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Abstract

MapReduce is Google’s programming model for easy
development of scalable parallel applications which pro-
cess huge quantity of data on many clusters. Due to
its conveniency and efficiency, MapReduce is used in
various applications (e.g., web search services and on-
line analytical processing.) However, there are only few
good benchmarks to evaluate MapReduce implementa-
tions by realistic testsets.

In this paper, we present MRBench that is a bench-
mark for evaluating MapReduce systems. MRBench fo-
cuses on processing business oriented queries and con-
current data modifications. To this end, we build MR-
Bench to deal with large volumes of relational data and
execute highly complex queries. By MRBench, users
can evaluate the performance of MapReduce systems
while varying environmental parameters such as data
size and the number of (Map/Reduce) tasks. Our ex-
tensive experimental results show that MRBench is a
useful tool to benchmark the capability of answering
critical business questions.

1 Introduction

As the quantity of data to process is increasing in
many areas such as web search service and scientific
research, it is a challenging problem to process large
amounts of data efficiently. Existing DBMSs are too
generalized for some specific applications such as web
search engine[6]. To reduce unnecessary overhead of
DBMS for some specific applications, we have to find
another approach to deal with large amounts of data.
Recent work[9] shows that it is better to deal large
amounts of data with lots of clusters than with some
multiprocessor server with shared memory in terms of
performance and cost. However, it is very difficult to
process data with many clusters due to complexity of

data distribution, parallel processing, results collection
with fault tolerance. There are some solutions such as
MPI and Grid for parallel computing, but it is not easy
to solve problems with both efficiency and convenience.

MapReduce[7] is Google’s programming model
for scalable parallel data processing, and various
implementations[7, 11, 1] of MapReduce are used to
solve problems in many areas (i.e., web search ser-
vice.) MapReduce uses two functions - Map and Re-
duce - from the parallelizable functions. Users im-
plement only Map function and Reduce function to
convert their programs to parallelized versions easily.
There are many implementations of MapReduce such
as Map-Reduce-Merge[6], MapReduce for Multi-core
and Multiprocessor systems[11], Google MapReduce,
and Apache Hadoop[1].

Even if MapReduce implementations are already be-
ing used widely, there are only a few ways to measure
performance of MapReduce implementations. There
are some researches[7, 11, 1] which tried to bench-
mark MapReduce with many testcases such as word-
count, sort, grep, and matrix multiply. However, they
do not have enough workloads to benchmark MapRe-
duce. Since MapReduce’s improvement includes rela-
tional algebra[6, 10, 2], we believe that benchmarking
MapReduce with relational algrebra will be necessary
in industry and academia.

To this end, we adopt TPC-H[3] that is an audited
benchmark for decision support system since TPC-
H evaluates database system with business oriented
database and 22 ad-hoc queries and each query repre-
sents realistic complex queries. In this paper, we repre-
sent MRBench, which is a kind of MapReduce bench-
mark based on TPC-H. We converted each queries into
MapReduce jobs. Each jobs consists of several steps of
MapReduce. To implement SQL queries with MapRe-
duce, we implemented basic SQL features (SELECT,
FROM, WHERE, and JOIN) into MapReduce tasks.
Each step’s result data is treated as input data of next



step of MapReduce except the last step of MapReduce.
The last step of MapReduce collects result data into
one file to represent overall result of a query.

The main contributions of this paper follow:

• A benchmark design for general MapRe-
duce system. We designed all queries of TPC-
H into MapReduce model by default MapReduce
model[7].

• A benchmark implementation for MapRe-
duce system. We implemented MRBench with
Java targeting Hadoop system, but source code
can be easily converted into other MapReduce sys-
tems.

• A flexible testing environment with various
configurations. Options that can be configured
are the size of database, the number of Map tasks,
and the number of Reduce tasks.

The rest of this paper is organized as follows. Sec-
tion 2 describes related works of this paper. Section 3
gives an overview of MRBench. In Section 4, we will
discuss detailed implementation issues of MRBench.
Section 5 describes MRBench experiments with vari-
ous environments. Section 6 discusses summary and
future work.

2 Background and Related Work

2.1 MapReduce

MapReduce[7] is a programming model from Google
for simplified data processing on large clusters. It has
pretty simple structure by Map and Reduce. The over-
all process of MapReduce works as follows. When
MapReduce function is called, MapReduce program
first splits user’s input data into M pieces and starts
with many copies of program with one piece each. One
of the copy becomes master program that manages
whole execution. M map tasks and R reduce tasks
are being assigned. Map task reads one piece of input
data and generates key/value pairs from data. Reduce
tasks read values with same key, process values and
create result data. The master program returns results
from reduce tasks. When one of the worker fails, mas-
ter re-execute failed tasks on another worker node.

Phoenix[11] is an implementation of MapReduce for
shared-memory system. The authors of Phoenix eval-
uated MapReduce on Multi-core and Multiprocessor
systems with Phoenix. Hadoop[1] is Apache’s imple-
mentation to process vast amounts of data with sup-
port of MapReduce and Hadoop Distributed File Sys-
tem. Hadoop can be deployed easily by configuring

some variables - some paths and nodes. Hadoop de-
fines one master node that manages all systems and
jobs, and other worker nodes. Prototyped implemen-
tation of MRBench is based on Hadoop since it is a
kind of open source software. HBase[2] is Hadoop’s ex-
tension for database system with Hadoop. HBase is
modeled from BigTable[5]. It provides Hql to support
SQL queries, but Hql cannot support complex queries
which can be found often in TPC-H queries yet.

Map-Reduce-Merge[6] is a new model from MapRe-
duce model. Map-Reduce-Merge adds Merge phase
to support relational heterogeneous datasets. It is
showed that Map-Reduce-Merge can process relational
database operators such as join, selection, and Carte-
sian product. This work motivates our research.

2.2 Benchmark

Benchmark is running a number of pro-
grams/operations to obtain the performance of
an object. In [12], application-specific benchmark can
be categorized into three categories - vector-based,
trace-based, and hybrid methodology. Vector-based
methodology characterizes an underlying system by a
set of testcases that consist of some system vectors.
Each vector’s characteristic can be found by some of
testcases and results of other vectors. Trace-based
methodology characterizes the trace rather than
characterizing an underlying system, and uses the
characterization to generate benchmark that is similar
to actual usage. Hybrid methodology combines two
methodologies - vector-based and trace-based. We
focus on trace-based benchmark.

TPC-H[3] is a benchmark in TPC for decision sup-
port system. It consists of industry related data with 8
tables and 22 business-oriented queries. TPC-H bench-
marks decision support system with massive data that
executes query with high degree of complexity, and
generates complex results. The performance of TPC-
H result is measured by QphH@Size(Query-per-hour).
Performance can be evaluated on same size of datasets.
Many clusters are compared with performance in [3] by
QphH@Size and Price/QphH.

STMBench7[8] is a candidate benchmark to evalu-
ate software transactional memory (STM) implementa-
tions. STMBench7 is a good benchmark example which
is developed from other existing benchmark. STM-
Bench7 got its base from OO7 benchmark[4] which
benchmarks object-oriented database systems. STM-
Bench7 converted OO7 to fit STM implementations,
and added some characteristics for better STM bench-
marking. STMBench7 is well designed and imple-
mented to benchmark various STM implementations.



3 Overview

In this section, we will give an overview of TPC-H
benchmark structure and MRBench design.

3.1 TPC-H overview

TPC-H consists of 8 tables for dataset design and 22
queries for process workflow. Each table attribute rep-
resents data for industrial resource management, and
each query represents business-oriented ad-hoc query
that is complex and possibly produces a lot of data as
results. We will see more specific structure below.

Figure 1. TPC-H’s table relationship

Data relationship overview. Fig 1. represents
table design of TPC-H including relations with foreign-
key relationship. Each table has at least one relation-
ship with other tables. Each table has 3-16 attributes
which consists of some primary/foreign keys and other
specific data. There are some constraints on these at-
tributes, such as positive key value and date format
restrictions. Generated data shows patterns similar
to real-life data. For example, there are many ”dead
data” customers (who has no orders so will be dropped
in table join) in customer table and table sizes are well-
balanced with certain ratio except that nation table has
25 fixed nations and region table has 5 fixed regions.

Query overview. TPC-H has 22 queries with fol-
lowing characteristics.

• A high degree of complexity

• Various access to database

• Test of a large part of the available data

• Ad-hoc manner

• Varying query parameters

Queries in TPC-H consist of SQL operations such
as select, join, group by, and order by. In addition,
the queries use views as well as tables. Most queries
combine and filter data from many tables.

Fig 2. is an example of query with table joins.

3.2 MRBench design

How to convert each SQL features to MapReduce
framework’s primitives, Map and Reduce, will be de-
scribed in this section. In the end, we will present an
example of implementing TPC-H’s query 9 with Map
and Reduce.

SELECT. Select operation in SQL is equivalent to
projection, a relational algebra operation. Projection
selects required attributes from tuples. In MapReduce
framework, one can perform projection in the Map
phase by emitting required attribute values as inter-
mediate data. Select implementation can be described
briefly as follows:

• Map: for each tuple, produce (key, selected at-
tribute values)

• Reduce: for each unique key-value pair, emit
(key, value)

Join. A Join operation combines data from two
or more tables by certain conditions. In a TPC-H
benchmark environment, tables are associated to each
other by foreign keys. Join is usually performed on
the foreign key relationship. Join can be implemented
on MapReduce framework by using attributes on the
join condition as map phase keys. Join procedure is
outlined as follows:

• Map: for each tuple, produce (join condition at-
tribute, other attributes)

• Reduce: for each unique key value, concatenate
attributes from join tables.

Outer join can be performed in a similar manner.
GROUP BY. A GROUP BY statement in SQL

is used to specify that a SELECT operation returns
a list that is grouped by one or more attributes.
Usually, some sort of aggregate function comes with
GROUP BY statement. Brief Map/Reduce procedure
of GROUP BY operation is as follows:



• Map: for each tuple, produce (GROUP BY at-
tributes, other attributes)

• Reduce: for each key, compute the aggregate
function on data collected by the group-by at-
tributes.

If there are more than one GROUP BY attributes, the
values of attributes are concatenated and act like a
single key value.

VIEW. View creates new virtual table from existing
tables. A view is defined by a query expression, which
consists of some relational operations: join, projection,
aggregation, etc. In MRBench, a view is just another
query, which executes before the main query starts.
There is just one query (query 15) in TPC-H which
employs a view.

Figure 2. Query 9 of TPC-H

Example : Query 9. In this section we will present
an example of MRBench design converted from a TPC-
H query. Fig 2. represents original query 9 of TPC-H.
Query 9 joins six tables and processes data by grouping
results of embedded query. To join six tables, we per-
form five join operations in three steps of MapReduce.
Each join operation is performed with a key which is
the primary key to one table. After projection and
filter processes in Map phase, Reduce phase processes
join tables. These joins can be performed in parallel
by treating in same Map/Reduce tasks.

Overall process is as follows. In the first step,
six tables are joined into three tables - part / part-
supp, supplier / nation, and lineitem / orders. Map

phase loads six tables, performs projection, and cre-
ates key/value pairs. Key has table type and join key
of table, and Value has projected attributes which is
needed by query. Reduce phase joins values with same
key.

Fig 3. explains our design of first step’s join for part
table and partsupp table. Map phase performs filtering
and projection for two tables, and creates key/value
pairs, which key is partkey and value is each table’s
projected attributes. Reduce phase performs join with
key. To perform join, reduce phase generates Cartesian
product between two tables with non-key attributes.
Generated results are part/partsupp table’s tuples. Re-
sults of first step will be three joined tables - part /
partsupp, supplier / nation, and lineitem / orders.

Second step joins p/ps table and s/n table, and no
process for l/o table as same methods with first step.
Third step joins p/ps/s/n table and l/o table. Fourth
step groups joined table’s tuples with n name and year
of o orderdate as o year and orders by n name in as-
cending order, and o year in descending order. Group-
ing and ordering are performed using Map keys. By
using map keys as n name and o year, grouping can be
performed, and ordering can be performed with defin-
ing comparator of keys.

Fig 4. shows overall process of MRBench’s Query 9
design.

Figure 3. MRBench Join of Part and Partsupp
in the first step of Query 9



Figure 4. MRBench Design of Query 9

4 Implementation issues

In this section, we will discuss some issues arised
during the implementation. We wrote 8,000 lines of
Java code to implement MRBench. Our implemen-
tation is based on Hadoop 0.14.4 with Hadoop Dis-
tributed File System (HDFS). Every test database is
stored in HDFS. All intermediate data and results are
also stored on HDFS.

4.1 Implementing MRBench design

To implement MapReduce programs of our design,
we need to consider some issues.

Processing tables. To use the test database de-
fined by TPC-H, we directly parse test database files
generated by TPC-H data generator which are plain
text files where each attribute is separated by ’|’ and
each line corresponds to a tuple. Each file is located
in HDFS, and copied to input path when the query re-
quires the table. Copy time will not be included in the
measured running time.

Each table is coupled with an appropriate Java class
that parses each line of table files and converts the line
into the list of attributes. Table parser converts each

attributes to its own type. Character and text type is
parsed into String type, integer type is parsed into long
type. Decimal type is parsed into float type, and date
type is also parsed into long type that the value is the
number of milliseconds elapsed since midnight UTC of
January 1, 1970. Table parser can process a project
operation by ignoring not required attribute values.

Join. Joining two tables is implemented as we men-
tioned in the previous section. We collect all non-join-
key table tuples and a join-key table tuple. In TPC-
H’s query, every join is processed with keys which is
one table’s primary keys, so we just collected one tuple
from join-key table, but it can be implemented to col-
lect both tables’ tuples without many modifications.
Non-join-key table’s tuples are collected until a join-
key table tuple is received. After that, the rest of the
tuples can be directly handled into output key/value
pairs.

Order. Ordering result is easily done in Hadoop.
Hadoop sorts the reduce results by the value of map
key. By defining map key as attributes to be ordered,
and defining map key type’s comparator into appropri-
ate comparator, Hadoop gives sorted results for each
reduce tasks. By running only one reduce task at the
last step, the overall result can be checked in one sorted
output file. A simple combiner function also can be
implemented to merge some ordered results into one
output file because separated results are locally sorted
in each file.

4.2 Miscellaneous issues

Followings are issues in implementing MRBench,
but not from design issues.

Various configurations. We support three con-
figuration options in MRBench implementation -
database size, the number of map tasks and the num-
ber of reduce tasks. By managing different database in
different directory, database size can be selected while
copying table files to input path. Number of map tasks
and reduce tasks can be configured by Hadoop’s Job-
Conf class. However, the number of map/reduce tasks
is only a hint to MapReduce task and the actual num-
ber of tasks depends on file splitter’s choice.

Intermediate data. When a query is handled with
multiple MapReduce phases, intermediate files gener-
ated by a phase should be handled properly. MRBench
implementation uses output of a phase into input of
next phase directly by configuring former phase’s out-
put path as next level’s input path. Intermediate files
are deleted after running all phases, and deletion time
will not be included in running time.



4.3 Validation

To validate our implementation, we compared our
result with TPC-H benchmark results from Postgresql
database. Actually, validation is less important in our
paper because our implementation’s major target is
TPC-H’s workload, not TPC-H’s results. But, to con-
firm the correctness of our implementation’s workload,
we checked every results of queries by TPC-H’s results
from same query variables and same tables. Some bugs
were found - minor bugs such as date calculation bugs
and major bugs such as logic bugs - and fixed.

5 Experiments

In this section, we ran some experiments with MR-
Bench implementation under various configurations.
We tested our implementation by varying the size of
database, and the number of map tasks. We also val-
idated that our implementation worked properly as
MapReduce benchmark, and characterized MRBench
to target the system to use MRBench.

5.1 Experimental Setup

To test MRBench implementations, we used Seoul
National University’s Supercomputer. The supercom-
puter is comprised of 480 computing nodes. Each com-
puting node has two PowerPC 970 2.2GHz CPUs, 2GB
Memory, and connected with each other by Ether-
net and Myrinet. We used only 1Gbps Ethernet for
the network communication. Every node uses Suse
Linux Enterprise Server 9. Jobs are controlled by
LoadLeveler 3.2.1. Home directory is shared by NFS,
and each node has own local disk.

We used 16 nodes in our experiments, except for ex-
periments with varying number of nodes. One of these
nodes is used as master node, and all of the 16 nodes
worked as worker nodes. Hadoop 0.14.4 and Java 1.5.0
is used for all cluster nodes. Hadoop Distributed File
System (HDFS) is used to share pre-generated TPC-H
data, intermediate data, and result data. Two data
sets - 1GB and 3GB - are used to test our implemen-
tation. 3GB data set is used by default. In every map
task, each splitted file is encouraged to have 64MB size.
In each test, every query is executed and used as result.

We analyzed runtime results as three components
- System management time, data management time,
and processing time. System management time is the
time spent on adjusting and maintaining overall sys-
tem. Data management time is the time spent on man-
aging intermediate data, such as input file split time,
file transfer time, and file writing time. Processing time

is the time spent on processing data on map phase or
reduce phase. We characterized MRBench’s runtime
with these components.

5.2 Various Datasets

In this experiment, we compared our results for the
different sizes of database: 1GB and 3GB. Fig 5. shows
results of query runtime for 1GB and 3GB database.
As the numbers of map and reduce tasks, the default
values are used. We surmise that data management
time and processing time are in proportion to the size
of dataset, however, system management time is not.

As a result, every query showed such patterns that
the runtime with 3GB dataset is almost three times
longer than that of 1GB dataset. As this result shows,
MRBench scales well with the sizes of test databases.

5.3 Various Number of Nodes

In this experiment, we compared our results for the
different number of computing nodes: 8 nodes and 16
nodes. Fig 6. shows results of query runtime for 8
and 16 nodes. We set the numbers of map and reduce
tasks as the Hadoop’s default values. We also can verify
that MRBench properly shows the effect of processing
power.

It showed a pattern different from previous exper-
iments - the speedup is not linear. We surmise that
only the processing time is reduced by the increased
number of nodes. Data management time and system
management time might be increased due to the dou-
bled number of computing nodes. We conclude that the
portion of processing time accounts for the difference
of runtimes for the different numbers of nodes.

The above two experiments show that MRBench fits
test systems for jobs requiring appropriate processing
and massive data. As section 5.2 shows, MRBench di-
rectly shows the effect of chainging the amount of data.
This shows that MRBench scales well with the data
size. As this section shows, MRBench is also sensitive
to the number of computing nodes, however, not scales
linearly. This shows that MRBench also reflects the
processing power required by the jobs, but it is only
secondary to be concerned.

Thus, we conclude that MRBench can benchmark
systems for jobs processing huge data and requiring
relatively small processing power. We can select some
queries for our needs. For example, to test systems for
jobs requiring less processing powers, we can choose
queries that are less sensitive to the change of process-
ing powers such as the query 1, 4, and 17.
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5.4 Various Number of Map Tasks

In this experiment, we evaluated the effects of chang-
ing the number of map tasks - 40, 60, 80, and 100 - for
3GB test database. As mentioned above, our config-
uration on the number of Map/Reduce tasks is only
hint for MapReduce system. The file splitter decides
the actual number of Map/Reduce tasks. Thus, de-
tailed control is not possible. Actual number of map
tasks under configuration of 40 map tasks was 40 to 60
tasks, 100 to 130 tasks for 100 map tasks.

Fig 7. shows the result of our experiment with vari-
ous number of map tasks. Each query showed different
patterns with various numbers of map tasks. This ex-
periment showed that the optimal number of map tasks
increases as the data to process grows. Some experi-
ment showed two optimal number of map tasks. We
guess that the result is due to the complex effect of
steps with massive data input and steps with small data
input. 60 - 80 map tasks might be the best option for
3GB database with data intensive queries. The optimal
number of map tasks seems to be related to the size of
data and HDFS block size, but more experiments are
needed to confirm this. We leave the investigation on
this relationship as future work.

6 Conclusion

In this paper, we designed MRBench: a possible
benchmark for evaluating MapReduce system. We
used TPC-H’s database and queries to benchmark com-
plex and heavy workloads. TPC-H’s queries are con-
verted into MapReduce tasks based on basic conver-
sions with projection, filtering, join, and so on. We also
implemented our design under Hadoop system with
some configuration options. Every 22 queries are de-
signed and implemented. We tested our implementa-
tion with four hadoop nodes using some experimental
variables.

MRBench is only a possible approach to benchmark
MapReduce system and many experiments and up-
dates are needed. Our expected future works on MR-
Bench are as follows :

• Query selection is one of the key to use MRBench
better. As our experimental results showed, some
queries used less data and are inadequate to be
used for benchmarking. To remove garbage in
benchmark results, query selection is one impor-
tant key.

• Deciding appropriate number of Map/Reduce
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tasks can be treated under MRBench. There
is no general guideline to select the number of
Map/Reduce tasks. By using MRBench and vary-
ing Hadoop configurations such as HDFS block
size and the number of Map/Reduce tasks, a
MapReduce system can be tuned under specific
size of data.

• Comparing with other testsets can be performed.
How MapReduce shows different performance
characteristics under different complexity of work-
loads can be good experiments for proper MapRe-
duce benchmarking.
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