
Mr-SBC: a Multi-Relational Naïve Bayes Classifier 

                   Michelangelo Ceci     Annalisa Appice    Donato Malerba  

Dipartimento di Informatica, Università degli Studi 
via Orabona, 4 - 70126 Bari - Italy 
{ceci, appice, malerba}@di.uniba.it 

Abstract. In this paper we propose an extension of the naïve Bayes 
classification method to the multi-relational setting. In this setting, training data 
are stored in several tables related by foreign key constraints and each example 
is represented by a set of related tuples rather than a single row as in the 
classical data mining setting. This work is characterized by three aspects. First, 
an integrated approach in the computation of the posterior probabilities for each 
class that make use of first order classification rules. Second, the applicability 
to both discrete and continuous attributes by means a supervised discretization. 
Third, the consideration of knowledge on the data model embedded in the 
database schema during the generation of classification rules. The proposed 
method has been implemented in the new system Mr-SBC, which is tightly 
integrated with a relational DBMS. Testing has been performed on two datasets 
and  four benchmark tasks. Results on predictive accuracy and efficiency are in 
favour of Mr-SBC for the most complex tasks.  

 1 Introduction 

Many inductive learning algorithms assume that the training set can be represented as 
a single table, where each row corresponds to an example and each column to a 
predictor variable or to the target variable Y. This assumption, also known as single-
table assumption [23], seems quite restrictive in some data mining applications, where 
data are stored in a database and are organized into several tables for reasons of 
efficient storage and access. In this context, both predictor variables and the target 
variable are represented as attributes of distinct tables (relations). 

Although in principle it is possible to consider a single relation reconstructed by 
performing a relational join operation on the tables, this approach is fraught with 
many difficulties in practice [2,11]. It produces an extremely large, and impractical to 
handle, table with lots of data being repeated. A different approach is the construction 
of a single central relation that summarizes and/or aggregates information which can 
be found in other tables. Also this approach has some drawbacks, since information 
about how data were originally structured is lost. Consequently, the (multi-)relational 
data mining approach has been receiving considerable attention in the literature, 
especially for the classification task [1,10,15,20,7].  

In the traditional classification setting [18], data are generated independently and 
with an identical distribution from an unknown distribution P on some domain X and 
are labelled according to an unknown function g. The domain of g is spanned by m 



independent (or predictor) random variables Xi (both numerical and categorical), that 
is X=X1×X2×…×Xm, while the range of g is a finite set Y={C1, C2, …, CL}, where 
each Ci is a distinct class. An inductive learning algorithm takes a training sample 
S={(x, y) ∈ X × Y | y=g(x) } as input and returns a function f which is hopefully close 
to g on the domain X. A well-known solution is represented by the Naïve Bayesian 
Classifiers [3], which aim to classify any x∈X is the class maximizing the posterior 
probability P(Ci|x) that the observation x is of class Ci,  that is:  

    f(x)= arg maxi P(Ci|x) 
By applying the Bayes theorem, P(Ci|x) can be reformulated as follows: 

P(Ci|x) = 
)(xP

))P(x|CP(C ii  

where the term P(x|Ci) is in turn estimated by means of the naïve Bayes assumption:  
P(x|Ci)=P(x1,x2,… ,xm|Ci)=P(xi|Ci) ×P(x2|Ci) ×…×P(xm|Ci) 

This assumption is clearly false if the predictor variables are statistically 
dependent. However, even in this case, the naïve Bayesian classifier can give good 
results [3]. 

In this paper we present a new approach to the problem of learning classifiers from 
relational data. In particular, we intend to extend the naïve Bayes  classification to the 
case of relational data. Our proposal is based on the induction of a set of first-order 
classification rules in the context of naive Bayesian classification.  

Studies on first-order naïve Bayes classifiers have already been reported in the 
literature. In particular, Pompe and Kononenko  [20] proposed a method based on a 
two-step process. The first step uses the ILP-R system [21] to learn a hypothesis in 
the form of a set of first-order rules and then, in the second step, the rules are 
probabilistically analyzed. During the classification phase, the conditional probability 
distributions of individual rules are combined naïvely according to the naïve Bayesian 
formula.  

Flach and Lachiche proposed a similar two-step method, however, unlike the 
previous one, there is no learning of first-order rules in the first step. Alternatively, a 
set of patterns (first-order conditions) is generated that are used afterwards as 
attributes in a classical attribute-value naive Bayesian classifier [7]. 1BC, the system 
implementing this method, views individuals as structured objects and distinguishes 
between structural predicates referring to parts of individuals (e.g. atoms within 
molecules), and properties applying to the individual or one or several of its parts 
(e.g. a bond between two atoms). An elementary first-order feature consists of zero or 
more structural predicates and one property.   

An evolution of 1BC is represented by the system 1BC2 [16], where no 
preliminary generation of first-order conditions is present. Predicates whose 
probabilities have to be estimated are dynamically defined on the basis of the 
individual to classify. Therefore, this is a form of lazy learning, which defers 
processing of its inputs (i.e., the estimation of the posterior probability according to 
the Bayesian statistical framework) until it receives requests for information (the class 
of the individual). Computed probabilities are discarded at the end of the 
classification process. Probability estimates are recursively computed and problems of 
non-termination in the computation may also occur.    



An important aspect of the first two (eager) approaches is that they keep the phases 
of first-order rules/conditions generation and of probability estimation separate. In 
particular, Pompe and Kononenko use ILP-R to induce first-order rules [21], while 
1BC uses TERTIUS [8] to generate first order features. Then, the probabilities are 
computed for each first-order rule or feature. In the classification phase, the two 
approaches are similar to a multiple classifier because they combine the results of two 
algorithms. However, most first-order features or rules share some literals and this 
approach takes into account the related probabilities more than once. To overcome 
this problem it is necessary to rely on an integrated approach, so that the computation 
of probabilities on shared literals can be separated from the computation of 
probabilities on the remaining literals. 

Systems implementing one of the three above approaches work on a set of main-
memory Prolog facts. In real-world applications, where facts correspond to tuples 
stored on relational databases, some pre-processing is required in order to transform 
tuples into facts. However, this has some disadvantages. First, only part of the original 
hypothesis space implicitly defined by foreign key constraints can be represented after 
some pre-processing. Second, much of the pre-processing may be unnecessary, since 
a part of the hypothesis described by Prolog facts space may never be explored, 
perhaps because of early pruning. Third, in applications where data can frequently 
change, pre-processing has to be frequently repeated. Finally, database schemas 
provide the learning system free of charge with useful knowledge of data model that 
can help to guide the search process. This is an alternative to asking the users to 
specify a language bias, such as in 1BC or 1BC2.  

A different approach has been proposed by Getoor [13] where the Statistical 
Relational Models (SRM) are learnt taking advance from the tightly integration with a 
database. SRMs are models very similar to Bayesian Networks. The main difference 
is that the input of a SRM learner is the relational schema of the database and the 
tuples of the tables in the relational schema.  

In this paper the system Mr-SBC (Multi-Relational Structural Bayesian Classifier) 
is presented. It implements a new learning algorithm based on an integrated approach 
of first-order classification rules with naive Bayesian classification, in order to 
separate the computation of probabilities of shared literals from the computation of 
probabilities for the remaining literals. Moreover, Mr-SBC is tightly integrated with a 
relational database as in the work by Getoor, and handles categorical as well as 
numerical data through a discretization method.  

 The paper is organized as follows. In the next section the problem is 
introduced and defined. The induction of first-order classification rules is 
presented in Section 3, the discretization method is explained in Section 4 and the 
classification model is illustrated in Section 5.  Finally, experimental results are 
reported in Section 6 and some conclusions are drawn. 

2 Problem statement 

In traditional classification systems that operate on a single relational table, an 
observation (or individual) is represented as a tuple of the relational table. 
Conversely, in Mr-SBC, which induces first-order classifiers from data stored in a set 



S={T0,T1,…,Th} of tables of a relational database, an individual is a tuple t of a target 
relation T joined with all the tuples in S which are related to t following a foreign key 
path. Formally, a foreign key path is defined as follows: 

Def 1. A foreign key path is an ordered sequence of tables ϑ=( , ,…, ), 
where  

1iT 2iT
siT

- ∀j=1, ...,s, T ∈S  ji

- ∀j=1..s-1, T   has a foreign key to the table T  1ji + ji

In Fig.1 an example of foreign key paths is reported. In this case, 
S={MOLECULE, ATOM, BOND} and the foreign keys are: A_M_FK, B_M_FK, 
A_A_FK1, A_A_FK1. If the target relation T is MOLECULE then five foreign key 
paths exists. They are:  (MOLECULE), (MOLECULE,ATOM), (MOLECULE, 
BOND), (MOLECULE, ATOM, BOND)  and (MOLECULE, ATOM, BOND). 
The last two are equal because the bond table has two foreign keys referencing the 
table atom. 

A formal definition of the learning problem solved by MR-SBC is the following 
problem: 

Given: 
• A training set represented by means of h relational tables S={T0,T1,…,Th} 

of a relational database D. 
• A set of primary key constraints on tables in S. 
• A set of foreign key constraints on tables in S. 
• A target relation T(x1,…, xn)∈S 
• a target discrete attribute y in T, different from the primary key of T. 

Find: 
A naive Bayesian classifier which predicts the value of y for some individual 
represented as a tuple in T (with possibly UNKNOWN value for y) and related tuples 
in S according to foreign key paths.  

A_M_FK 
B_M_FK 

A_A_FK1 

A_A_FK2 

Fig. 1.  An example of a relational representation of training data of the
Mutagenesis database. 



3 Generation of first-order rules 

Let R’ be a set of first-order classification rules for the classes {C1, C2,…, CL}, and I 
an individual to be classified and defined as above. The individual can be logically 
represented as a set of ground facts, the only exception being the fact associated to the 
target relation T, where the argument corresponding to the target attribute y is a 
variable Y. A rule Rj∈R’ covers I, if a substitution θ exists, such that Rjθ ⊆ Iθ. The 
application of the substitution to I is required to ground the only variable Y in I to the 
same constant as that reported in Rj for the target attribute. Let R be the subset of rules 
in R’ that cover I, that is R={Rj∈R’ | Rj covers I }. The first-order naïve Bayes 
classifier for the individual I, f(I), is defined as follows: 

f(I)= arg maxi P(Ci|R) = arg maxi )(RP
))P(R|CP(C ii  

The value P(Ci) is the prior probability of the class Ci. Since P(R) is independent of 
the class Ci, it does not affect f(I), that is, 

f(I)= arg maxi   (1) ))P(R|CP(C ii

The computation of P(R|Ci) depends on the structure of R. Therefore, it is 
important to clarify how first-order rules are built in order to associate them with a 
probability measure. As already pointed out, Pompe and Kononenko use the first-
order learning system ILP-R to induce the set of rules R’. This approach is very 
expensive and does not take into account the bias automatically determined by the 
constraints in the database. On the other hand, Flach and Lachiche use Tertius to 
determine the structure of first-order features on the basis of the structure of the 
individuals. The system Tertius deals with learning first-order logic rules from data 
lacking an explicit classification predicate. Consequently, the learned rules are not 
restricted to predicate definitions as in supervised inductive logic programming. Our 
solution is similar to that proposed by Flach since the structure of classification rules 
is determined on the basis of the structure of the individuals. The main difference is 
that the classification predicate is considered during the generation of the rules. 

All predicates in classification rules generated by Mr-SBC are binary and can be of 
two different types. 
Def 2. A binary predicate p is a structural predicate associated to a table Ti∈S if a 
foreign key FK in Ti exists that references a table Ti1∈S. The first argument of p 
represents the primary key of Ti1 and the second argument represents the primary key 
of Ti. 
Def 3. A binary predicate p is a property predicate associated to a table Ti∈S, if the 
first argument of p represents the primary key of Ti and the second argument 
represents another attribute in Ti which is neither the primary key of Ti nor a foreign 
key in Ti.  
Def 4. A first order classification rule associated to the foreign key path ϑ is a clause 
in the form: 

p0(A1,y):- p1(A1,A2), p2(A2,A3), …, ps-1(As-1,As), ps(As,c). 
where  



1. p0 is a property predicate associated to the target table T and to the target attribute 
y. 

2. ϑ=(T , T ,…, T ) is a foreign key path such that for each k=1, ..., s-1: p1i 2i si k is a 

structural predicate associated to the table T  
ki

3. ps is a property predicate associated to the table . 
siT

An example of a first-order rule is the following: 
      molecule_Label(A, active) :- molecule_Atom(A,B), atom_Type(B,’[22..27]’). 
 

Mr-SBC searches all possible classification rules by means of a breadth-first 
strategy and iterates over some refining steps. A refining step is biased by the possible 
foreign key paths and consists of the addition of a new literal, the unification of two 
variables and, in the case of a property predicate, in the instantiation of a variable.  
The search strategy is biased by the structure of the database because each refining 
step is made only if the generated first-order classification rule can be associated to a 
foreign key path. However, the number of refinement steps is upper bounded by a 
user-defined constant MAX_LEN_PATH.  

4 Discretization 

In Mr-SBC continuous attributes are handled through supervised discretization. 
Supervised discretization methods utilize the information on the class labels of 
individuals to partition a numerical interval into bins. The proposed algorithm sorts 
the observed values of a continuous feature and attempts to greedily divide the 
domain of the continuous variable into bins, such that each bin contains only 
instances of one class. Since such a scheme could possibly lead to one bin for each 
observed real value, the algorithm is constrained to merge bins in a second step. 
Merging of two contiguous bins is performed when the increase of entropy is lower 
than a user-defined threshold (MAX_GAIN). This method is a variant of the one-step 
method 1RD by Holte [14] for the induction of one-level decision trees, that proved to 
work well with the Naïve Bayes Classifier [4]. It is also different from the one-step 
method by Fayyad and Irani [6] that recursively splits the initial interval according to 
the class information entropy measure until a stopping criterion based on the 
Minimum Description Length (MDL) principle is verified. 

5 The computation of probabilities 

According to the naïve Bayes assumption, the attributes are considered independent. 
However, this assumption is clearly false for the attributes that are primary keys or 
foreign keys. This means that the computation of P(R|Ci) in equation (1) depends on 
the structures of rules in R. For instance, if R1 and R2 are two rules of class Ci, that 
share the same structure and differ only for the property predicates in their bodies 

R1: 11 ,11,11,10,1 ,,...,: KK ββββ −−  



R2: 22 ,21,21,20,2 ,,...,: KK ββββ −−  
where 

K1=K2 and 1,21,12,22,11,21,1 21
,...,, −− === KK ββββββ   

then =)|CRRP( i},{ 21 )|),...,((
211 ,2,11,11,10,1 iKKK CP βββββ ∩∩∩ − = 

)),...,(|()|),...,(( 1,11,10,1,2,11,11,10,1 1211 iKKKiK CPCP ∩∩∩⋅∩ −− ββββββββ  
The first term takes into account the structure common to both rules while the second 
term refers to the conditional probability of satisfying the property predicates in the 
rules given the common structure. 
The latter probability can be factorized under the naïve Bayes assumption, that is: 

)),...,(|( 1,11,10,1,2,1 121 iKKK CP ∩∩∩ −βββββ =
)),...,( 1,11,10,1 1 iK CP |()),...,(|( ,21,11,10,1,1 211 KiKK PC ∩∩⋅∩∩ −− ββββββββ  

According to this approach the conditional probability of the structure is computed 
only once. This approach differs from that proposed in the works of Pompe and  
Kononenko [20] and Flach [7] where the factorization would multiply the structure 
probability twice. 

By generalizing to a set of classification rules we have:  
))P(R|CP(C ii = ∏

j
ji )|structureP(Rstructure)PP(C )(    (2) 

where the term structure takes into account the class Ci and the structural parts of the 
rules in R. 

If the classification rule Rj ∈ R is in the form 
jj KjKjjj ,1,1,0, ,,...,: ββββ −−  where 

and 0,jβ
jKj,β are property predicates and 1,2,1, ,...,, −jKjjj βββ are structural 

predicates, then:  
),...,,|(),...,,|( 1,1,,1,1,0,, −− ==

jjjj KjjiKjKjjjKjj CPP)|structureP(R βββββββ  

where Ci  is the value of the target attribute in the head of the clause ( ).  To 
compute this probability, we use the Laplace estimation: 

0,jβ

FC

C
CP

j

jj

jj
Kjji

KjjiKj
KijiKj +

+
=

−

−
− ),...,,(#

1),...,,,(#
),...,,|(

1,1,

1,1,,
1,1,, ββ

βββ
βββ  

where F is the number of possible values of the attribute to which the 
jKj,β property 

predicate is associated. Laplace’s estimate is used in order to avoid null probabilities 
in the equation (2). In practice, the value at the nominator is the number of individuals 
which satisfy that conjunction 1,1,, ,...,,, −jj KjjiKj C βββ , in other words, the number 

of individuals covered by the rule 
jKj,,

jKjjj 1,1,0, ,...,: ββββ −− . It is determined by a 

“select count (*)” SQL instruction. The value of the denominator is the number of 
individuals covered by the rule 1,1,0, ,...,: −−

jKjjj βββ . 

The term P(structure) in the equation (2) is computed as follows: Let 
Β={( 1,jβ , 2,jβ ,…, tj,β )| j=1..s and t=1, ..., 1−jK } the set of all distinct sequences of 
structural predicates in the rules of R. Then  



 P(structure)= ∏
Β∈seq

P(seq)   (3) 

To compute P(seq) it is necessary to introduce the definition of the probability JP 
that a join query is satisfied, for this purpose, the formulation provided in [11] can be 
useful. Let ϑ=(T , T ,…, T ) be a Foreign Key Path, then: 1i 2i si

JP(ϑ)=JP( )=
sii T,...,T

1 |T|...|T|
|)T...T(|

1

1

s

s

ii

ii

××

××><
 

where )T...T(
1 sii ××><  is the result of the join between the tables .  

sii T,...,T
1

We must remember that each sequence seq is associated to a foreign key path ϑ. If 
seq=( 1,jβ , 2,jβ , …, tj,β ) there are two possibilities: either a prefix of seq is in B or 
not. By denoting as  the table related to 

hjT hj,β , h=1,…, t, the probability P(seq) 
can be recursively defined as follows: 








=

Bin   ofprefix longest   theis  if
)'(

)T,...,JP(T
Bin prefix  no has  if)T,...,JP(T

 1

1

seqseq'
seqP

seq
P(seq) t

t

jj

jj
 

This formulation is necessary in order to compute the formula (3) considering both 
dependent and independent events. Since P(structure) takes into account the class, 
P(seq) is computed separately for each class.  

6 Experimental Results 

MR-SBC has been implemented as a module of the system MURENA and has been 
empirically evaluated on the Mutagenesis datasets and on Biodegradability datasets. 

6.1 Results on Mutagenesis 

These datasets, taken from the MLNET repository, concern the problem of identifying 
the mutagenic compounds [19] and have been extensively used to test both inductive 
logic programming (ILP) systems and (multi-)relational mining systems. We 
considered, analogously to related experiments in the literature, the “regression 
friendly” dataset of 188 elements. 

A recent study on this database [22] recognizes five levels of background 
knowledge for mutagenesis which can provide richer descriptions of the examples. In 
this study we used only the first three levels of background knowledge in order to 
compare the performance of Mr-SBC with other methods for which experimental 
results are available in the literature. Table 1 shows the first three sets of background 
knowledge used in our experiments, where BKi⊆ BKi+1 for i=0, …, 2. The greater the 
BK, the more complex the learning problem. 



Table 1. Background knowledge for Mutagenesis database. 

Background Description 
BK0 Consists of those data obtained with the molecular modelling package 

QUANTA. For each compound it obtains the atoms, bonds, bond types, atom 
types, and partial charges on atoms. 

BK1 Consists of Definitions in B0 plus indicators ind1, and inda in molecule table. 
BK2 Variables (attributes) logp, and lumo are added to definitions in BK1. 

The dataset is analyzed by means of a 10-fold cross-validation, that is, the target 
table is first divided into ten blocks of near-equal size and distribution of class values, 
and then, for every block, a subset of tuples in S related to the tuples in the target table 
block are extracted. In this way, ten databases are created. Mr-SBC is trained on nine 
databases and tested on the hold-out database. Mr-SBC has been executed with the 
following parameters: MAX_LEN_PATH=4 and MAX_GAIN= 0.5. 

Experimental results on predictive accuracy are reported in Table 2 for increasing 
complexity of the models. A comparison to other results reported in the literature is 
also made. Mr-SBC has the best performance for the most complex task (BK2) with 
an accuracy of almost 90%, while it ranks third for the simplest task. Interestingly, the 
predictive accuracy increases with the complexity of the background knowledge, 
which means that the variables added in BK1 and BK2 are meaningful and Mr-SBC 
takes advantages of that.    

As regards execution time (see Table 3). The time required by Mr-SBC increases 
with the complexity of the background knowledge. Mr-SBC is generally considerably 
faster than competing systems, such as Progol, Foil, Tilde and 1BC, that do not 
operate on data stored in a database. Moreover, except for the task BK0, Mr-SBC 
performs better that MRDTL which works on a database.  It is noteworthy that the 
trade-off between accuracy and complexity is in favour of Mr-SBC.  

The average number of extracted rules for each fold is quite high (55.9 for BK0, 
59.9 for BK1, and 64.8 for BK2). Some rules are either redundant or cover very few 
individuals. Therefore, some additional stopping criteria are required to avoid the 
generation of these rules and to reduce further the cost complexity of the algorithm. 

 

Table 2. Accuracy comparison on the set of 188 regression friendly elements of Mutagenesis. 
Results for Progol2, Foil, Tilde are taken from [1]. Results for Progol_1 are taken from [22]. 
The results for 1BC are taken from [9]. Results for 1BC2 are taken from [16]. Results for 
MRDTL are taken from [17]. The values are the results of 10-fold cross-validation. 

Accuracy(%) System 
BK0 BK1 BK2 

Progol_1 79 86 86 
Progol_2 76 81 86 

Foil 61 61 83 
Tilde 75 79 85 

MRDTL 67 87 88 
1BC2 72.9 --- 72.9 
1BC 80.3 --- 87.2 

Mr-SBC 76.5 81 89.9 

 



Table 3. Time comparison of the set of 188 regression friendly elements of Mutagenesis. 
Results for Progol2, Foil, Tilde are taken from [1]. Results for Progol_1 are taken from [22]. 
Results for MRDTL are taken from [17]. The results of MR-SBC have been taken on a PIII 
WIN2k platform. 

Time (Secs) System 
BK0 BK1 BK2 

Progol_1 8695 4627 4974 
Progol_2 117000 64000 42000 

Foil 4950 9138 0.5 
Tilde 41 170 142 

MRDTL 0.85 170 142 
1BC2 -- -- -- 
1BC -- -- -- 

MR-SBC 36 42 48 

6.2 Results on Biodegradability 

The Biodegradability dataset has already been used in the literature for both 
regression and classification tasks [5]. It consists of 328 structural chemical molecules 
described in terms of atom and bond. The target variable for machine learning 
systems is the natural logarithm of the arithmetic mean of the low and high estimate 
of the HTL (Half-Life Time) for acqueous biodegradation in aerobic conditions, 
measured in hours. We use a discretized version in order to apply classification 
systems to the problem. As in [5], four classes have been defined: chemicals degrade 
fast, moderately, slowly or are resistant. 

The dataset is analyzed by means of a 10-fold cross-validation. For each database 
Mr-SBC and Tilde are trained on nine databases and tested on the hold-out database. 
Mr-SBC has been executed with the following parameters: MAX_LEN_PATH=4 and 
MAX_GAIN= 0.5. Experimental results on predictive accuracy are reported in Table 
4. They are in favour of Mr-SBC on the average of accuracy varying the fold. 

Table 4. Accuracy comparison on the set of 328 chemical molecules of Biodegradability. 
Results for Mr-SBC and Tilde are reported. 

Fold Mr-SBC Tilde Pruned 
0 0.90909 0.69697
1 0.87878 0.81818
2 0.84848 0.90909
3 0.87878 0.87879
4 0.78788 0.69697
5 0.84848 0.90909
6 0.90625 0.90625
7 0.87879 0.81818
8 0.87500 0.93750
9 0.93939 0.72727

Average 0.87509 0.82983
 



7 Conclusions 

In the paper, a multi-relational data mining system with a tight integration to a 
relational DBMS is described. It is based on the induction of a set of first-order 
classification rules in the context of naive Bayesian classification. It presents several 
differences with respect to related works. First, it is based on an integrated approach, 
so that the contribution of literals shared by several rules to the posterior probability is 
computed only once. Second, it works both on discrete and continuous attributes. 
Third, the generation of rules is based on the knowledge of a data model embedded in 
the database schema. The proposed method has been implemented in the new system 
Mr-SBC and tested on four benchmark tasks. Results on predictive accuracy are in 
favour of our system for the most complex tasks. Mr-SBC also proved to be efficient.  

As future work, we plan to extend the comparison of Mr-SBC to other multi-
relational data mining systems on a larger set of benchmark datasets. Moreover, we 
intend to frame the proposed method in a transduction inference setting, where both 
labelled and unlabelled data are available for training. Finally we intend to integrate 
Mr-SBC in a document processing system that makes extensive use of machine 
learning tools to reach a high adaptivity to different tasks. 
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