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MR-guided thermotherapy of abdominal organs

using a robust PCA-based motion descriptor
Baudouin Denis de Senneville, Mario Ries, Grégory Maclair, and Chrit Moonen

Abstract—Thermotherapies can now be guided in real-time
using magnetic resonance imaging (MRI). This technique is
rapidly gaining importance in interventional therapies for ab-
dominal organs such as liver and kidney. An accurate on-
line estimation and characterization of organ displacement is
mandatory to prevent misregistration and correct for motion
related thermometry artifacts. In addition, when the ablation is
performed with an extracorporal heating device such as High
Intensity Focused Ultrasound (HIFU), the continuous estimation
of the organ displacement is the basis for the dynamic adjustment
of the focal point position to track the targeted pathological tissue.

In this paper, we describe the use of an optimized PCA-based
motion descriptor to characterize in real-time the complex organ
deformation during the therapy. The PCA was used to detect,
in a preparative learning step, spatio-temporal coherences in the
motion of the targeted organ. During hyperthermia, incoherent
motion patterns could be discarded, which enabled improvements
in motion estimation robustness, the compensation of motion
related errors in thermal maps, and the adjustment of the beam
position.

The suggested method was evaluated for a moving phan-
tom, and tested in-vivo in the kidney and the liver of twelve
healthy volunteers under free breathing conditions. The ability
to perform a MR-guided thermotherapy in-vivo during HIFU
intervention was finally demonstrated on a porcine kidney.

Index Terms—Image registration, Motion analysis, Motion
compensation, Magnetic resonance imaging

I. INTRODUCTION

M INIMALLY-invasive interventional procedures such as

tissue ablation with radio-frequency (RF) and non-

invasive ablation techniques such as high-intensity focused

ultrasound (HIFU) show a high potential in oncology and

cardiology as an alternative to classical surgery [1] [2]. The

objective is a necrosis of the tissue caused by an elevated

thermal dose due to sustained heating [3]. These methods

are thus ideally paired with a non-invasive imaging modality

which can provide both temperature measurements and target

tracking information. The most promising candidate for this

role is real-time MR-thermometry based on the water pro-

ton resonance frequency (PRF) [4]. This technique provides

continuous temperature mapping inside the human body as

well as target tracking information by exploiting the com-

plex nature of the MR-signal: whereas the signal magnitude

provides anatomical information such as the position and the

composition of the tissue, the phase ϕ is directly proportional

Baudouin Denis de Senneville, Mario Ries and Chrit Moonen are with
the Laboratory for Molecular and Functional Imaging: From Physiology
to Therapy, FRE 3313 CNRS/University of Bordeaux 2, 33076 Bordeaux,
France, (e-mail: {baudouin,gregory,ries,moonen}@imf.u-bordeaux2.fr).

Manuscript received ...; revised ...

to the local magnetic field ~B and to the local proton resonance

frequency (and thus the local temperature). The simplest way

to obtain an estimate of the temperature changes at instant n

(noted ∆Tn) is to evaluate phase shifts between dynamically

acquired phase images and reference data sets as follows:

∆Tn = (ϕref − ϕn) .k k =
1

γ.α. ~B.TE
(1)

where γ is the gyromagnetic ratio (≈ 42.58 MHz/Tesla), α

the temperature coefficient (≈ 0.009 ppm/K) [5], and TE the

echo time.

This new type of interventional procedure is very interesting

for treatment of vital organs (kidney, liver, heart). However

those organs are subject to physiological motion which leads

to the following challenges:

1) Misregistration between phase images must be compen-

sated, and temperature information must be mapped to a

reference position of observed organs to obtain thermal-

dose measurements, requiring the voxel-by-voxel tem-

poral integration of the temperature.

2) Reliable temperature measurement using PRF based

MR-thermometry on abdominal organs is complicated

by the fact that the target moves through an inhomo-

geneous and time-variant magnetic field, causing strong

thermometry artifacts [6].

3) The estimation of the organ displacement is the basis

for the dynamic adjustment of the HIFU beam to track

the targeted pathological tissue, preventing an inefficient

treatment and unwanted destruction of healthy tissue [7].

To accomplish these tasks, the organ motion must be

estimated and a number of techniques have been proposed in

the past for various imaging modalities [8] [9]. In the context

of real-time guidance of the hyperthermia, navigator echoes

[10] or ultrasonic echoes have been originally proposed.

However, only translational displacements can in those cases

be estimated. Since modern MRI acquisition methods allow

the rapid acquisition of large data volumes combined with an

excellent tissue contrast and high spatial resolution, complex

deformation can be estimated on a voxel-by-voxel basis using

optical flow based approaches [11].

Combined with the motion estimation process, several cor-

rection strategies have been proposed in the past to correct

for thermometry artifacts, such as navigator echoes [10] or

referenceless phase corrections [12]. An approach emerged

recently which consists of analyzing phase perturbation with

motion during a pre-treatment step performed prior to the

intervention [7]. For this purpose, a reference data-set of
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magnitude and phase images is recorded during the motion

cycle of the organ. These images are used to evaluate a direct

linear relation between the target motion and resulting phase

variations.

Finally, since many applications in the field of MR-guided

interventions also exploit the MR-image information for a

direct retroactive control of the heating device [7], both the

update time and the latency of the obtained motion field

are key points: for typical abdominal organ motion, it has

been recently demonstrated that a minimal frame rate of

10 images/second is required and the latency (i.e the delay

between the actual time of displacement and the availability

of the motion information) must not exceed 100 milliseconds

[13]. This latency is composed by the sum of the remaining

acquisition time after echo-formation, the required data trans-

port time, the image processing time, and the switching time

of the HIFU-generator.

Black et al. proposed in 1997 a robust image-based motion

descriptor (i.e. a small set of parameters representing the defor-

mation) evaluated using a reduced parameterized flow models

initially computed, during a preparative learning step, with a

Principal Component Analysis (PCA) [14]. The technique was

originally evaluated in the scope of human labial recognition.

Recently, Mauldin et al. proposed a PCA-based displacement

estimation in the context of ultrasound imaging [15]. Previous

work of the authors’ group [16] [17] explored the possibil-

ity to apply the PCA-based motion descriptor for real-time

MR-guided thermotherapy of mobile organs. The PCA-based

motion descriptor was used to detect, in a preparative learning

step, spatio-temporal coherences of the periodic organ motion.

During hyperthermia, incoherent motion patterns could be

discarded, which allowed the following improvements:

1) Optical-flow based algorithms rely on the assumption of

conservation of local intensity along the trajectory which

can be violated during thermotherapy because rapid MR-

imaging is in general associated with low Signal-To-

Noise ratio (SNR). In addition, since the tissue is heated,

several MR relevant tissue properties such as T1, T2

and T ∗

2
relaxation times are subject to change during

imaging [18]. This leads to local intensity variations,

which in turn can be misinterpreted by optical-flow

based algorithms as “motion”. The PCA-based motion

descriptor was used to provide a flow field that was

consistent with the learned model and robust under the

assumption of global brightness constancy but allowed

local intensity variations.

2) The PCA-based motion descriptor was used to model

the magnetic field variation with the target displacement.

This improved the correction of motion related errors in

temperature maps.

In the current paper, this PCA-based method was modified

as follows: We first briefly introduce a method, based on

the PCA-based representation, which is designed to separate

physiological displacement from noise contributions. This step

was found to be a necessary prerequisite for the practical

application of the method. The potential applications enabled

by the technique are then described and tested with a phantom

experiment, and an in-vivo thermometry stability study in the

kidney and the liver of twelve healthy volunteers under free

breathing conditions. The ability to perform a MR-guided

thermotherapy in-vivo during a real intervention was finally

demonstrated on a porcine kidney during a HIFU heating

experiment.

II. METHOD DESCRIPTION

During the therapy, MRI is used for two tasks: MR ther-

mometry and target tracking. Since the basis of the PCA-

based approach is described in detail in [16] [17], only a

short summary is given here. Details are given for the method

designed to separate physiological displacement from noise

contributions, based on the PCA-based representation.

We evaluated the method in 2D since it is in practice

possible for respiratory induced motion, to choose the imaging

plane direction parallel to the principal axis of the organ

displacement.

A. Preparative learning step

Motion patterns were learned during a preparative learning

step performed before hyperthermia, based on a training set of

N images (magnitude and phase). The motion cycle was sam-

pled with a sufficient density in order to avoid discretization

errors. With a typical imaging frame rate of 10 images per

second and a respiration frequency of 3-5 seconds this pre-

treatment step can be completed in a relatively short duration

of 15-20 seconds (in this study, we used N = 200 images).
1) Training set of organ displacement: A model of image

motion was obtained from a training set of N flow fields.

For that purpose, an affine transformation was first estimated

using a differential Gauss-Newton approach [19]. The ob-

tained motion field was used for preconditioning of a more

complex deformation estimation: The implemented approach

was originally proposed by Horn&Schunck [20] for optical

image stabilization and computed a displacement field on

a pixel-by-pixel basis. It includes a modification proposed

by Cornelius&Kanade [21], which relaxes the condition of

intensity conservation from a global to a regional conservation.

Finally, in order to optimize the computation time and to

stabilize the convergence of the algorithm, a multi-resolution

scheme was used [22] which iterated the registration algorithm

from a four-fold down-sampled image step-by-step to the full

image resolution.
2) Learning parameterized flow models: At this point, a

model of image motion was obtained, which was a set of N

optical flow fields. The set was used to build a parameterized

flow model. PCA was used to find an orthonormal basis

that spans an N -dimensional vector space and depict the

underlying characteristic patterns of the motion cycle.
3) Estimation of the motion descriptor: The periodic mo-

tion cycle was characterized with a small set of parameters

as follows: The approximated spatial transformation Tt was,

for each pixel (x, y) calculated as a linear combination of the

previously computed basis vectors Bi:

Tt(x, y) =

M−1
∑

i=0

Dt
iBi(x, y) (2)
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where Dt
i (0 ≤ i < M ) was the motion descriptor (i.e. a set

of parameters representing organ displacement), M (M ≤ N )

the size of the motion descriptor, and 0 ≤ t < N was the index

of each image of the training set. The objective was thus to

find the coefficients Dt
i that produced a flow field minimizing

the matching error:

LS =
(

Mref − T−1

t (Mt)
)2

(3)

where Mref was the reference magnitude image and Mt

the actual image. This minimization was realized using a

Marquardt-Levenberg least square (LS) solver [23]. To stabi-

lize the convergence of the algorithm, a spatial Gaussian filter

(kernel 3×3) was applied on the new incoming image Mt, and

the motion descriptor obtained from the previous acquisition

was used as a starting point for the new motion estimation.

4) Separation of physiological displacements from noise

contributions: We used the PCA-based representation of the

motion to detect spatio-temporal coherences of the periodic

organ motion, in order to separate physiological displacements

from noise contributions. For that purpose, only the M eigen-

vectors Bi associated with the m largest eigenvalues λi (0 ≤

i < M < N ) were conserved as follows. The objective was

thus to determine the threshold value for M , which separates

eigenvectors representing physiological motions (i ≤ M ) and

from eigenvectors coding for noise contribution (i > M ). To

accomplish this task, possible values for M were iteratively

enumerated from 2 to N (we note m the iteration number),

and, for each m, the following test was performed:

1) The PCA-based motion descriptors Dt
i were computed

for all acquisitions of the preparative learning step.

2) A temporal variation of the mth coefficient of the motion

descriptor (i.e. Dt
m−1

) was analyzed over the preparative

learning step, as follows. Since the respiratory and the

cardiac activities are periodic, we analyzed Dt
m−1

, ∀t,

0 ≤ t < N in the Fourier domain. Typical periods of

the respiratory and cardiac activities are, in the general

case, in the range of 3−6 seconds and 0.5−2 seconds,

respectively. A threshold of 4 Hz was used to separate

physiological motions from the noise contribution, and

the maximal spectral magnitude was compared for lower

and higher frequencies. The corresponding (m − 1)th

eigenvector was considered to be noise corrupted if the

spectral magnitude for frequencies above 4 Hz exceeds

the value of 20 % of the main peak below 4 Hz. M was

then set to (m − 1), and the iterative enumeration was

stopped.

5) Modelling motion induced phase changes: The N im-

ages of the preparative learning step were used to evaluate

the linear relation between organ motion and phase variation.

For that purpose, the obtained motion field was used to remap

all pixels of the phase images to their reference position. The

overall magnetic field variations were approximated as the sum

of linear phase changes of each principal motion component

on a pixel-by-pixel basis:

T−1

t (ϕt(x, y)) =

M−1
∑

i=0

Dt
iPi(x, y) + PM (x, y), 0 ≤ t < N

(4)

where Pi (0 ≤ i < M ) denotes the parameterized magnetic

field model, with PM representing the initial phase distribu-

tion, and Dt
i were the coefficients calculated from Eq. (2) and

(3). From the set of N equations with m unknowns defined

by (4), an overestimated system could be obtained if m ≪ N .

Pi(x, y) are individually computed for each pixel (x, y) using

a Singular Value Decomposition (SVD).

B. Hyperthermia procedure

During hyperthermia, each time a new image was acquired,

the PCA-based motion descriptor was estimated and used to

compute (with Eq. (3)) a flow field that was consistent with

the learned model. The PCA-based motion descriptor was

then used to correct for motion related errors on temperature

maps as follows: During hyperthermia, the parameterized

magnetic field model Pi allows the reconstruction of magnetic

field distribution corresponding to the current position of an

organ. A synthetized reference non-heated phase image was

calculated using the motion descriptor Dt
i representing the

actual organ displacement as follows:

ϕref (x, y) =

M−1
∑

i=0

Dt
iPi(x, y) + PM (x, y) (5)

In this study, we set an upper bound of 6 for M , in order to

keep the computational time for the motion estimation process

of one image below 25 ms with the used experimental setup.

The measured registered phase image was subtracted to

the reference phase map ϕref to compute a motion corrected

temperature map (with Eq. (1)). Since the 2π periodicity of the

image phase could lead to aliasing artifacts in the temperature

maps, a temporal phase unwrapping on a pixel-by-pixel basis

was applied. This process was valid under the condition that

the temperature variation between two successive acquisitions

did not create a phase variation greater than π.

C. Experimental setup

Dynamic MR temperature imaging was performed on a

Philips Achieva 1.5 T (Philips Healthcare, Best, The Nether-

lands). MR images were processed using a dual processor

(INTEL 3.1 GHz Penryn, four cores) workstation with 8 GB

of RAM and dual 1 GB/s network interface cards.

Three experiments were performed to assess the improve-

ment obtained with the PCA-based motion descriptor:

1) The method was applied on an ex-vivo heated phantom

prone to a periodical translational displacement. The

estimated motion was compared to reference positions

provided by an external sensor.

2) The potential of the proposed method to modelize the

magnetic field perturbation and to improve the correction

for motion related errors on thermal maps was evaluated
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on the abdomen of 12 healthy human volunteers under

free-breathing conditions.

3) A real-time tracked HIFU heating experiment was per-

formed on a porcine kidney. Since the kidney displace-

ment was rigid, the target motion could be succesfully

estimated on-line by a translation restrained on a ROI

manually set on the kidney at the begining of the hyper-

thermia (a differential Gauss-Newton approach was used

[19]). The estimated displacements were subsequently

used as reference to evaluate off-line the proposed PCA-

based method.

It is important to see those proposed experiments in the

appropriate context: Our PCA-based method presents a real

interest only for elastic organ deformation such as in the

liver, and was not a necessary prerequisite for experiments

#1 and #3. However, those two experiments were designed

to quantify, using reference positions, the accuracy and the

precision of the proposed PCA-based method under thermo-

ablation conditions.

1) Ex-vivo heating study: 3000 images were dynamically

acquired during 3 minutes using a dual-shot, gradient recalled

echo-planar acquisition sequence with the following param-

eters: repetition time (TR)=30 ms, TE=15 ms, bandwidth

in readout direction=1777 Hz,flip angle=20◦, field of view

(FOV )=256×104 mm2, slice thickness=5 mm, matrix=128×
58. A porcine muscle was positioned on a motorized plate-

form, which generated a periodic translational displacement

(amplitude=10 pixels and frequency=0.5 Hz). RF heating was

performed 10 seconds after the end of the preparative learn-

ing step, using a clinical MR-compatible bipolar RF device

(Radionics, Burlington, MA) with 8 W of RF-power during

75 seconds. For an independent assessment of the object

displacement, an additional navigator echo, which provided a

one dimensional displacement information (0.5 mm precision),

was positioned parallel to the displacement on the apex of

the muscle in order to get the reference displacement. We

compared temperature maps obtained when phase images of

Eq. (5) were registered with the navigator echo (which serves

as reference results), with the Cornelius&Kanade algorithm

(the algorithm is described in details in section II.A.1) and

with the PCA-based motion descriptor.

2) On-line in-vivo study: Dynamic MRI was performed

under free-breathing conditions on the abdomen of 12 healthy

human volunteers under real-time conditions. An imaging

frame rate of 10 images/s was maintained for five minutes

of MR-imaging while MR-Thermometry was performed in

real-time. The MR sequence was a single-shot gradient re-

called echo-planar which employed the following parame-

ters: 3000 dynamic coronal images, one slice, TR=100 ms,

TE=26 ms, bandwidth in readout direction=2085 Hz, flip

angle=35◦, FOV =256 × 168 mm2, slice thickness=6 mm,

matrix=128×84, using a four element phased array body coil.

No hyperthermia was performed and the statistical evaluation

of the temperature stability was performed on the kidney

and the liver of each volunteer individually by averaging the

temporal temperature standard deviation over a manually de-

fined ROI. The thermometry was compared with a synthetized

reference non-heated phase expressed in Eq. (4) and (5), as

the linear combination of the six free parameters of an affine

transformation [11] (a differntial Gauss-newton approach was

used for that purpose).

3) In-vivo heating study on a porcine kidney: MRI guided

HIFU was performed in vivo in the kidney of a pig under

general anesthesia and artificial breething. An imaging frame

rate of 10 images/s was maintained for 2.5 minutes using a

single-shot gradient recalled echo-planar sequence. The MR

sequence employed the following parameters: 1500 dynamic

sagittal images, one slice, TR=100 ms, TE=41 ms, bandwidth

in readout direction=2085 Hz, flip angle=35◦, FOV =320×140
mm2, slice thickness=6 mm, matrix=128× 56, using the inte-

grated three elements phased array coil of the HIFU system.

A MR compatible Philips HIFU ablation system (Sonalleve,

Philips Healthcare, Helskinki, Finland) composed of a table

top containing a 256 elements HIFU transducer, integrated

in the 1.5 T Achieva-Intera MRI was used to perform a

temperature elevation. The transducer radius and aperture were

120 mm and 126 mm, respectively, creating an ellipsoid focal

point (1×1×7 mm3). The animals were placed in right lateral

decubitus position so that the kidney was accessible through

an unobstructed beam-path directly below the rib-cage. Motion

compensated MR-thermometry and tracking was performed

for a duration of 1 minutes on the kidney with power of 100

W. A temporal filtering based on an infinite impulse-response

filter was applied to the temperature maps to increase the SNR

(more details can be found in [11]).

III. RESULTS

A. Ex-vivo heating experiment

Fig. 1 shows thermal maps obtained after 50 seconds of

RF heating obtained using the reference navigator echo based

registration (1a), the Cornelius&Kanade algorithm (1b) (note

the deformation of the heated area), and the PCA-based motion

descriptor are displayed (1c). A detail of the anatomical image

in the heated area before hyperthermia and an image obtained

after 50 seconds of RF heating are given in Fig. 1a. The

position of each electrode of the bipolar RF device is indicated

with the two red arrows. A strong signal decrease can be

observed during the hyperthermia process in the heated area

(see green arrow) due to a large temperature change. It can

be observed that the PCA-based motion descriptor provided

temperature maps which were similar to the reference results.

An analysis of the estimated motion field accuracy over

the whole duration of the experiment is presented in Fig. 2a.

For that purpose, the euclidean error between the estimated

displacement and the navigator echo information was com-

puted in a pixel located in the heated area (reported by the

green arrow in Fig. 1a). It can be observed in the first 10

seconds (i.e. before the energy deposition) that the precision

was comparable with the PCA-based registration. However,

the Cornelius&Kanade approach provided poor results during

hyperthermia procedure starts (up to 6 millimeters of error),

while the PCA-based method remained stable and accurate

over the time (less than 2 millimeters of error). Fig. 2

also shows the temporal evolution of the temperature in the

same pixel with the Cornelius&Kanade registration method
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(a) (b) (c)

Fig. 1: Thermometry results obtained for the ex-vivo RF

heating experiment. The computed temperature maps after

50 seconds of heating are displayed when the displacement

information was obtained from the navigator echo (a), the

Cornelius&Kanade approach (b) and the PCA-based motion

descriptor (c). The position of each electrode of the bipolar

RF device is indicated by the two red arrows in the first

insert, which displays the targeted region on an image aquired

before hyperthermia. The second insert shows the strong signal

decrease observed in the same area during hyperthermia due

to the large temperature change (see green arrow).

(2b), and with the PCA-based registration (2c). Compared

to the reference navigator echo results (red line), the tem-

perature measured using the Cornelius&Kanade registration

was overestimated during the heating process. Contrary to the

implemented Cornelius&Kanade approach, the temperature

evolution obtained with the PCA-based motion descriptor was

close to the reference results obtained with the navigator echo.

B. On-line in-vivo study

The volunteers studies depicted various conditions: Over

the twelve volunteers, the SNR was evaluated as 10 ± 2.5

(min=7, max=14) in the kidney and 7 ± 3 (min=4, max=14)

in the liver. The peak-to-peak motion amplitude obtained

from the landmark points was 10 mm ± 4.5 (minimum=4,

maximum=18) in the kidney and 11 mm ± 4.5 (minimum=6,

maximum=18) in the liver. Due to variations of the respiratory

volume, the peak-to-peak amplitude increased between the

preparative learning step and the interventional procedure in

patients #8, #9 and #12 (where an increase of 50 to 65 % was

measured). This value exceeded 150 % in patient #7. Less

than 10 % of increase was measured in patients #2, #3, #5

and #10.

Fig. 3 details the improvement of the temperature precision

when the PCA-based motion descriptor was used to charac-

terize the organ deformation in Eq. (4) and (5), as compared

to an affine motion model. In average over all volunteers, the

temperature stability was improved from an initial value of

over 2.3 ◦C to 2 ◦C (kidney) and 3.3 ◦C to 2.7 ◦C (liver)

using the PCA-based motion descriptor. None of the data were

rejected due to misregistration or faulty phase correction due

to the absence of spontaneous motion.

Fig. 4 and 5 detail results obtained in the volunteer for

which the most significant motion amplitude variation was

detected between the preparative learning step and the hy-

perthermia procedure (i.e. volunteer #7). Fig. 4 shows the

(a)

(b)

(c)

Fig. 2: (a): Temporal analysis of the registration accuracy

in a pixel located in the heated area (green arrow on Fig.

1a) obtained with the Cornelius&Kanade algorithm (black

line) and the PCA-based motion descriptor (green line). (b):

Temporal evolution of the temperature obtained with phase

images registered with the Cornelius&Kanade algorithm. (c):

Temporal evolution of the temperature obtained with phase

images registered with the PCA-based motion descriptor. The

reference temperature obtained with navigator echo based

displacements is displayed with the red line in (b) and (c).

vertical displacement estimated during the preparative learning

step (4a) and during hyperthermia (4b) using the PCA-based

registration (solid line). Manually tracked results provided by

a staff scientist with a precision of a pixel (red dots) in a

landmark located in the liver are also reported for comparison

(red arrow in Fig. 5c). Due to deep variations of the breething,

an increase of the peak-to-peak amplitude by 150 % can

be observed between the preparative learning step and the

interventional procedure in this case. Even in this case, the

proposed correction ensured 2 ◦C of temperature stability in

70 % of all pixels of both the kidney and the liver, as shown in

Fig. 5b. The first and the fourth eigenvectors are displayed in
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Fig. 5c and 5d, respectively (for each pixel the amplitude of the

displacement vector was computed. Each map was normalized

between 0 and 1 for an easier vizualisation). Each of these

eigenvectors represented a physiological component of the

organ deformation: while the first component modelized the

respiratory motion (motion field vectors were oriented in the

head-foot direction), the fourth component represent artereal

pulsations caused by the cardiac cycle. The estimation of a

complex deformation was mandatory in the liver where the

motion amplitude varied with a factor two (see Fig. 5c).

(a) (b)

Fig. 3: Histogram of the temperature precision obtained over

the twelve volunteers in the kidney (a) and the liver (b), when

the temperature maps were computed using an affine motion

model (dash line) and using the PCA-based motion descriptor

(solid line).

(a) (b)

Fig. 4: Comparison of the displacement estimated in the head-

foot direction using the PCA-based registration (solid line)

and manually tracked by a staff scientist with a precision of a

pixel (red dots) in a landmark located in the liver (red arrow

in Fig. 5c): (a) during the preparative learning step, (b) over

100 dynamics acquisitions extracted from the interventional

period.

C. In-vivo heating study on a porcine kidney

Fig. 6 shows an overlay of the temperature map after

60 s of sonication with 100 W accoustic power without

and with adjustment of the HIFU focal point position with

respect to the target position. A low SNR value of 6 was

obtained due to the difficulty to perform an accurate MR

receiver coil placement. The tracking algorithm (which used a

translational motion model) remained locked-on the observed

motion pattern over the entire duration of the sonication ex-

periment without apparent failure. The temperature evolution

(a) (b)

(c) (d)

Fig. 5: Results obtained in the abdomen of a healthy volunteer

(volunteer #7 in Fig. 3): (a) and (b) show the temperature

standard deviation map obtained with an affine motion model

and the PCA-based motion descriptor, respectively. (c) and (d)

display two PCA components (B0 and B3): For each pixel

the amplitude of the displacement vector was computed, and

each map was normalized between 0 and 1 for vizualisation.

Results are presented in superimposition with the anatomical

image depicting the kidney (arrow (1)) and the liver (arrow

(2)).

of the voxel with the maximal temperature rise is plotted in

Fig. 6c. However, the untracked experiment reached a lower

final temperature than the experiment performed with full

motion compensation (tracked: 15 ◦C; untracked: 10 ◦C).

The estimated displacement was used off-line as reference

to quantify the quality of the proposed PCA-registration. A

signal decrease, correlated with the temperature rise could be

observed in the heated area (see the time curve over the whole

experiment of the estimated vertical displacement in a voxel

located in the heated area of Fig. 7a). It can be observed

in Fig. 7a and 7b that only the first eigenvector visually

matched properly the translational kidney displacement. While

the first component of the motion descriptor visually described

properly the motion pattern induced by the assisted respiration

(see Fig. 7d), the second component was very noisy (see Fig.

7f). The period of the respiratory cycle was ≈ 5 seconds and

the main peak located at 0.2 Hz on the spectral magnitude of

the first component (see 7e). The ratio between the maximal

spectral magnitude for frequencies lower and higher than 4

Hz was 0.03 for the first component, and reached 0.69 for the

second (see Fig. 7e and 7g). The optimized size of the motion

descriptor was thus of 1 component. Similarly to the ex-vivo

experiment, the Cornelius&Kanade approach shows a shift

of the estimated displacement correlated with the magnitude

signal decrease (see Fig. 7.a and 7.h). Using the reference

translation displacement estimated on-line, we evaluated that

this shift reached a maximal value of 1.5 millimeters at the
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end of the heating process. The PCA-based approach remained

stable over the time since less than 0.1 millimeters of error was

estimated.

(a) (b) (c)

Fig. 6: Thermometry results obtained for the in-vivo HIFU

heating experiment. T2*-weighted magnitude images of the

kidney of the untracked (a) and the tracked HIFU-ablation ex-

periment (b) are overlayed with the temperature maps obtained

after 60 s of sonication. The temporal evolution of the tem-

perature in a voxel located in the heated area is reported in (c)

for the untracked (black dashed line) and the tracked (red line)

HIFU-ablation experiment. The untracked experiment reached

a lower final temperature than the experiment performed with

full motion compensation (tracked: 15 ◦C; untracked: 10 ◦C).

IV. DISCUSSION

The introduction of a PCA-based motion descriptor allowed

several improvements compared to the previously established

methods described in [11] [13]. First, the method allowed

to maintain only physiological components of the estimated

motion in the registration process, thus allowing:

1) To reduce the noise on the estimated displacement (as

shown in the ex-vivo study (Fig. 2.a) and the in-vivo

heating experiment (Fig. 7.i)).

2) To discard during the hyperthermia procedure, possible

local intensity perturbations induced by the heating:

While purely optical-flow-based realignment may lead to

temperature map computation errors for the case of local

or global intensity changes, PCA-based realignment can

give accurately registered temperature maps for the case

of periodical motion, since it relies on a global fit of

the principal components. Since the proposed method

employs optical flow only during the preparative step

and relies on a global fit of the image content during

the intervention, estimated transformation Tt was thus

less susceptible to those local intensity variations.

It is important to note that the proposed motion estimation

was not constrained to estimate positions present in the col-

lection. The proposed approach assumes that the deformation

must be properly described by a linear combination of the

flow basis Pi. In the tested data, the proposed motion model

was shown to be efficient to estimate organ motion amplitudes

higher than the ones observed in the learning phase (see Fig.

4).

In addition, the method provided a characterization of

the organ displacement which allowed, in turn, an accurate

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 7: Motion estimation results otained for the in-vivo HIFU

heating experiment. The temporal evolution of the magnitude

signal in the voxel with the maximal temperature rise is

shown in (a) (note the signal intensity loss during the heating

process). The two first PCA components (B0 and B1) are

reported in (b) and (c), respectively. The temporal evolution

of the two first coefficients of the PCA-base motion descriptor

(i.e. D0 and D1) and their corresponding representation in

the spectral domain are displayed in (d), (e), (f) and (g). The

red dashed line in (e) and (g) shows the value of 20 % of

the main peak below 4 Hz. The temporal evolution of the

estimated displacement in the head-foot direction with the

Cornelius&Kanade algorithm and the PCA-based approach are

displayed in (h) and (i), respectively.

modelling of the magnetic field perturbation. As a result,

the PCA-based motion descriptor improved the precision of

the temperature computation, compared to an affine motion

model. The proposed approach also allowed to extrapolate

motion amplitudes higher than the ones observed in the
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preparative learning step and could still provide an estimate of

the reference phase in those cases. It is interesting to note that

few temperature precision improvements were obtained on pa-

tients depicting small motion amplitude variation between the

preparative learning step and the hyperthermia procedure (see

volunteers #2, #3, #5 and #10 in Fig. 3). Although an affine

motion model was found to perform well in many patients,

the PCA-based approach should be preferred to guarantee

good treatment in such outlier cases. The method provided

thermal maps registered to a reference position, which is a

necessary prerequisite for the computation of the thermal dose

[3], and thus for the on-line assessment of the progress of the

interventional procedure. It must be emphasized that, in the

current study, the magnetic field perturbation was estimated

assuming a simple linear magnetic field variation with organ

displacement. Although this assumption holds in general for

small displacements, the precision of this simple model must

be carefully evaluated in regions displaying large motion

amplitudes or large susceptibility variations, such as in the

vicinity of the digestive tubes (see arrow (i) in Fig. 3c), of

the quadratus lumborum muscle (see arrow (ii) in Fig. 3c), of

the vertebral column (see arrow (iii) in Fig. 3c), and in the

upper part of the liver (see arrow (iv) in Fig. 3c). This can

in practice be achieved by mapping the fitting error from Eq.

(4). This also allows to discard regions where low signal levels

in conjunction with large susceptibility variations prevent to

adjust successfully the linear model to the phase data.

The determination of the size M of the subset of principal

components was a key point. In all presented experiments, the

energy of the first eigenvalue was higher than 99 % of the

total energy. This can be attributed to the fact that motion

of abdominal organs is dominated by linear shifts due to the

displacement of the diaphragm during the respiratory cycle.

The determination of M could thus not be based on a pure

statistical analysis. The proposed criterion based on the Fourier

representation of each component of the motion descriptor

allowed to discriminate physiological and noise contributions:

An optimal size of 1 was determined for the in-vivo porcine

kidney experiment which matched the kidney displacement

with the used imaging plane orientation. A minimal size of

5 was required in the human study, since the liver depicts

a complex deformation together with arterial pulsations. Al-

thought a size higher than 6 would have been set in 6 cases

with the proposed criterion (note that this provided improved

thermometry results in Fig. 3), we limited this value to 6 for

computational time reasons.

Ries et al. have shown that, for typical abdominal organ

motion, a temperature elevation comparable to static con-

trol experiments can be achieved for update frequencies of

more than 10 Hz and latencies of 100 ms [13]. On our

test platform, the latency was composed as the sum of: the

remaining acquisition time after echo-formation (≈50 ms), the

required data transport time (≈10 ms), the image processing

time, and the switching time of the HIFU-generator (≈10

ms). Thus, computation time for the whole image processing

must typically be below 30 ms to be compatible with the

real-time constraint. The PCA-based image realignment has

computational advantages: the reduction of complex periodic

motion patterns to the most significant principal components

minimizes the degrees of freedom for the registration without a

priori assumptions or simplifications of the form of the motion.

On our implementation, the computation time required for the

processing of one image was below 30 ms. Depending on the

displacement amplitude of the target, between 8 and 25 ms

were required for the motion estimation process. Less than 1

ms was necessary for the calculation of the motion corrected

temperature map. This indicates that the proposed method is

suitable for real-time interventional MR-guidance, as shown

in the in-vivo heating study.

Although the proposed method improves previously sug-

gested approaches for MR-guided thermotherapy of mobile

organs, several limitations remain. The first limitation is the

additional scan required to learn the motion pattern before

hyperthermia. However, in practice this limitation is less

severe, since the proposed correction approach is paired with

high frame rate imaging and thus a re-calibration can be

completed in the relatively short time of two to five respiratory

cycles. The second problem arises when new positions are

observed during hyperthermia, for which the learned motion

pattern is inadequate. In this case, the proposed approach must

be paired with a correction adapted for accidental motion, as

detailed in [12]. Finally, the effect of through plane motion

is a severely limiting factor. In the scope of the presented

study, this has been avoided by aligning the slice parallel to the

main direction of motion. Since real-time acquired MR-images

have generally an anisotropic image resolution (roughly 2-3

times higher in the slice than perpendicular to the slice) this

did in none of the volunteers lead to severe problems due to

residual through-slice motion. However, this is an inconvenient

limitation of the degree of freedom for slice positioning (which

for diagnostic reasons might be unfavorable) and complicates

the slice placement in the planning of the intervention. Further-

more, it can not be excluded that patients with liver pathologies

display more complex 3D motion patterns than the examined

cases. In such cases the only true remedy would be to acquire

extended 3D data volumes and apply the proposed methods in

3D. However, although it is well established that MR-imaging

can provide motion estimates with a high spatial resolution,

it is difficult to acquire on-line 3D isotropic images because

technical limitations lead to a compromize between spatial

and temporal resolution and low SNR associated with fast

3D acquisition sequences. Alternative approaches, based on

the use of additional informations such as navigator echoes,

in combination with adaptive slice tracking to address 3D

trajectories, may be used [13].

V. CONCLUSION

The proposed approach addresses both motion compensated

MR thermometry and target tracking by applying high frame

rate MRI coupled with a real-time motion estimation and

characterization obtained from all incoming images. The PCA-

based motion descriptor introduced in [16] and [17] pre-

sented several advantages compared to previously suggested

approaches: the image-based estimated motion was robust with

respect to local and global intensity changes, and artifact-free
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temperature maps were obtained in all examined cases. The

method allowed to achieve a sub-second temporal resolution

with very short image latencies over sustained imaging periods

of several minutes. During the intervention both, the target lo-

cation and the target temperature were continuously available

with a high temporal resolution and precision.

This renders the method well suitable for the MR-guidance

of a heating intervention on abdominal organs in vivo under

free-breathing over sustained periods of several minutes and

presents therefore a step towards clinical non-invasive HIFU

therapies of kidney and liver tumors.
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