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MRi‑based radiomics in breast 
cancer: feature robustness 
with respect to inter‑observer 
segmentation variability
R. W. Y. Granzier1,2*, N. M. H. Verbakel1,8, A. Ibrahim2,3,4,5,6,8, J. E. van Timmeren2,4, 
T. J. A. van Nijnatten3, R. T. H. Leijenaar2,4, M. B. I. Lobbes2,3,7, M. L. Smidt1,2,8 & 

H. C. Woodruff2,3,4,8

Radiomics is an emerging field using the extraction of quantitative features from medical images 
for tissue characterization. While MRI-based radiomics is still at an early stage, it showed some 
promising results in studies focusing on breast cancer patients in improving diagnoses and therapy 

response assessment. Nevertheless, the use of radiomics raises a number of issues regarding feature 
quantification and robustness. Therefore, our study aim was to determine the robustness of radiomics 
features extracted by two commonly used radiomics software with respect to variability in manual 
breast tumor segmentation on MRI. A total of 129 histologically confirmed breast tumors were 
segmented manually in three dimensions on the first post-contrast T1-weighted MR exam by four 
observers: a dedicated breast radiologist, a resident, a Ph.D. candidate, and a medical student. Robust 
features were assessed using the intraclass correlation coefficient (ICC > 0.9). The inter-observer 
variability was evaluated by the volumetric Dice Similarity Coefficient (DSC). The mean DSC for all 
tumors was 0.81 (range 0.19–0.96), indicating a good spatial overlap of the segmentations based on 
observers of varying expertise. In total, 41.6% (552/1328) and 32.8% (273/833) of all RadiomiX and 
Pyradiomics features, respectively, were identified as robust and were independent of inter-observer 
manual segmentation variability.

Radiomics is a technique that is used to extract large amounts of quantitative information from routine medical 
images that decode information about a region of interest (ROI). The majority of radiomics articles published 
concerns its application in the oncological  field1–4. Here, radiomics bears the advantage of non-invasively quan-
tifying the underlying phenotype of the entire tumor for multiple lesions simultaneously, in contrast to tissue 
biopsy, which samples only a small part of a single (often heterogeneous)  tumor2,5. The ability to characterize the 
tumor and to establish links to the underlying  biology6 and ultimately clinical outcomes, allows a more patient-
tailored  treatment7, enabling ‘precision medicine’8,9. Recently, several articles have outlined the potential clinical 
applicability of radiomics in the field of breast cancer for different purposes, e.g.  diagnosis10,11, tumor response 
 prediction12–14, prediction of molecular tumor  subtype15,16, and prediction of axillary lymph node  metastases17,18.

Although these results are promising, issues regarding features robustness as well as the comparability of 
results, including inter-observer segmentation variability, need to be  addressed19–24. In order to extract clinically 
useful information from medical images and to use features as clinical biomarkers, it is important that extracted 
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features are reproducible, standardized and  robust25,26. All consecutive steps in the radiomics workflow induce 
potential uncertainties regarding feature  robustness27,28. Since there used to be no gold standard or guideline 
for extraction of image features for radiomics use, an initiative –Image Biomarker Standardization Initiative 
(IBSI)- was launched as an effort to standardize the entire radiomics extraction process and encourage feature 
 robustness29.

ROI segmentation is an important step after image acquisition in the radiomics workflow, and one of the 
largest  bottlenecks30. Traditionally, the edges (2D) or surfaces (3D) of the ROI are segmented, thereby defining 
a region from which features will be extracted. Segmentation can be performed either manually, semi-auto-
matically, or completely automatically. Both manual and semi-automatic segmentation are prone to inter- and 
intra-observer variabilities, with the degree of observer experience playing an important  role31–33.

To the best of our knowledge, no articles have been published on the effect of manual inter-observer segmen-
tation variability on MRI-based feature robustness in breast cancer patients. MRI is the most accurate modality 
for neoadjuvant systemic therapy response monitoring in breast cancer patients and as such much used in daily 
clinical  practice34–37. In this article, we investigate the robustness of MR radiomics features, extracted using two 
commonly used radiomics software, with respect to variations in manual tumor segmentation of breast cancer 
patients.

Results
Study population. After the application of inclusion and exclusion criteria, 102 patients were included in 
the final analysis. Twenty-one of these patients were diagnosed with multifocal breast cancer, bringing the total 
number of tumors analyzed in this study to 129. Of these, 94 tumors (73%) were assigned ‘easy tumors’ and the 
remaining 35 tumors (27%) were assigned ‘challenging tumors’. The tumor volume between both groups was 
significant differently (5.3 vs 10.4 for ‘easy and challenging tumors’, respectively, p = 0.03).

Segmentation variability. DSC distributions of all observer combinations are shown in Fig. 1. The mean 
DSC was 0.81 (range 0.19–0.96). The mean DSC was higher for the ‘easy tumors’ compared to the ‘challenging 
tumors’ (0.83 vs. 0.75, respectively, p < 0.001). The mean DSC for each observer combination separately, for all 
tumors, ranged between 0.78 and 0.83, where the segmentations of the breast radiologist and the medical student 
showed the highest overlap.

Pre-processing and feature extraction. The bin width for image discretization (calculated from the 
ROI greyscale range) was 0.1. Discretization of the scans with bins 0.1 wide resulted in a mean of 61 grayscale 
values per image (range 27–131). RadiomiX and Pyradiomics software extracted a total of 1328 and 833 fea-
tures for each ROI, respectively. The extracted radiomics features included shape features, first-order statistical, 
intensity-histogram based, fractal, local intensity, and texture matrix-based features from both unfiltered and 
filtered images (wavelet decompositions). The RadiomiX software extracts more feature groups compared to the 
Pyradiomics software, namely intensity histogram (IH), fractal, local intensity, and gray level dependency zone 
matrix (GLDZM) features.

Radiomics feature robustness. The average ICC for all RadiomiX features was 0.86 (95% CI 0.85–0.86) 
and for all Pyradiomics features 0.84 (95% CI 0.83–0.84). Table 1 presents the average ICC value per feature 
group for both software. The local intensity features scored the highest average ICC value for the RadiomiX fea-
tures, and the first-order statistical features score the highest average ICC for the Pyradiomics features.

Figure 1.  Tumor segmentation variability for pairwise comparison of the different observers. (1) Dedicated 
breast radiologist, (2) Radiology resident, (3) Ph.D. candidate with a medical degree and (4) Medical student.
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The percentage of features that scored an ICC > 0.90, and thus were labeled by our pre-determined ICC cut-
off as robust, was 41.6% (552/1328) for RadiomiX features and 32.8% (273/833) for Pyradiomics features. The 
unfiltered RadiomiX features (i.e., calculated on the unfiltered images) had an average ICC value of 0.79 (95% 
CI 0.77–0.81), of which 41.1% (69/168) were robust (Fig. 2). The unfiltered Pyradiomics features had an average 
ICC value of 0.81 (95% CI 0.79–0.83), of which 16.2% (17/105) were robust (Fig. 3). The results of the wavelet 
feature groups for both software are presented in the supplementary material 1 and 2.

The percentage of robust RadiomiX features for the ‘easy tumors’ and the ‘challenging tumors’ was 57.5% 
(763/1328) and 17.2% (228/1328), respectively. When only considering the 168 unfiltered features, 50.0% 
(84/168) of the ‘easy tumors’ were robust and 20.2% (34/168) of the ‘challenging tumors’ (supplementary mate-
rial 3). The percentage of robust Pyradiomics features for the ‘easy tumors’ and the ‘challenging tumors’ was 35.7% 
(297/833) and 28.6% (238/833), respectively. When only considering the 105 unfiltered features, 23.8% (25/105) 
of the ‘easy tumors’ were robust and 14.3% (15/105) of the ‘challenging tumors’ (supplementary material 4).

Discussion
In this study, our ultimate goal was to define a list of robust MRI radiomics features, independent of inter-
observer segmentation variability, which could facilitate further breast MRI-based radiomics research. We suc-
cessfully identified a subgroup of robust features for two commonly used radiomics software (41.6% of all Radi-
omiX features and 32.8% of all Pyradiomics features) in the presence of inter-observer segmentation variability 
(mean DSC of 0.81).

Although MRI feature robustness has already been investigated for different tumor sites (e.g., cervical  cancer19 
and  glioblastoma23), the effect of inter-observer variability segmentation is most likely tumor-site  specific38. The 
feature groups enclosing the most robust features in previous investigations  (shape19 and, Intensity-histogram 
and  GLCM23) are different from what we found to be the feature group enclosing the most robust features (local 
intensities and GLRLM). Most likely this could be explained that different tumor sites influence inter-observer 
variability. Although one must not forget that the differences in MRI sequences and, feature extraction software 
also influence this variability. Therefore, the MRI feature robustness cannot be generalized and must be exam-
ined for each specific tumor site, taking into account different MRI sequences and feature extraction software.

In addition, feature robustness for both radiomics software was identified for ‘easy tumors’ and ‘challenging 
tumors’. The number of robust features increased for ‘easy tumors’ and decreased for ‘challenging tumors’ in both 
software with significant differences between the mean DSC of the ‘easy’ and ‘challenging’ tumors (0.83 vs. 0.75, 
respectively, p < 0.001). The fact that the ‘challenging tumors’ were more irregular, often with spiculae, causes more 
segmentation variability and therefore less robust features. Furthermore, the significant difference in the DSC 
between easy and challenging tumors could be attributed to the sensitivity of the metric to tumor volume. Easy 
tumors were on average significantly smaller than challenging ones; therefore, a minor difference in segmenta-
tion of a small tumor would have a more profound effect on the DSC, compared to those with larger volumes.

A detailed comparison to previous studies is limited to one similar study. Saha et al.39 investigated the impact 
of breast MRI segmentation variability on radiomics feature robustness, whereby features were extracted using 
in-house software. Their reported mean ICC of 0.85 for all features, using semi-automatic breast tumor segmen-
tation, is comparable to the average ICC reported in this study. Although the segmentations were performed 
by four fellow breast radiology trainees, the DSC results they report (range 0.506–0.740) were much lower than 
the DSC results in our analysis (range 0.783–0.827). We consciously opted for people with different segmenta-
tion expertise to ensure observer-independence of the robust features, consequently widening the applicability. 
Approximately 10% of the tumor features in their article were found to be robust, compared to 41.1% in this 
study. Solely 20 textural features (GLCM) were comparable between the studies, whereby the ICC of these features 
showed a substantial difference (average 0.26, range 0.09–0.51).

Table 1.  Average ICC values per feature group of the unfiltered and wavelet RadiomiX and Pyradiomics 
features.

Feature group (n)

OncoRadiomiX Pyradiomics

Mean ICC Range Mean ICC Range

Shape 0.79 0.57–0.93 0.80 0.69–0.92

Signal intensity

First-order statistics 0.85 0.51–0.99 0.84 0.50–0.97

IH 0.76 0.63–0.98 – –

Fractal 0.81 0.79–0.83 – –

LocInt 0.95 0.93–0.96 – –

GLCM 0.76 0.49–0.88 0.80 0.71–0.88

GLRLM 0.79 0.56–0.96 0.81 0.63–0.95

GLSZM 0.80 0.55–0.98 0.84 0.58–0.97

GLDZM 0.76 0.50–0.92 – –

NGTDM 0.78 0.57–0.85 0.80 0.72–0.91

(N)GLDM 0.83 0.55–0.96 0.79 0.52–0.96

Wavelet 0.81 0.01–0.99 0.81 0.12–0.99
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While we present the robust features for two different radiomics software, our aim is solely to facilitate future 
application of our findings. Both software have different pre-processing steps, and different groups of features, 
and comparing the software is beyond the scope of this study. A global initiative to standardize radiomic features 
extraction using different radiomics software–Imaging Biomarkers Standardization Initiative (IBSI)- was started 
to address these issues in a more comprehensive  fashion40.

Figure 2.  ICC values of all unfiltered RadiomiX features with robust features (ICC > 0.90) shown in green.
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To overcome the problem of inter-observer variability with respect to ROI segmentation, promising steps 
towards (semi-)automatic segmentation have been taken in other tumor  sites41–45. However, little work has been 
published on fully automatic segmentation software for DCE-MRI of the  breast33,46–48. Most software, including 
semi-automatic segmentation, still require manual input or  adjustments33,46,47, and would still be significantly 

Figure 3.  ICC values of all unfiltered Pyradiomics features with robust features (ICC > 0.90) shown in green.
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slower than fully automated segmentation. Recent work on automatic MRI breast tissue segmentation reported 
encouraging results but was performed on only 30  patients48. The current lack of reliable, validated and widely 
available automatic segmentation software tools, and the need for manual input in semi-automated segmentation, 
demonstrate that manual segmentation remains important. The use of protocols or guidelines could encourage 
more reproducible manual segmentation  results49,50. Furthermore, by providing precise instructions before the 
start of segmentation, inter-observer segmentation variability can be minimized.

There are some limitations to this study. Although an ICC threshold value of 0.90 was chosen to determine 
feature robustness, the significance of this threshold for radiomics models for patients’ outcome prediction is 
yet to be investigated. The inclusion of more patients and observers will allow better generalization of the results 
and development of robust radiomics signatures. Furthermore, we identified feature robustness to segmentation 
observer variability. However, due to the lack of data, we were not able to assess the robustness of radiomics 
features to differences in image acquisition, pre-processing and feature extraction, which are other major chal-
lenges in radiomics analysis. These are the aim of our current studies.

In conclusion, this study shows the intuitive notion that more complex, challenging tumors lead to less robust 
features. We identified radiomics features robust to inter-observer variations across two different radiomics soft-
ware, which could be used for preselection of radiomics features in future radiomics analysis concerning MRI-
based breast radiomics. Ultimately, this study identified a list of robust radiomics features, which is independent 
of inter-observer segmentation variability in breast MRI for two commonly used software.

Material and methods
Study population. In this single-center retrospective study, we collected data on 138 patients with histo-
logically confirmed invasive breast cancer, who were planned for receiving NST and underwent a pretreatment 
DCE-MRI between January 2011 and December 2017 in Maastricht University Medical Center+. The institu-
tional research board of the MUMC+ approved the study and waived the requirement for informed consent and 
the further need of guidelines. Exclusion criteria were: pathologically confirmed mastitis carcinomatosa, MR 
scan artifacts, or refusal of medical record usage by the patient. Furthermore, we excluded patients that under-
went breast MRI exams with non-standard acquisition parameters, due to the use of a different MRI scanner. All 
histologically confirmed breast tumors were included in the analysis. The complete process is summarized in the 
flowchart presented in Fig. 4.

imaging data. All images were acquired by two clinically interchangeable (i.e. provide qualitatively simi-
lar images) 1.5  T MRI scanners (Philips Intera and Philips Ingenia), using a dynamic contrast-enhanced 
T1-weighted (DCE-T1W) sequence with similar acquisition protocols (Table 2). The patients were scanned in 
prone position using a 16-channel dedicated breast coil. The DCE-T1W images were obtained before and after 
intravenous injection of gadolinium-based contrast Gadobutrol (Gadovist (EU)) with a volume of 15 cc and a 
flow rate of 2 ml/s. One pre-contrast image and five post-contrast images were obtained for each patient.

tumor segmentation. The T1W images acquired two minutes post-contrast administration were used 
for the 3D tumor segmentation, as this is generally accepted to be the peak of enhancement of breast  cancers51. 
Tumors were independently segmented by four observers with different degrees of experience in breast MR 
imaging: a dedicated breast radiologist with 11 years of clinical breast MRI experience (ML), a radiology resident 
with one year of breast MRI clinical experience (TvN), a Ph.D. candidate with a medical degree but no breast 
MRI clinical experience (RG) and a medical student with no experience whatsoever (NV) (Fig. 5). Segmenta-
tions were performed manually with Mirada RTx (v1.2.0.59, Mirada Medical, Oxford, UK). Agreements regard-
ing segmentation procedures were made prior to tumor segmentation: (i) observers were allowed to adjust the 
image grayscale to optimize the visualization of the tumor; (ii) lymph nodes, pectoral muscle, and skin were 
excluded from segmentation; (iii) spiculae were only segmented if histologically confirmed. All observers had 
access to the radiology report during segmentation but were blinded to each other’s segmentations.

Image pre-processing and feature extraction. Radiomics feature extraction is generally performed 
after image pre-processing. Pre-processing is designed to increase data homogeneity, as well as to reduce image 
noise and computational requirements. Both radiomics software have the optionality to perform image normali-
zation internally before feature extraction, which varies to an extent across the software. Pyradiomics centers the 
image around the mean and standard deviation based on all gray values of the image, while RadiomiX normal-
izes the images after removal of background data (non-breast voxels containing air). This transforms the voxel 
grayscale values to a more comparable range without changing image textures. Each image was discretized by 
resampling the grayscale values using a fixed bin width of 0.1 in order to reduce image noise and computational 
burden. The Pyradiomics  community52 recommends the number of bins to be in range of 16–128. We calculated 
the optimal bin width by extracting the greyscale ranges within all the ROIs and choosing a width that maxi-
mizes the number of ROIs that fall in the abovementioned range of bins. Finally, voxel size was standardized 
across the cohorts to isotropic 1.0  mm3 voxels by means of linear interpolation. For each manually segmented 
ROI, features were extracted using two commonly used radiomics software: RadiomiX Discovery Toolbox 
software (OncoRadiomics SA, Liège, Belgium) and the open-source Pyradiomics software, version 2.1.252,53. A 
mathematical description of all RadiomiX features can be found in supplementary material 5. The Pyradiomics 
feature description can be found  online54. Both software are IBSI compliant for most features, with a note being 
added in case of differences.
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Data analyses. Segmentation variability analysis. Features with (near) zero variance across all tumors, i.e. 
features that have the same value across ninety-five percent or more of the observations, were excluded from the 
analysis as they carry no discriminative value. To evaluate the variability of the remaining features introduced 

Figure 4.  Flowchart of the patient population in the study.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14163  | https://doi.org/10.1038/s41598-020-70940-z

www.nature.com/scientificreports/

by manual segmentation, the volumetric Dice Similarity Coefficient (DSC) was calculated for all pairs of observ-
ers. The DSC is a metric that quantifies the agreement (or ‘overlap’) between two  segmentations55. A DSC of 1 
indicates perfect spatial overlap of the segmentations, whereas 0 indicates no agreement, i.e. no spatial overlap 
of the segmentations, and a good overlap is considered with DSC > 0.7 as indicated by the  literature56. The DSC 
was calculated as:

where A is the set of voxels contained in the first contour, B is the set of voxels contained in the second contour, 
|| indicates the cardinality of the sets, and ∩ is the intersection between the first and second  sets57. The DSC was 
calculated using Python (Version 3.6.3150.1013).

Radiomics feature robustness analysis. Feature robustness was assessed by evaluating the two-way random sin-
gle measure intraclass correlation coefficient (ICC) (2,1). The two-way random model approach was chosen as 
it allows generalization of the results to any other rater with similar  characteristics57. The ICC ranges between 0 
and 1, with values closer to 1 representing stronger feature robustness to differences in segmentations. We chose 
a pre-defined ICC cut-off of > 0.9 to select highly stable features that are insensitive to segmentation  variability57. 
Feature robustness was calculated for all RadiomiX and Pyradiomics features. The settings for image pre-pro-

DSC = 2
(|A ∩ B|)

(|A| + |B|)

Table 2.  Imaging parameters for the breast DCE T1W sequence for both scanners. *Average.

Scanner 1
Philips Ingenia (n)

Scanner 2
Philips Intera (n)

Number of tumors 100 29

Field strength (T) 1.5 1.5

Slice thickness (mm) 1.0 1.0

Repetition time (ms) 7.5 (88), 7.6 (12) 7.4 (13), 7.5 (15), 7.6 (1)

Echo time (ms) 3.4 3.4

Flip angle (°) 10 10

Echo train length 89* (range 62–175) 80* (range 60–85)

Pixel spacing (mm) 0.792 (3), 0.852 (1), 0.922 (2), 0.952 (47), 0.952 (47) 0.852 (1), 0.942 (1), 0.972 (26), 0.992 (1)

Temporal resolution (s) 95 98

Figure 5.  Two invasive breast tumors in the left breast on the 2-min post-contrast DCE-MRI with four single 
manual segmentations (colored margins: red, blue, green and yellow) fused. Upper: ‘challenging tumor’ with a 
mean DSC of 0.78 (range 0.71–0.82). Lower: ‘easy tumor’ with a mean DSC of 0.90 (range 0.89–0.91).
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cessing (normalization, discretization, and resampling) in both radiomics software were checked for disparities. 
Calculations were performed in R studio (version 1.1.456, Vienna, Austria)58 using the IRR package version 
0.8459.

Easy- versus challenging-to-segment tumors analysis. The differences in feature robustness and inter-observer 
tumor segmentation variability between ‘easy-to-segment’ and ‘challenging-to-segment’ tumors ones, herein-
after referred to as ‘easy tumors’ and ‘challenging tumors’, were assessed. This classification was unanimously 
determined by the dedicated breast radiologist (ML). ‘Easy tumors’ were defined as homogenous, round tumors 
with relatively sharp (albeit sometimes irregular) margins, without spiculae or areas of accompanying non-mass 
enhancement. Tumors not meeting these criteria were categorized as ‘challenging tumors’ (Fig. 5). To compare 
DSC results between ‘easy’ and ‘challenging’ tumors we used the independent samples t-test, performed in R 
studio using the IRR package.

Received: 4 November 2019; Accepted: 31 July 2020
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