation, immediate target volume

delineation [6] and quick tumor response assessment.

An example is the treatment of a resection cavity, which

can change significantly in shape and size between the

simulation MRI and the initiation of treatment [4].

Furthermore, if hypofractionated stereotactic radiosurgery

(SRS) is applied, the resection cavity could also change

during the treatment course of 3–5 fractions, which would

be visible using MRgRT. Tseng and colleagues assessed

the dosimetric impact of the magnetic field, including the

electron return effect at tissue-air boundaries in SRS and

could show that neither target conformity nor dose

gradient were negatively impacted [7]. Moreover, Wen

and colleagues demonstrated, that excellent plan quality

and dose delivery accuracy was achievable on the MRL

system for treating multiple brain metastases with a single

isocenter [8]. Besides high-dose fractionation schemes, it

is expected that conventionally fractionated to moderately

hypofractionated schedules will represent the standard-of-

care in primary brain tumors due to improved therapeutic

ratios. Nevertheless, it remains unknown, which advan-

tages can result from the daily targeting and planning

optimization by MRgRT, since the available MRI se-

quences, which are currently still very limited, may be

improved in the future. To date, changes in gross tumor

volume (GTV) [9] would at least allow early adaptation of

the treatment plan.

In summary, MRgRT creates a new perspective towards

an individualized, patient-centric planning approach using

online adaptation for intracranial treatments. Further-

more, a significant increase in knowledge is expected

concerning the biological processes, which occur during

RT and its effect on patient survival for brain diseases.

Head & Neck

MRI is increasingly used in head and neck (H&N) RT

due to its superior soft tissue contrast and its versatility.

MRI is utilized in treatment planning to delineate the

GTV [10], the clinical target volume (CTV) [11] and to

estimate the necessary PTV margin [12] and to assess

the loco-regional treatment response [13]. Undoubtedly,

the advent of MRL [3] opens the door to fully exploit

the advantages of MRI over CBCT by its online adap-

tation capability during the treatment procedures (Fig. 1).

The following significant improvements are anticipated:

Adaptation to anatomical changes

During the course of irradiation, H&N patients can

significantly lose weight and OARs, such as the parotid

glands can dramatically shrink [14]. The time scale of

these changes does not require online optimization.

However, the MRL and its workflow are designed to

inherently manage these potential changes and online,

Corradini et al. Radiation Oncology           (2019) 14:92 Page 2 of 12



offline or weekly adaptation can be applied for optimal

OAR sparing.

Adaptation to tumor response

Tumor response varies from significant volumetric

changes of large lymph nodes to more subtle MR signal

changes within the GTV. When the tumor clearly

shrinks and is replaced by healthy tissue, the GTV might

be adapted in a straightforward manner [15]. How to

adapt to MR signal intensity changes within the initial

GTV must be investigated in well-designed clinical trials.

For oropharyngeal cancer, a distinction should be pro-

posed between HPV positive patients, where dose de-

escalation could be considered for well-responding

GTVs, and HPV-negative patients that require dose

escalation to poor-responding regions inside the GTV.

Motion management

H&N cancer patients are treated using an immobilization

mask that, in combination with the several rigid bony

structures, minimize major intrafraction motion. However,

considerable motion has been observed for the larynx and

the tongue due to breathing, movement of the tongue and

swallowing [12]. Cine-MR during radiation can be applied

to guarantee minimal PTV margins. Furthermore, ex-

ception gating might be applied to interrupt irradiation in

case of excessive motion.

Curative treatment schemes for H&N cancer patients

usually consist of 30 to 35 fractions. Full online plan

optimization including the registration, adaptation,

optimization and QA steps currently takes approximately

45min [3] for relatively simple dose distributions. Never-

theless, thirty fractions of 45min in a noisy, claustropho-

bic environment is probably too distressing for many

patients. This discomfort might be reduced by developing

a quick MRL workflow when minimal adaptation is

needed, and apply full online adaptation only, when major

changes occur. Furthermore, comfortable patient position-

ing methods including noise reduction will be developed.

Both patient comfort and a reduced workflow are pre-

requisites to fully exploit the promises of MR-guidance for

head-and-neck cancer patients.

Lung

Non-small-cell lung cancer (NSCLC) histology accounts

for approximately 85% of all lung cancer cases. Of these,

almost 30% present with locally advanced disease, and RT

in combination with chemotherapy represents the treat-

ment of choice for this patient group [16–19]. Because of

the low survival rates, dose escalation strategies for stage

III NSCLC have been advocated [20, 21]. However, dose

escalation for stage III NSCLC requires caution and

should be thoroughly studied. Volumetric and positional

changes throughout the course of RT have been reported,

making adaptive irradiation for advanced lung cancer

necessary in about 1/3 of the patients to ensure target

coverage and reduce lung dose [22, 23]. Lung tumor

motion is complex and is dependent on the location of

the tumor in the lung and whether it is attached to rigid

structures, such as the chest wall or vertebrae. Motion

amplitudes of several centimeters have been reported in

the literature [24]. By direct visualization of the “real-time”

tumor position in combination with respiratory gated dose

delivery, an MR-guided treatment unit can offer a much

more accurate and precise dose delivery, without the use

of any surrogate or statistical model for respiration [1, 25].

SBRT is a well-established technique for the manage-

ment of stage I NSCLC, which has significantly improved

Fig. 1 Cone beam CT images of an oropharyngeal cancer patient (upper row) compared to the 1.5 T MR images (T1 3D 0.7 × 0.7 × 1.2 mm3) of

the same patient acquired at the MRL (lower row)
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local control (LC) in comparison to conventional fraction-

ation. LC rates of ≥85% are achieved when the prescribed

biologically equivalent tumor dose is ≥100 Gy [26–29]. It

is common practice to generate treatment volumes for

lung SBRT from 4D-CT acquisition [29, 30]. However, this

can lead in some instances to large treatment volumes

whereas MR-guided SBRT treatment delivery for lung

tumors has shown promising results in terms of treatment

volume reduction and intra-fraction motion management

[1, 2]. SBRT has also been shown to be an effective mo-

dality for treating patients after failure of conventional

irradiation and metastatic lung tumors, achieving good

local control with acceptable toxicity [31–35]. Recent

reports regarding online plan adaptation for SBRT treat-

ments under MR-guidance have shown promising results

[36–38]. A mid-treatment approach for plan adaptation

for centrally located thoracic tumors allowed reduction of

OAR violations and recovery of PTV coverage due to

interfractional changes [39].

In summary, MgRT offers improved accuracy of the

target position by means of superior intra-fraction tumor

visualization. MRgRT is expected to achieve prolonged

disease-free survival and lower toxicity for thoracic lung

tumors, especially in the field of re-irradiation and in the

management of centrally located lesions, by using better

intra-fraction motion management in combination with

online plan adaptation.

Breast

The standard of care for patients with early breast can-

cer after breast conserving surgery is whole breast irradi-

ation [40, 41]. Recently, new treatment approaches using

partial breast irradiation (PBI) or accelerated partial

breast irradiation (APBI) in low-risk tumors were ana-

lyzed [42]. PBI aims to reduce irradiated breast volume

in order to decrease long-term side-effects of treatments,

optimizing cosmetic outcomes and improving quality of

life while maintaining local tumor control [43]. Never-

theless, conflicting results concerning toxicity and cos-

metic outcome have been reported [44, 45].

A possible concern of the inconclusive data are differ-

ences in target volume delineation, the dosimetric charac-

teristics and the dose-fractionation schedules of the various

APBI techniques. Localization and delineation of the CTV

on a postoperative CT remains difficult, even if additional

clips are placed in the tumor bed. Furthermore, additional

margins must be added to the CTV to account for chest

wall movement and patient set-up in External Beam RT

(EBRT), which may result in larger irradiated volumes in

EBRT compared to brachytherapy or intra-operative APBI

techniques [46, 47]. The challenge of adequate target defi-

nition in postoperative RT could be mastered with MRgRT,

as MRI has excellent soft-tissue contrast, especially in the

visualization of irregularities and spiculations [48].

Another approach could be the preoperative MRgRT

APBI. Preoperative target delineation showed to have

less inter-observer variation as compared to the post-

operative setting [49, 50]. MRI has a high sensitivity for

detection of invasive breast cancer and a good corre-

lation with histopathology findings [48]. To date, diffe-

rent groups evaluated the concept of single dose APBI

delivered prior to surgical resection and treated the first

patients [51, 52]. Horton et al. [52] designed a phase I

dose escalation trial of a single-dose preoperative ra-

diation treatment for early stage breast cancer patients

(node-negative, invasive breast cancer or DCIS ≤2 cm).

There were three different dose escalation levels of 15

Gy (n = 8), 18 Gy (n = 8) or 21 Gy (n = 16) and lumpec-

tomy was performed within 10 days. The CTV was

delineated using a planning MRI, and included the GTV

with an isotropic margin of 15 mm. Overall, no acute

dose-limiting grade 3 radiation-related toxicities were

reported. These early results seem encouraging and

represent a first step toward a novel APBI approach [52].

In summary, set-up margins can be further reduced, as

no co-registration of planning MRI and CT is required

and dose delivery can be performed using respiratory

gated MRgRT. This approach can reduce irradiated

breast volume and therefore normal tissue toxicity, as

cardiac toxicity [53, 54]. Moreover, MR-guided preopera-

tive RT could potentially facilitate dose escalation and

enable an ablative, definitive treatment approach for

early-stage breast cancer. Obviously, the MRgRT

approach for breast cancer needs to be tested in further

clinical trials, but it already appears to have the potential

to become a future “game changer” in the portfolio of

individualized breast RT strategies.

Gastrointestinal tumors

Liver

Liver represents an intriguing anatomic site of applica-

tion for MRgRT SBRT due to the increasing utilization

of MRI in the characterization of primary and secondary

hepatic lesions and the emergent role of SBRT in their

management [55, 56]. Kishan et al. [57] evaluated the

dosimetric feasibility of Tri-Cobalt-60 MR-guided RT

liver SBRT and observed optimal liver and kidney

sparing, especially for the most peripheral lesions.

Furthermore, MRI real-time 2-Dimension gating imaging

can efficaciously manage treatment volumes movements

through direct and/or indirect gating approaches and over-

come the necessity of invasive fiducials implantation [58].

Despite the promising technical solutions, the clinical

evidence about liver MRgRT still remains anecdotal [59].

Pancreas

The anatomical characteristics and location of the pancreas

make it difficult to find the balance between target
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coverage and OAR sparing, especially in the SBRT setting.

Available technologies for patient re-positioning and dose

delivery (CBCT, motion management solutions) do not

allow effective dose escalation of the target and toxicity

remains a strong dose-limiting factor [60–66].

Various studies have described the segmentation

advantages and planning solutions for MRgRT in this

scenario; in particular, its online adaptive approach,

which appears suitable for dose escalation, plan adapta-

tion and inter-fraction anatomical variability manage-

ment [59, 67, 68]. Larger studies are needed to evaluate

the occurrence of toxicity with this approach. Neverthe-

less, the first clinical results on a very limited number of

patients seem promising [59, 69]. For these reasons,

pancreatic cancer represents one of the most important

applications of MR-guided RT and is a good candidate

for further developments of online adaptive solutions.

Rectum

To date, MRI represents the gold standard technique in

rectal cancer diagnosis, due to its excellent soft tissue

contrast and high spatial resolution. The integration of

this kind of imaging in hybrid MRgRT solutions opens

up new frontiers for segmentation and dose escalation

protocols [70]. Further advantages will come from the

use of specific MRI sequences, such as diffusion

weighted imaging (DWI), and radiomics applications

throughout the course of RT treatment to identify new

target volumes and assess or predict response [71, 72].

Clinical studies on rectal cancer MRgRT are not yet

available in literature, but its feasibility and safety in the

neoadjuvant setting have been evaluated. Treatment

plans of the Tri-60-Co MRL systems reach comparable

target coverage, although larger volumes of OARs (i.e.

small bowel) receive higher low-moderate doses as com-

pared to standard intensity-modulated RT technologies

[73]. These results encourage MRgRT applications with

higher energy systems (MRL) on large rectal cancer

patient cohorts.

Urogenital tumors

Kidney

Although renal cell carcinoma (RCC) has historically

been considered a radioresistant entity, and RT has been

usually applied with palliative intent, recent techno-

logical advancements are allowing radiation oncologists

to introduce RT with a curative intent also in this

setting. Ongoing studies confirming the safety and efficacy

of preliminary reported data are likely to open a scenario,

in the near future, that integrates SBRT into the thera-

peutic algorithm of primary RCC [74, 75].

Nevertheless, the kidney is affected by large intra-fraction

respiratory variations that can dramatically change during

the treatment of daily fractionation [76–80]. Stemkens et al.

[81] developed a calculation method to evaluate the accu-

mulated dose for MR-guided SBRT of RCC in case of

intra-fraction respiratory modifications, determining

the effect of such uncertainties on the deposited dose.

In their small patient cohort, these variations showed

large dosimetric differences with respect to the planned

dose distribution, confirming the potential role of on-

line MR-guidance combined with real-time treatment

planning adaptation during daily SBRT delivery for

RCC. Moreover, Stam and colleagues showed that the

dosimetric feasibility of MRgRT was strictly related to

the geometry of the affected kidney, the dimension of the

target and the proximity of the bowel during the daily on-

line evaluation. A maximum diameter of the kidney lesion

of 35mm was considered the cut-off for a safe treatment

without violation of the OAR constraints [82].

In summary, considering the previous discussed un-

certainties related to respiratory variations and the indi-

vidual anatomy conformation of the region of interests,

kidney tumor irradiation by MRL seems promising.

MRgRT for primary and metastatic tumors in the kidney

may represent a new tool to expand its therapeutic

application in the near future, although it is still under

development due to the paucity of available clinical data.

Prostate

RT has a well-defined role in the management of organ-

confined prostate cancer and is considered a standard

curative treatment option, especially in the era of dose

escalation and hypofractionation by IMRT and IGRT, and

more recently by means of SBRT [83]. Despite the

routinely adoption of daily IGRT to compensate for inter-

fractional variations, the intra-fractional motion of the

prostate gland and OARs [84, 85] during irradiation con-

tinues to be challenging [86]. Peng et al. [87] showed that,

when the baseline treatment plan is superimposed on

daily CBCT scans, about one third of the sessions would

require an online plan adaptation due to the differences

between planned and delivered dose to the prostate target

and OARs. Obviously, these discrepancies become more

relevant when ultra-fractionated schedules are adopted

[88]. MR-guided image guidance can offer improved

anatomical definition compared to on-board CBCT [89]

while reducing radiation exposure. Furthermore, real-time

MR imaging during dose delivery is able to take into

account not only the systematic anatomical variability of

prostate swelling, but also random anatomical changes,

such as inter/intra-fraction bladder and rectal filling, as

well as independent variations and deformations of OARs.

In fact, the most interesting benefit in prostate cancer

RT is undoubtedly represented by the ability to perform

daily adaptive replanning. With conventional IGRT, there

are no possibilities to compensate for the independent

movements of the prostate volume. At the beginning of
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the treatment, RT can induce a volumetric increase of the

prostate gland followed by a decrease towards the end of

the treatment [84]. In case of extreme hypofractionated

schedules, the swelling may even persist after the end of

treatment [90]. Therefore, the online adaptive strategies

used by the MRL systems are likely to radically change the

management of prostate cancer RT. Furthermore, online

MR monitoring can automatically pause the treatment

delivery if the prostate position exceeds a predefined

threshold. Moreover, MRgRT enables to avoid specific

radio-opaque markers that serve as a surrogate for the

prostate position. Another clinical value that advocates

MRgRT in prostate cancer is the role of predicting treat-

ment response [91]. Specific MRI sequences could be used

as an indicator for early tumor response, as confirmed by

preliminary data on diffusion weighted imaging (DWI)

during MRL delivery [91].

In summary, the recent developments of MRgRT

systems open up new perspectives for RT in prostate can-

cer by enabling adaptive and on-line tracking strategies,

especially when extremely high doses per fraction are

prescribed. Furthermore, the capability to produce high

quality MR sequences during and after the treatment, will

probably further change the perspective of the MRI avail-

ability in this setting, opening an unexplored window on

the landscape of radiomics for prostate cancer RT.

Bladder

Radical cystectomy and RT (with or without chemother-

apy), are the two main treatment approaches for muscle-

invasive bladder cancer [92]. Historically, RT has been

reserved for patients with inoperable bladder tumors or

when defined as medically unfit for cystectomy. A grow-

ing amount of evidence suggests that tri-modality treat-

ment for bladder preservation is potentially able to

obtain acceptable outcomes and can be considered a

treatment option in selected patients [93, 94]. The tri-

modality approach includes transurethral resection of

the bladder cancer lesion followed by RT and concomi-

tant chemotherapy.

However, one of the main criticisms regarding RT in

bladder cancer is related to organ motion management.

The bladder is a hollow mobile organ, seriously affected

by changes in size and position during RT. This can

dramatically impact daily dose coverage of the bladder

tumor and OARs sparing, limiting the reliability and

reproducibility of the entire RT [95–102]. To overcome

this issue, large margins surrounding the target region

are usually applied. Nevertheless, larger margins used to

compensate uncertainties in treatment volume, result in

increased toxicity [103, 104].

In order to check and correct the position, size and

shape of the bladder for each treatment fraction, a high

quality 3D image acquisition using CBCT has been

introduced in clinical practice [105, 106]. Vestergaard and

colleagues [107] tried to assess the optimal bladder target

coverage by online MR-guided adaptive re-optimization

using three kinds of margins: isotropic, anisotropic, and

population-based. All three MR-guided adaptive strategies

were able to obtain a large reduction in target volumes

compared to a plan library approach. More specifically,

the anisotropic margin resulted in the largest advantage in

terms of PTV minimization [107]. This experience

confirmed the promising role of MRL systems for

online target shift check and correction during a treat-

ment fraction for bladder cancer.

In summary, although some concerns remain in regard

to the additional time needed to carry out online dose

distribution re-optimization, the advent of MRL systems

will undoubtedly improve bladder cancer adaptive RT

strategies, reinforcing its indication in this setting [108].

Gynecological tumors

Standard therapy for locally advanced cervical cancer is

a combination of concurrent chemo-RT followed by

brachytherapy [109]. Despite the wide application of

daily image-guidance and advanced RT techniques

including IMRT and VMAT, long-term urogenital and

gastrointestinal side-effects are still frequent [110].

Due to its excellent soft-tissue contrast, MRI is already

widely applied for staging and post-treatment evaluation

of cervical cancer, as it is superior in assessing tumor

size as well as soft tissue invasion compared to conven-

tional CT imaging [111, 112]. However, regarding

image-guidance, CBCT is still routinely used in RT,

while MRI is recommended as the imaging method of

choice for brachytherapy [113]. MR-guided brachyther-

apy is gradually becoming standard of care by allowing

superior sparing of surrounding radiosensitive organs

combined with dose escalation compared to con-

ventional 2D-planning [114–117]. Based on the excellent

results of MR-guidance in brachytherapy, it has been

questioned for EBRT of cervical cancer, whether MRI

could not only be applied for advanced tumor delineation

but also for image-guidance [110, 114, 118]. The CTV for

EBRT comprises the cervix and the uterus which are

known to show significant inter- and intra-fractional

motion due to the close proximity to hollow OARs

[110, 119]. Large safety margins are usually needed in

CBCT-imaged-guided RT to account for random and

patient-specific organ movement [110, 119]. Due to the po-

tential regression of cervical cancer of up to 60–80% of the

pre-therapeutic tumor volume during EBRT, further pelvic

organ motion might be expected during RT [118, 120].

MRgRT with its superior soft-tissue contrast allowing

for precise and immediate detection of inter-fractional

organ motion as well as tumor shrinkage in response to

therapy includes the potential of reducing toxicity and
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potentiating dose escalation in EBRT for cervical cancer

[110, 121]. Furthermore, functional MRI comprising

non-invasive assessment of tissue perfusion, hypoxia or

cellular density might be applied to guide RT treatment

in cervical cancer with e.g. higher doses delivered to

hypoxic tumor parts [110, 122–127]. While first shuttle-

based approaches have shown that offline MRgRT is

feasible for cervical cancer, the high potential of the new

hybrid MRL devices is an immediate online adaptive

treatment based on the anatomy of the day [3, 128–132].

Additionally, due to intra-fractional imaging, advanced

motion management strategies, like gating become pos-

sible providing a “real-time” anatomical feedback with

the advantage of further reducing safety margins [121].

A first case report about both, MR-guided EBRT and

brachytherapy underlined the high potential of this new

promising technique for cervical cancer [132].

In summary, MRg RT for cervical cancer can represent

a promising tool to overcome the limits of conventional

IGRT systems, in order to improve daily adaptive RT stra-

tegies. Further studies can confirm its potential disruptive

role in this setting.

Oligometastatic disease

Metastatic solid cancer was long considered incurable and

treatment consisted mainly of palliative chemotherapy.

Local treatments, such as surgery or radiotherapy, with

palliative, non-ablative doses were restricted to symptom

control. The concept of oligometastatic disease (OMD) is

currently challenging this dogma by defining an inter-

mediate state of metastasized disease, with a more favor-

able disease biology and dynamic. OMD is characterized

by a limited number of metastatic lesions and a low

overall metastatic burden that opens a therapeutic window

for radical treatment to all metastatic sites. Originally

coined by Hellman and Weichselbaum in 1995 [133], the

idea has gained traction particularly during recent years

through several developments: a) improved diagnostics for

early detection of low disease burden b) clinical imple-

mentation of minimally invasive and high-precision

locally-ablative treatments (LAT) such as video- or robotic

assisted surgery (VATS, RATS) or SBRT c) more effective

systemic treatments that have led to a prolonged overall

survival (OS) of metastatic patients and d) a better

biological and clinical understanding of tumor biology.

In the treatment of oligometastatic disease, early efforts

have mainly focused on the radical treatment of readily

resectable lesions, like brain and adrenal metastases. With

the improvement in diagnostic imaging and novel devel-

opments in non-invasive LAT modalities such as SBRT,

prospective reports have surfaced recently that investigate

radical treatment of all disease sites, potentially leading to

improved clinical outcome [134–136]. Still, a major con-

cern is the potential toxicity from high local ablative

radiotherapy dose, especially in anatomical regions not

readily visualized with current IGRT methods (proximal

bronchial tree, esophagus, duodenum, small and large

bowel). The advent of MRgRT and the possibility to

instantly adapt the RT dose to the daily anatomical

situations open a window of opportunity to deliver high

radiation doses while sparing surrounding normal tissue

on a daily basis. In principle, all anatomical locations can

be targeted in this way and most thoracic and abdominal

indications have already been mentioned in this review.

Therefore, we will focus our discussion on the advantages

of MRgRT to the following clinical scenarios:

Lymph node metastases

In a recent review on SBRT for lymph node (LN) metas-

tases, Jereczek-Fossa et al. reported local control rates of

64% up to 98% at 3 years [137]. A clear dose response

correlation was observed as well. One of the latest

reports could also correlate local control with overall

survival [138]. Therefore, there is a relevant need to

locally apply a sufficient dose in order to improve

outcome. Depending on the visibility of lymph nodes in

CBCT, this is difficult to achieve in certain cases and

may even necessitate larger PTV margins to a certain

proper targeting. A first MRI-guided planning approach

to investigate the benefits of direct tumor visualization,

margin reduction and improvement in dose delivery to

OAR has been reported [139]. This technology improve-

ment for better dose delivery is timely, as the interest in

LN targeting especially in prostate cancer is becoming

critical due to the outstanding detection rate of small

LN metastases in PSMA PET [140]. As these targets are

small, difficult to detect in CBCT, online MR-guidance

is ideally suited to treat these lesions. It remains to be

seen whether the first positive results of such an ap-

proach will translate into a durable clinical benefit [141].

Adrenal gland metastases

In the oligometastatic setting, radical treatment of ad-

renal metastases in the form of surgical resection is a

well-established indication. Reports on CT guided

SBRT have emerged with very encouraging local response

rates, as long as the tumors can be readily visualized and a

sufficient ablative radiation dose can be delivered

[142, 143]. Local control rates of 32 to 90% have been

reported with varying fractionation schedules. It is

not surprising that this tumor site has been identified

as a promising target for MRgRT, as more reliable

visualization with online mitigation of tumor motion

is possible. A first clinical report on MR-guided SBRT

of adrenal glands showed significant inter-fraction dis-

placements of OAR and the dosimetric benefit of online

plan adaptation which resulted in consistently delivery of

high radiation doses [37].
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Conclusions

In summary, MRgRT can be considered a groundbreaking

new technology that is capable of creating new perspec-

tives towards an individualized, patient-oriented planning

and treatment approach, especially due to the ability to

use daily online adaptation strategies. Furthermore, MRL

systems overcome the limitations of conventional IGRT,

especially in soft tissue, where target and OARs need

accurate definition. Nevertheless, some concerns remain

concerning the additional time needed to re-optimize dose

distributions online, the reliability of the gating and

tracking procedures and the interpretation of functional

MR imaging markers and their potential changes during

the course of treatment. Due to its continuous tech-

nological improvement and rapid clinical large-scale appli-

cation in several anatomical settings, further studies may

confirm the potential disruptive role of MRgRT in the

evolving oncological environment.
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