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inTroDucTion

Tomographic techniques, i.e. CT and MRI, are recognized 
as state-of-the-art methods for body composition analysis, 
in particular for quanti�cation of compartmental volumes 
of adipose tissue (AT)1 and muscles.2 High so�-tissue 
contrast, in combination with increasing availability and 
absence of ionizing radiation, makes MRI more frequently 
the preferred method of choice. In several large population 
studies, such as the UK Biobank,3 the German National 
Cohort,4 the KORA-MRI study,5 the Netherlands Epide-
miology of Obesity Study6 and the Dallas Heart Study,7 
MR images are acquired to enable advanced body compo-
sition analysis. For example, in the UK Biobank Imaging 
Study, MR image volumes from 100,000 subjects are being 
collected, each volume containing 332 axial slices covering 
1.1 m of the abdomen and upper legs. Although the overall 
aim of these studies is to collect data for future research, 
and the analysis methods have not been prescribed in the 
study design, it is quite obvious that automated methods 
are required in order to analyse such large amounts of  
imaging data.

�e direct volumetric measurements of single muscles or fat 
compartments obtained by MRI enable much higher accu-
racy compared to indirect measurements such as anthro-
pometric measures. For example, visceral AT (VAT) can 

vary signi�cantly between people with identical body mass 
index or waist circumference.8,9 It is also well-known that 
the metabolic risk related to fat accumulation is strongly 
dependent on its distribution.10,11 In particular, large 
amounts of VAT are related to increased risk for cardiac 
disease,10,12,13 type-2 diabetes (T2D),14,15 liver disease16 
and cancer.17,18 Furthermore, increased muscle fat in�ltra-
tion has been associated with reduced mobility,19 increased 
risk for T2D20 and higher mortality in patients with liver 
cirrhosis.21

While two-dimensional (2D) projections of the body 
using dual-energy X-ray absorptiometry (DXA) have high 
agreement with volumetric measurements using MRI for 
whole-body fat and lean tissue quanti�cation, compart-
mental measurements such as VAT have a relatively low 
agreement.22,23 Also, while CT technically has the same 
capability as MRI to acquire complete three-dimensional 
(3D) image volumes, body composition analysis with CT 
is commonly restricted to one or a limited number of slices 
in order to reduce the radiation exposure. But the use of 2D 
area measures from one or a limited set of slices as a proxy 
for volume reduces the precision compared to volumetric 
measurements when measuring abdominal AT distribu-
tion.24,25 �e challenge, of course, with 3D volumetric body 
composition analysis is the huge amount of data needed 
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MRI is becoming more frequently used in studies involving measurements of adipose tissue and volume and composi-

tion of skeletal muscles. The large amount of data generated by MRI calls for automated analysis methods. This review 

article presents a summary of automated and semi-automated techniques published between 2013 and 2017. Technical 

aspects and clinical applications for MRI-based adipose tissue and muscle composition analysis are discussed based 

on recently published studies. The conclusion is that very few clinical studies have used highly automated analysis 

methods, despite the rapidly increasing use of MRI for body composition analysis. Possible reasons for this are that 

the availability of highly automated methods has been limited for non-imaging experts, and also that there is a limited 

number of studies investigating the reproducibility of automated methods for MRI-based body composition analysis.
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to be analysed. Completely manual analysis of full tomographic 
image volumes covering a large part of the body is extremely 
time-consuming and hence, generally not feasible except in 
very small studies. �is has generated a demand for automated 
methods for quantifying AT and muscle composition in 3D 
MR images. �e feasibility of using a highly automated analysis 
method in a large population study was, e.g. demonstrated by 
West et al26 quantifying VAT, abdominal subcutaneous adipose 
tissue (ASAT) and thigh muscles on 3000 subjects from the UK 
Biobank Imaging Study.

Another advantage with automated analysis methods is their 
potentially higher precision because of reduced or eliminated 
dependency on human operator variability. For example, in a 
study by Newman et al27 signi�cantly higher test–retest repeat-
ability of VAT quanti�cation was achieved with a highly auto-
mated method compared to using manual analysis (1.8  vs  6.3% 
coe�cient of variation).

�e aim of this review was to give an overview of automated 
and semi-automated methods for MRI-based body composition 
analysis by presenting a summary and discussion of methods 
published between 2013 and 2017. Recent clinical applications 
of automated methods for MRI-based AT quanti�cation are 
also discussed based on clinical studies on the subject published 
during 2017.

meThoDs for mri-baseD boDy composiTion 
analysis

Any method for body composition analysis using MRI can be 
divided into three main steps: image acquisition, image segmen-
tation, and tissue quanti�cation. All three steps a�ect the results 
of a body composition analysis, and although this review focuses 
on automation of image post-processing, and not image acqui-
sition, relevant image acquisition methods are also discussed 
here, since the choice of acquisition method has an impact on 
the subsequent analysis.

Image acquisition

MRI is o�en not used in a quantitative way, i.e. the image inten-
sity values do not directly re�ect a physical property of the 
imaged object (as opposed to CT, which is calibrated against 
the Houns�eld scale). Imperfections in the MRI system, as well 
as interactions between the imaged object and the electromag-
netic �eld, cause the sensitivity and hence, the image intensity 
scale to vary over the image. In such cases, the interpretation 
of the images has to rely solely on the visual appearance of the 
contrast between tissues in the image. �is limits the possibili-
ties of accurate quanti�cation of the image data. Still, both T1- 
and T2 weighted images have good contrast between water and 
fat. �is means that lean tissue (LT) and AT can be segmented 
from each other (as long as the image resolution is high enough), 
enabling quanti�cation of geometric properties such as area or 
volume of di�erent tissue compartments using many standard 
T1- or T2 weighted imaging protocols.

In the context of AT and muscle analysis, the fat–water (FW) 
separated imaging (aka “Dixon imaging”) techniques28 are 

particularly useful. FW-separated imaging is based on gradient 
recalled echo imaging,29 which uses the chemical shi� between 
the resonance frequencies of protons bound in water and in 
fat. �is is the same e�ect which is used in magnetic resonance 
spectroscopy. FW separated imaging can be seen as a special 
case of magnetic resonance spectroscopy, where the spectral 
resolution has been sacri�ced in favour for spatial resolution. In 
FW-MRI, two or more echoes are acquired a�er each excitation 
pulse, where the fat and water signals' relative phase di�er due to 
their chemical shi�s. Besides the separation of the fat and water 
components of the MR signal, measurements of multiple echoes 
enable estimation of several unknown confounding factors in the 
signal equations, such as T1 and T2*, which can then be corrected 
for.30 A well-known example of FW-MRI is the IDEAL recon-
struction method.31

Besides the excellent FW contrast enabled by FW-MRI, it also 
enables quantitative fat imaging. One common method of 
achieving quantitative fat images is to compute the fat fraction 
(FF), which is the fat signal divided by the sum of the fat and 
water signals. A well-known version of FF is proton density 
FF (PDFF),32 which can be obtained by using proton-density 
weighted FW separated imaging. Another example is fat-refer-
enced MRI.33,34 �e di�erence between FF and fat-referenced 
MRI lies in the reference used for calibrating the fat image. In FF 
(including PDFF), the sum of fat and water is used as reference, 
while in fat-referenced MRI, the reference is a fat signal inter-
polated from pure adipose tissue. Hence, PDFF measures the 
proportion of the total MR signal that originates from fat-bound 
protons, and fat-referenced MRI measures the fat signal in a 
given voxel in relation to the fat signal in pure adipose tissue. An 
example of a whole-body fat image that has been calibrated using 
fat-referenced MRI is shown in Figure 1.

Also, brown adipose tissue (BAT) imaging using MRI requires 
quantitative imaging. BAT has most commonly been imaged 
using positron emission tomography but, more recently, dual 
energy CT and MRI have also been used to detect and quantify 
BAT.35 Quantitative FW separated MRI can be used for identi�-
cation and characterization of BAT by its lower fat content and 
higher water content compared to white AT.36–38 A challenge 
when using FW-MRI to detect BAT is that it requires a high reso-
lution in order to separate the BAT from partial volume e�ects in 
the interfaces between white AT and LT, while maintaining su�-
ciently high signal-to-noise ratio.38 Another contrast mechanism 
which can be used to characterize BAT is T2* relaxation.39 T2* 
mapping can be combined with FW separation using multiecho 
chemical-shi� imaging.40,41 In addition to detecting the presence 
of BAT, the activation of BAT can be detected by changes in T2* 
due to an increase in blood deoxyhemoglobin levels, which is 
caused by increased oxygen consumption in active BAT.42

Image segmentation

�ere is o�en not a clear distinction made between tissue classi-
�cation and compartmental segmentation, but usually the tissue 
classi�cation is done before the segmentation into compartments. 
Classi�cation, in this context, refers to the labelling of each voxel 
into a tissue class, e.g. LT, AT or background. Segmentation, 
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on the other hand, refers to distinguishing between di�erent 
compartments containing the same type of tissue (e.g. VAT from 
ASAT or one muscle from another) by labelling or delineating 
relevant anatomical regions. If the image is quantitative, i.e. cali-
brated in relation to a de�ned grey scale, tissue classi�cation is 
rather straight forward as it can be based on thresholding the 
image intensity; in particular in FW separated images.43

In non-quantitative imaging, the tissue classi�cation can be 
facilitated by reducing the image inhomogeneities present in 
non-quantitative MR images. Such intensity inhomogeneities are 
caused by imperfections in the image acquisition system, such as 
inhomogeneities in the magnetic �eld and variations in the coil 
sensitivities. �is causes variations in the intensity scale over the 
image. A number of methods have been proposed for correcting 
MR images for such inhomogeneities, and a comprehensive 

review and classi�cation of such methods is given by Vovk et 
al.44 �ey divided the methods generally into prospective and 
retrospective methods, where the prospective methods try to 
solve the problem during the image acquisition while retrospec-
tive methods use image analysis post-processing to estimate and 
correct for the inhomogeneities. An important advantage with 
retrospective methods is that they can also correct for inhomo-
geneities induced by the body in the scanner, since they make 
very few assumptions about the physical sources of the inho-
mogeneities.44 �e most common assumption being made is 
that the inhomogeneities can be modelled as a spatially slowly 
varying bias �eld and the di�erent methods use di�erent image 
processing methods to estimate and remove this bias �eld. �ere 
have also been other methods published a�er the review by Vovk 
et al, e.g. Consistent Intensity Inhomogeneity Correction45 which 
is based on multiscale normalized averaging.46

A common way to classify voxels into di�erent tissues when 
the image is non-quantitative and the grey scale is unde�ned, 
is k-means clustering47 or fuzzy c-means clustering.48 In both 
methods, a pre-de�ned number k (or c) of clusters is used to 
categorize the data. In the case of body composition analysis, k 
or c are usually set to 3, indicating the classes AT, LT and back-
ground. �e di�erence between the two methods is that k-means 
uses crisp (mutually exclusive) class memberships, while fuzzy 
c-means uses continuous (“fuzzy”) class membership values. 
Note that classi�cation is actually not required when quantitative 
images are used, since each pixel or voxel then implicitly contains 
a class-membership value.

Proposed segmentation methods have been more or less auto-
mated, ranging from computer-aided manual drawing tools to 
fully automated segmentation algorithms.49–63 Less automated 
methods are o�en more generally applicable to di�erent segmen-
tation tasks, but at the cost of more time-demanding (and there-
fore more expensive) manual work. In 2D images, a common 
segmentation method is active contours (aka “snakes”),64 where 
a deformable contour is �tted to a structure in the image. �is 
class of methods works by minimizing an energy function with 
one term depending on the image (e.g. the image gradient) and a 
regularization term depending on the curvature of the contour. 
While there are 3D extensions of active contours (“balloons"),65 a 
more common class of 3D segmentation methods in this context 
is multiatlas segmentation,66 where several anatomical atlases 
with pre-de�ned compartments are �tted to the image and whose 
anatomical de�nitions are combined using a voting scheme or 
expectation maximization.67 While atlas-based segmentation 
has mainly been used for brain image segmentation,68 they have 
recently also been applied to abdominal and whole-body image 
analysis.33,53,61 Beside active contours and multiatlas segmenta-
tion, there are a multitude of di�erent segmentation methods in 
the literature, and even more ways of combining such methods. 
�ese two segmentation methods were, however, found to be 
the most commonly used in the studies covered in this review. 
Atlas-based methods are, in principle, easier to generalize to 
other compartments compared to methods based on rule-
based morphological operations that rely on speci�c anatomical 
assumptions.

Figure 1.  Example of quantitative imaging. To the left is an 

original fat image acquired using 2-point Dixon fat-water sep-

arated imaging. To the right is the corresponding quantitative 

fat image after calibration using the fat-referenced method. 

Inhomogeneities in the intensity of adipose tissue can be 

observed in the original image (left) that are almost com-

pletely remove in the calibrated image (right).
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Few fully automated segmentation methods have been exten-
sively evaluated on di�erent data  sets with di�erent proper-
ties (e.g. from di�erent scanner models and di�erent �eld 
strengths). Notable exceptions are the work by Addeman et 
al52 where a fully automated algorithm for segmentation of 
abdominal AT into VAT and ASAT was evaluated on data 
from scanners of three di�erent brands and two di�erent �eld 
strengths, and the work by Karlsson et al61 where fully auto-
mated segmentation of muscle groups from whole-body MRI 
was evaluated on data from two scanners with di�erent �eld 
strengths.

A fully automated segmentation tool does not necessarily 
allow the user to modify the result, which obviously limits 
the range of images that can successfully be segmented. Such 
methods may also face a challenge from a regulatory perspec-
tive di�erent to methods where the result is controlled by a 
human operator. One class of methods, which can be referred 
to as supervised segmentation (following the terminology by 
Hu et al69), combines the e�ciency of fully automated methods 
with the �exibility and control enabled by manual interaction. 
�e di�erence between a supervised automated tool and a 
semi-automated tool is that the latter can never do the complete 
segmentation without human interaction, while the supervised 
tool, at least in principle, can always autonomously perform a 
segmentation, albeit one that may need to be manually adjusted 
to give the desired result.

Segmentation methods can also be dived into 2D and 3D 
methods. 2D methods operate on one image slice at a time and 
are o�en used to segment one or a limited number of slices. 
Analysing only one or a few image slices with a manual or 
semi-automated tool is, of course, much less time consuming 
than analysing all slices in a complete volume, and many studies 
using MRI for body composition analysis have used one or a 
limited set of 2D slices, mostly due to the lack of e�cient image 
analysis tools for handling 3D image segmentation. However, 
so�ware tools for slice-wise semi-automated segmentation took 
on average more than 10 min per slice for a trained expert,70 
which limits their use to small studies and to measurements of 
a limited set of slices. �e rationale of using area as a proxy for 
volume is based on modelling the body as a cylinder. While such 
a model might be reasonable for the extremities, it is not well 
suited for the abdominal compartment, where single-slice anal-
ysis cannot accurately measure intra abdominal AT.24 When the 
tissue area in one or a few slices is used as proxy for VAT and 
ASAT volume, the location of the slices is critical. While such 
area measurements can have a good correlation with the absolute 
volume, single-slice imaging does not have the accuracy required 
to measure VAT and ASAT changes in an intervention study.25 
For automated segmentation, 3D methods should (at least theo-
retically) be more powerful than 2D methods, since the connec-
tivity of a non-convex 3D object may be lost when viewed as a 
2D slice. Also, information from neighbouring slices (which is 
inherent in 3D methods) increases the redundancy and, hence 
can alleviate detection of signi�cant structures and thereby 
support the segmentation in noisy images.

Tissue quantification

In non-quantitative imaging, the actual tissue quanti�cation is 
usually performed by simply counting the number of voxels of 
each tissue class within each compartment and multiplying with 
the volume of a voxel. Such methods will be referred to as discrete 
methods. When using quantitative images, on the other hand, the 
amount of fat in a segmented compartment can be quanti�ed by 
integrating the fat signal within that compartment, multiplied by 
the voxel volume. Such methods will be referred to as continuous 
methods. While continuous methods do not require a classi�-
cation between AT and LT, they usually include a classi�cation 
of so� tissue  vs  background (i.e. air and MR-invisible tissue) in 
order to remove noise contributions from the background.

�e disadvantage with discrete methods is that partial volume 
e�ects, i.e. voxels with mixed content, will lead to a bias in the 
volume estimates;71,72 a bias that will change with the resolu-
tion, hence limiting the reproducibility across di�erent scanning 
protocols. �is e�ect is illustrated in Figure 2 where an original 
quantitative fat image (top le�) has been subsampled a number of 
steps (le� column). A discretisation of the images on each reso-
lution has been made using a threshold of 0.5 (second column). 
�e diagram to the right shows, for di�erent resolutions, the 
estimated AT area using a continuous method (solid line) and a 
discrete method with di�erent thresholds (dashed lines). In the 
continuous method, all pixel values in the quantitative fat image 
are summed and then multiplied with the pixel area. �e discrete 
method applies a threshold on the fat image and then multiplies 
the number of pixels above the threshold by the pixel area. A brief 
explanation of this resolution-dependent bias is as follows: for 

Figure 2.  Illustration of continuous and discrete quantifica-

tion. Continuous methods (left column and black solid line in 

diagram) are less dependent on the image resolution than dis-

crete methods (second column and dashed lines in diagram). 

See text for details.
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large objects, partial volume e�ects will only occur at the tissue–
background interface. Peripheral voxels covering the object to a 
fraction higher than the threshold will be classi�ed as object and, 
hence, overestimate the volume, while voxels covering the object 
less than the threshold will be considered as background, hence 
under estimating the volume. For a threshold of 0.5, these errors 
will, on average, cancel each other out, hence giving an unbiased 
estimate71 (assuming a symmetric noise distribution with zero 
mean). But objects (or parts of objects) that are smaller than half 
the voxel size in any dimension (e.g. a thin sheet of tissue) will 
all be classi�ed as background and lost. Hence, a discrete classi-
�cation of voxels will under estimate the object volume, and this 
bias will increase with decreasing image resolution. �e more 
irregularly shaped and thin the tissues are, the more prominent 
this e�ect will be, and in the case of muscle fat in�ltration, the 
e�ect can be quite signi�cant.72 �is will make discrete methods 
di�cult to use in multicentre studies, where the scanner model 
and scanning protocol may di�er.

Continuous methods are less sensitive to partial volume e�ects, 
which makes them less prone to the resolution-dependant bias 
discussed above. But, perhaps more importantly, in contrast 
to discrete methods, continuous methods enable measure-
ments of di�use in�ltration of thin AT structures and ectopic 
fat in non-adipose tissue, such as liver and muscles, since these 
methods can quantify weak fat signals that would not reach any 
reasonable threshold for classifying a voxel as AT.

Accuracy and precision

Few studies have investigated repeatability and reproducibility. 
Reproducibility measures how well the measurement can be 
reproduced with di�erent scanners while repeatability measures 
how well the analysis of a subject scanned in the same scanner 
agrees with the analysis of a second scan, or between two or more 
analyses made by the same or di�erent operators. Most studies 
have only evaluated accuracy of the segmentation against manual 
segmentation. But from a clinical perspective, repeatability and 
reproducibility are at least as important as accuracy. Evaluation 
of the segmentation alone does not address the quantitative 
properties of the complete imaging chain. For example, sensi-
tivity to di�erences in scanning parameters such as image resolu-
tion is not re�ected by comparison to manual segmentation, and 
di�erent methods may be more or less sensitive to partial volume 
e�ects, which are directly related to image resolution.71,72

review of recenT liTeraTure

Starting in the early 1990s,73–75 a wide range of papers on AT quan-
ti�cation using MRI have been published. An excellent review of 
methods for segmentation of AT was recently presented by Hu et 
al.69 �e present review is constrained to the last 5 years (2013–
2017), during which a range of papers on more or less automated 
methods for quanti�cation of abdominal AT,27,49–55,57,76–83 BAT84,85 
and muscles58–63,86–93 have been published. A search was made 
on PubMed for studies using MRI with automated or semi-auto-
mated methods for quantifying fat or muscles. 34 publications are 
summarized in Supplementary Table 1 (Supplementary Material 
1) with respect to measurements; image pre-processing (e.g. inho-
mogeneity correction); segmentation method; if the image analysis 

was performed slice-wise in 2D or if a full 3D processing method 
was used; if a complete volume measure was obtained or if an 
area-measure was used as a proxy; the level of automation; the type 
of validation reported, and the repeatability if reported.

Quantitative imaging and inhomogeneity 

correction

More than half of the 34 papers used either continuous methods 
or applied some kind of inhomogeneity correction to aid the 
segmentation. Seven papers used continuous quanti�cation  
based on quantitative MRI, either PDFF52,84,85 or fat-referenced 
MRI.27,79,82,91 11 of the papers that used discrete quanti�cation 
methods used inhomogeneity correction before AT quanti�ca-
tion51,52,54,57,76,78,81 or muscle analysis.62,63,88,92

Segmentation methods

Several of the discrete methods used k-means50,51,53,58,77,86 
or fuzzy c-means clustering54,62,78,81,88 for tissue classi-
�cation. About half of the studies used 3D segmenta-
tion.27,49,52,53,59,61,63,76,79,82,84,85,87,88,91 �e remaining studies used 
2D segmentation of each slice separately50,51,54,55,57,77,83 or anal-
ysed only one or a limited number of slices62,86,89,92,93 using 2D 
area measures as proxy for the volume. Active contours were used 
for segmentation in most of the 2-D methods,50,51,54,62,81,86,90,92 
while in the studies using 3D segmentation, multiatlas-based 
segmentation was the most common method, used in eight of 
the studies.59,61,79,82,84,85,87,91

Level of automation

17 studies used fully automated methods for AT quanti�ca-
tion49–57,84 and muscle measurements.55,58–63 One study76 
used completely manual segmentation of baseline images and 
automated non-rigid registration for transferring the baseline 
segmentations to follow-up images. �e remaining studies used 
semi-automated77,78,80,81,83,88,89,93 or supervised27,79,82,86,91,92 
segmentation methods.

Validation

Most of the studies reported accuracy in terms of agreement with 
manual segmentation, but only 14 of them reported precision in 
terms of repeatability.27,50,52,56,57,59,61,79,82,86,89,90,92,93 All of the 
studies that reported precision showed very good repeatability, 
with coe�cients of variation of up to a few percent and the intra-
class correlation was very close to one in most of the studies.

�e only study that investigated the between-scanner reproduc-
ibility was presented in the paper by Karlsson et al61 who compared 
fully automated quanti�cation of 10 di�erent muscle groups in data 
acquired on a 1.5 T and a 3 T scanner with excellent agreement. 
Also, Addeman et al52 addressed the issue of multicentre studies, 
showing their method's ability to analyse data from three di�erent 
cohorts using di�erent scanners and �eld strengths. �ey did, 
however, not evaluate between-scanner reproducibility since the 
di�erent scanners were used on di�erent cohorts.

Availability

Most of the methods used in these studies are not readily acces-
sible for other researchers and non-image analysis experts. �ree 
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exceptions are FATCALC55; AMRA® Researcher, which was 
used in six27,59,61,79,82,91 of the studies listed above, and SliceO-
matic used in one of the studies.83

FATCALC55 is an add-on to ImageJ,94 which is a free image 
processing so�ware originally developed by NIH for analysis 
of microscopy images. FATCALC is a discrete 2D quanti�ca-
tion method for VAT and ASAT. It works on images acquired 
using FW-MRI, using 2D analysis of individual slices and fuzzy 
c-means clustering to classify AT pixels in the fat image. �is is 
followed by morphological operations (erosions and dilations) 
of the binary classi�cation result in order to separate VAT from 
ASAT. Finally, fat pixels belonging to the arms, abdominal 
muscles and paravertebral fat are removed. �e complete process 
is fully automated.

AMRA Researcher (AMRA Medical AB, Linköping, Sweden) 
is a cloud-based analysis service, in which the volumes of VAT, 
ASAT and di�erent muscle groups, as well as muscle fat in�l-
tration and liver fat are quanti�ed. It uses a continuous quanti-
�cation method based on quantitative fat-referenced MRI and 
3D multiatlas segmentation to separate di�erent muscle groups 
and AT compartments. It has e�ciently been used for body 
composition analysis of thousands of subjects in the UK Biobank 
imaging study.26,95 An example of segmentations of VAT, ASAT 
and di�erent muscle groups using AMRA Researcher is shown 
in Figure 3.

A less automated generally available so�ware tool that can be 
used for AT and muscle quanti�cation is SliceOmatic (Tomo-
vision, Quebec, Canada). �is is a general interactive image 
segmentation tool that operates on one image slice at a time 
using a set of general-purpose image analysis tools to aid the 
operator. Even though a segmentation can be propagated from 
one slice to another, the time required for experienced opera-
tors was approximately 40 min for segmenting the complete VAT 
volume27 and 30 min for segmenting the calf muscles.59 Other 
similar tools are Analyze (AnalyzeDirect Inc. Overland Park, 
KS), and Hippo Fat.96 Hippo Fat has been evaluated against 
SliceOmatic in the context of VAT segmentation.97 �ese three 
methods were also evaluated by Bonekamp et al.70

Clinical applications

Among the publications reviewed above, only seven had a 
speci�c clinical application in focus. Five were related to clinical 
aspects of abdominal AT distributions, one on intramuscular fat 
and one on both. Shen et al53 investigated changes in volumes 
of abdominal organs and AT compartments in obese females 
during weight loss. Radmard et al81 investigated the relationship 
between abdominal AT distribution and carotid atherosclerosis. 
Eichler et al80 investigated lipodystrophy in HIV patients during 
antiviral intervention. Karlsson et al78 investigated gender di�er-
ences in abdominal AT distribution in pre-school children. 
Lareau-Trudel et al86 measured intramuscular fat in the legs in a 
study on facioscapulohumeral muscular dystrophy, and Orsso et 
al83 investigated abdominal AT and intramuscular AT composi-
tion in youth with Prader-Willi syndrome.

In order to �nd more clinical applications of MRI-based quanti-
�cation of AT, a wider search was made on PubMed for papers 
published in 2017 (as e-pub or print date) with “adipose tissue” 
and “MRI” in the title or abstract. Among the 137 papers found, 
43 described clinical studies including quanti�cation of VAT 
and/or SAT. Out of these 43 clinical studies, 27 used some 
kind of automated analysis, but most of those used tools with 
a low degree of automation. Hence, as many as 20 of these 27 
studies used area measures in one or a few slices instead of 
measuring complete volumes of VAT and ASAT, likely due to 
the laborious task of using a 2D tool with low automation for 
analysing complete volumetric data. Among these area-based 
studies, SliceOmatic was the most common tool, used in 13 of 
the 43 clinical studies. Only a few studies98–101 used volumetric  
analysis tools.

�e most common clinical areas in the studies found in this search 
were obesity (12), T2D (9), liver disease (8) and cardiovascular 

Figure 3.  Example of segmentation of adipose tissue and 

muscle groups using AMRA Researcher. To the left is the fat 

image with ASAT (blue) and VAT (red), and to the right is 

the water image with 10 di�erent muscle groups coloured. 

Reproduced with permission from AMRA Medical AB. ASAT, 

abdominal subcutaneous adipose tissue; VAT, visceral AT.
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disease (CVD) (5 studies). Six of the studies addressed BAT. 
�e most common focus of the obesity studies concerned the 
e�ect of interventions (medical, surgical or life-style) on body 
composition. Most of the diabetes studies either investigated the 
e�ect of some intervention on abdominal AT distribution or the 
relationship between AT distribution and insulin resistance. �e 
studies addressing liver fat either measured relations between 
body composition and liver fat or investigated intervention 
e�ects on liver fat and abdominal AT distribution. Most of the 
CVD-related studies investigated the relation between AT distri-
bution and cardio-metabolic risk factors. �e aims of the BAT 
studies were diverse. Two looked at hibernoma (a BAT tumour) 
and two looked at the e�ect of cold stimulation on BAT FF.

Extending the search on PubMed a number of years back in time 
shows an approximately exponential increase in the number of 
publications with “adipose tissue” and “MRI” in title or abstract 
(Figure 4). A search on NIH  ClinicalTrials. gov on clinical trials 
with “adipose tissue” as outcome and “MRI” in other terms, 
shows a similar trend (Figure 5). Both these search results indi-
cate a rapidly growing interest for MRI in clinical studies related 
to adipose tissue.

One example of studies that would be extremely di�cult, if 
indeed possible at all, to perform without highly automated anal-
ysis and quantitative MRI was recently published by Linge et 
al.95 MR images from 6021 subjects from the UK Biobank were 
analysed quantifying ASAT, VAT, thigh muscle volume, liver fat, 
and muscle fat in�ltration and their multivariate associations to 
coronary heart disease and Type 2 diabetes were investigated. 
�e study showed that di�erent diseases were linked to di�erent 
imbalances in fat accumulation, which could not be described 

by sex, age, lifestyle, generalized adiposity or by investigating a 
single fat compartment alone. �e method used in that study was 
AMRA Researcher.

conclusions

Apparently, up till now, rather few clinical studies have used 
highly automated methods for assessment of AT and muscle 
volume. Most of the studies used completely manual tools for 
segmentation. Some studies even used other imaging modalities 
(such as CT102 or DXA103 to measure VAT even though an MRI 
scan was included in the study, thereby increasing the study time 
for the patient and also, in the case of CT or DXA, unnecessarily 
exposing the subjects to ionizing radiation.

Figure 4.  Number of publications per year with “adipose tissue” and “MRI” in title or abstract found on PubMed.

Figure 5.  Number of clinical trials per year with “adipose tis-

sue” as outcome and “MRI” in other terms found on NIH Clin-

icalTrials.gov.
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