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Abstract. This paper addresses the problem of automatically segment-
ing bone structures in low resolution clinical MRI datasets. The novel
aspect of the proposed method is the combination of physically-based
deformable models with shape priors. Models evolve under the influence
of forces that exploit image information and prior knowledge on shape
variations. The prior defines a Principal Component Analysis (PCA) of
global shape variations and a Markov Random Field (MRF) of local
deformations, imposing spatial restrictions in shapes evolution. For a
better efficiency, various levels of details are considered and the differ-
ential equations system is solved by a fast implicit integration scheme.
The result is an automatic multilevel segmentation procedure effective
with low resolution images. Experiments on femur and hip bones segmen-
tation from clinical MRI depict a promising approach (mean accuracy:
1.44 £ 1.1 mm, computation time: 2mn43s).

1 Introduction

Musculoskeletal disabilities seriously affect the majority of individuals over the
age of 50. Osteoarthritis (OA) is often at origin of these disabilities, and its
typical symptoms are inflammation, stiffness, pain and loss of mobility [I]. Mor-
phological analysis [2] of (changes in) organ shapes is precious in understanding
which factors (e.g., impingements) can lead to serious OA. Automatic bones
segmentation can be hence used to substitute or expedite tedious manual delim-
itations from medical images. Moreover, bone segmentation can serve as a basis
for more advanced modeling of other essential structures, such as cartilages [3]
or muscles [4].

MRI is a flexible and non invasive modality. But bone segmentation can be
challenging from clinical MRI images that suffer from poor image quality (im-
posed by time and clinical restrictions). Furthermore, bone intensity is not ho-
mogeneous in MRI due to differences in cortical and trabecular bones. This can
affect some segmentation approaches (e.g., [5lf6]). The use of prior knowledge
considerably improves the robustness and the quality of segmentation especially
when image information is missing or unreliable. Principal Component Analy-
sis (PCA) is often used to describe the modes of variations among shapes to
segment. PCA is reported in many studies on segmentation of bone [3I7I89] or
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other structures [GIOJITIT2]. In Bayesian approaches, the segmentation prob-
lem is formulated as a Maximum A Posteriori (MAP) problem [GJ9IT2/T3]. Prior
knowledge is then naturally expressed as prior probabilities. Markov Random
Fields (MRF) [14] express spatially varying priors and have been successfully
applied to MAP-based segmentation [T2T315]. But MAP-based methods using
MRF present the inconvenient to be usually very time consuming.

Deformable models vary in type of representation (e.g., active contours [15],
implicit [6I7], discrete [AITOITIIS]) and are used in segmentation techniques ex-
ploiting PCA [6I7UTOITT] or MRF [I3UT5]. Physically-based deformable models
are particularly interesting because they can be coupled with efficient com-
puter graphics techniques (e.g., fast physically-based simulations [T6/17]). The
proposed approach simultaneously combines prior knowledge (PCA, MRF) and
physically-based models. This novel combination confers speed and robustness
to the segmentation. Unlike some MAP-PCA methods (e.g., [6]), a very fast
segmentation is achieved without assuming that bone intensity is homogeneous.

In this paper, shapes are modeled as discrete deformable models by using a
2-simplex mesh representation [I8]. Points of 2-simplex meshes have the nice
characteristic to have the constant number of three neighbors. A shape x is rep-
resented by M 3D points: @ = {z1,..., 2 }. The paper is organized as follows:
shape variation modeling is first presented. Then, the segmentation method built
on a multilevel forces-based implicit scheme is depicted. Finally, results of clinical
MRI experiments and future work conclude this paper.

2 Shape Variation Modeling

2.1 Global Shape Statistics Based on PCA

For a given bone, N training shapes with known point correspondences are
aligned with respect to a common reference frame. Based on a PCA, a statisti-
cal model of the shape variations is then built [T9]. In our case, shapes are the
result of a supervised segmentation procedure that fits template deformable mod-
els to corresponding images. This common approach (e.g., [10]) automatically
produces a direct point correspondence. Although the correspondence may not
be optimal [RI3120], it gives satisfactory results in our experiments. An arbitrary
shape « can be approximated from the computed statistics by: & ~ T'(x + $.b).
Vector « is the mean shape, @ is a matrix of K (K < N) eigenvectors, b is
a shape parameters vector and 7' denotes the alignment transform. The eigen-
vectors (with eigenvalues )\;) span the PCA subspace and express modes of
variations. The degree of variation depends on the transform type and on the
mesh resolution. Indeed, a PCA based on a rigid transform will capture global
shape variations while an affine transform will lead to a more local description
of variations. These two kinds of PCAs are denoted as rigid and affine PCA. In
a similar way, shapes with a higher resolution are more adapted to express finer
shapes differences.
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2.2 Local Deformations Modeling Based on MRF

Let’s consider # = {x1,...,2p} and Y = {y1,...,yn}, respectively current
and true point positions of a bone shape. Positions & are commonly the result
of a procedure which exploited the PCA-based modeling. The objective is now
to model the last discrepancy between current and real model. We pose Y =
x+6 where § = {61,...,8n} represent local deformations. By adapting the idea
depicted in [12], the local deformations distribution is modeled by a first-order
Gauss-Markov random process:

M
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where N(7) denotes the indices neighborhood of point ¢ (i.e., three point indices)
and Z,, designates the partition function which is a constant. Parameters n? and
o? control the smoothness and the magnitude of the deformations respectively.
The term x is considered as deterministic, Y follows hence a first-order Gauss-
Markov process as well. It is an unknown random process that will be inferred
from observed data.

3 Segmentation Algorithm

3.1 Deformable Model Evolution

Discrete models are considered as particles with mass evolving under the Newto-
nian law of motion. The Newton equation relates particle position and velocity
to a set of internal and external forces. The resulting time discretized differential
equations system is solved by a stable implicit integration scheme [I6] perform-
ing large time steps. As internal forces, we use a smoothing force [4] that pe-
nalizes strong irregularities and a PCA-based force fP® (Sec.B3)) that enforces
shape constraints. External forces depend on the image intensity information
(Sec. B2) and on current mesh point positions x. They are designed to move
models toward anatomical boundaries. Section [3.4] explains how the MRF model-
ing is exploited in a scheme involving two external forces. A step of the implicit
scheme consists in evaluating forces f; applied on each particle ¢ at position
yi, as well as derivatives with respect to position Df; = 0f;/0y; and velocity
Duvf; = 0f;/0v; (which is null for all the forces studied in this paper since they
do not depend on velocity).

3.2 Image Force

Given the current mesh point positions @, new positions y are sought in a neigh-
borhood of @ (usually along the mesh normal directions, e.g., [BTO/I8]) in such a
way that an energy E4(y, d) is minimized. The image information d can include
gradients, intensity neighborhoods, etc. A force ™ is then derived from 2 and
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the computed y. By assuming that forces are applied to particles ¢ independently,
F™ is modeled as a Hookean spring [I8]: fi™ = o™ (y; — x;). The coefficient

™ acts as a stiffness parameter. The derivative of the force is Dfi™ = —a/™I,
where I denotes the identity matrix.

3.3 PCA-Based Force

A closest shape y is found by projecting  in the PCA space. An iterative
procedure computes the adequate transformation 7" and appropriate constrained
shape parameters b = by,...,bx. Constraints are required to discard illegal
conﬁgurations shape parameters by are scaled when the Mahalanobis distance
D=5 b2 o/ Ak is strictly over a threshold Diyax. The threshold is calculated from
the x? distribution with K degrees of freedom [19]. The shape y is ultimately
computed according to Sec. 2] formula. The same source-to-target approach is
once again applied: fF“ = aP®(y; — x;). However, attention must be paid on
the fact that the computations of y; and the corresponding forces are dependent
on the positions of x;, j # 4. Forces and derivatives are in reality more complex.
But neither instabilities nor odd behaviors were noticed in practice with the
chosen approximations.

3.4 MRF-Based Force

Let’s d = {d;,t € L} designates an observation field on a regular lattice defined
by the image I. This field is related to the image information (Sec. B2). Our
goal is to estimate the true (unknown) point positions Y* by using a MAP
formulation of the random process Y from the observation d [12]:

Y* = argmax P(Y|d) = argmax P(d|Y)P(Y) = argmax P(Y,d) (2)
Y Y Y

Commonly, P(d]Y) is assumed to follow a Gibbs distribution, i.e. P(d|Y") is
proportional to exp —E4(Y,d). As a result, the joint distribution P(Y,d) is
also a Gibbs distribution: P(Y,d) = ,exp — E(Y,d). Parameter Z is assumed
to be constant and independent of Y [I2]. The energy is expressed as:

M
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where 6; = y; — x; and d, is the image information at y;. The random process
Y will be inferred from the image information and reference positions x. The
parameter § weights the regularization induced by the energy term based on
spatial deformations with respect to the image-based energy term. When ( is
null, the procedure can be seen as a standard Maximum-Likelihood strategy that
ignores geometrical considerations. To solve this MAP problem, the energy F
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should be globally minimized which is not a trivial task. Instead, we consider F
as a kind of potential energy (i.e., f = —VE) and devise appropriate forces to be
used in our framework. Each local energy F; is derived with respect to positions
y; and y; (j € N(i)), to get local contributions in forces and force derivatives.
By summing up these contributions (e.g., f; = —0E;/0y; — Y 0E;/0y;), forces
and force derivatives can be computed on each particle in order to perform an
implicit step. An analytic formulation of the energy E,,; derivatives can be
expressed, whereas the derivative of E4; cannot be explicitly formulated. Finite
differences approximations may also lead to incorrect results as E4 may not vary
smoothly enough. The force expression of Sec. is thus reused to get forces
and force derivatives for Eq; (Eq,; is not dependent on y;). The MAP-MRF
problem resolution yields so two types of forces: f™ and f™ (3 is then similar
to a weighting parameter o™).

3.5 Multilevel Segmentation Strategy

A Thin-Plate Splines interpolation procedure initializes generic bone shapes by
using landmarks placed at specific anatomical positions. During the automatic seg-
mentation, higher mesh resolutions are successively introduced and used in com-
bination with previous lower resolutions. This strategy uses a bottom-up forces
propagation scheme [4] between the different resolutions, which linearly combines
lower with higher resolution forces. This approach yields better robustness and
accuracy. At each new higher resolution introduction, three successive steps take
place: (i) exploit PCA, image and smoothing forces; (ii) reduce PCA influence and
keep other forces; (iii) set the current position as reference, enable MRF-based
force, disable PCA and smoothing. The weight of each force is controlled by the
weight factors a. Low resolution models are coupled with rigid PCA, whereas affine
PCA isreserved for higher resolutions. MRF-based force is not used at the first res-
olution as the final result may be too far. In fact, only convergence toward a local
minimum is ensured, so models must be close enough to the final solution.

4 Experiments and Results

An axial 3D T1 protocol (TR/TE= 4.15/1.69ms, FOV/Matrix= 35cm,256x256,
resolution= 1.367x1.367x5mm) is used to acquire a large volume covering hips
and thighs from a 1.5T MRI device (Philips Medical Systems). The protocol
is fast (acquisition time: 3mn) but low resolution images are produced (Fig. ).
An experiment consists in segmenting hip and femur bones of both sides
(Fig. [d)) from a volume dataset. Test datasets are not used in the training
shapes construction. A set of 29 right and left female training bones is used,
each training shape is available in 4 different resolutions ( femur (hip) bone
number of vertices: 514 (814) to 32K (52K) ). A rigid PCA is performed for
the lowest resolution, and affine PCAs for the remaining resolutions. 99% of the
total variance is kept for each PCA. In all the experiments, we set 1/7? = 0.15
and 1/0? = 0.25. The manual initialization requires the placement of 6 markers
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Table 1. Mean and standard deviation of error distance with computation time

measures / dataset # 1 2 3 4 5 6

mean (mm) 1.66 1.34 1.30 1.50 1.27 1.54
std (mm) 1.25 0.82 1.15 1.20 0.95 1.22
time (s) 162 165 162 163 161 166

mrf

Fig. 1. Segmentation results: before (a) and after (b) usage of f™, white arrows
indicate significant improvements (o™ = o™ = 0.5). (¢) Error in segmentation in
case of abnormal deformation. Patient #1 has a benign osteochondrome (cartilage
tumor) at the right distal femoral metaphysis (white arrow). (d) 3d reconstructed

models example. (e)-(g) axial slice examples with segmentation contours.

per bone. This requires about 4-5mn in total. Segmentation error is calculated
from experts contours (sometimes reduced to a series of points if contours can-
not be drawn with a good confidence). Each contour point is projected on the
corresponding segmented shapes and Euclidean distances are computed. Execu-
tion time of a segmentation (initialization is not counted) is monitored (used
equipment: 3.40 Ghz computer with 2Gb of RAM). Table [l reports accuracy
and computation time for 6 datasets.

The average error is 1.44 + 1.1 mm, which is close to the axial resolution
(1.37 mm), and visually the segmentation looks accurate (Fig. [l). Nevertheless,
a little too high standard deviation reveals some noticeable errors, essentially
due to two major factors. Firstly, the poor image quality may also corrupt the
gold standard manual editing, experts segmentation remains error prone. Sec-
ondly, the segmentation may fail in very noisy areas or when a bone presents
a strong deviation from the training shapes. In that case, the segmentation is
“over-constrained” by the priors-based forces (Fig.[Il(c)). But, PCA-based forces
make the process less sensitive to noise and surroundings structures (Fig. ), the
absence of PCA “regularization” creates in fact an unstable model (Fig. B(b)).
The MRF-based force efficiency is illustrated in Fig. [a) and [i(b), where at
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Fig. 2. PCA-based force utility: Starting from an initial model at low resolution (a) in
which bones are deformed, 80 iterations are performed with different kind of forces. (b)
AP = 0,0 =0,a"™ =1 (c) aP® = 0,a"™° = 0.5, '™ = 0.5 (d) aP® = 0.4, "™ =
0.2, '™ = 0.4. The usage of PCA-based force clearly gives the best result.

the second mesh resolution level, the force can already capture fine details (in
this ex., the error decreases from 1.94 &+ 1.7 to 1.62 £+ 1.5). Last but not least,
time is also a strength of the method: overall time (acquisition, initialization
and segmentation) takes less than 10mn. This encourages clinical use as image
resolution and time constraints are not too demanding.

5 Conclusion and Future Work

The proposed method showed how prior knowledge supported by PCA and MRF
brings robustness and accuracy, when they are combined with fast physically-
based deformable models. Still, work remains in considering pathologies or large
patient anatomical differences that are discarded by the priors-based regulariza-
tion. One direction would be to add in the training shapes these differences or to
balance correctly image forces with respect to other forces. Finally, the method
should be adapted to higher resolution clinical datasets that cover a smaller field
(i.e., focused on a joint), by tackling the issue of a more automatic initialization.

Acknowledgments. This work is supported by the 3D Anatomical Human
project funded by the European Union. We would like to thank Dr. Kolo-
Christophe from the Geneva University Hospital and Pascal Volino for their
collaboration.

References

1. Felson, D.: Clinical Practice. Osteoarthritis of the Knee. N. Engl. J. Med. 354,
841-848 (2006)

2. Pfirrmann, C.W.A., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., Hodler,
J.: Cam and Pincer Femoroacetabular Impingement: Characteristic MR Arthro-
graphic Findings in 50 Patients. Radiology 240(3), 778784 (2006)



126

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. Schmid and N. Magnenat-Thalmann

Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic Segmentation of the
Bone and Extraction of the Bone-cartilage Interface form Magnetic Resonance
Images of the Knee. Phys. Med. Biol. 52, 1617-1631 (2007)

. Gilles, B., Moccozet, L., Magnenat-Thalmann, N.: Anatomical modelling of the

musculoskeletal system from MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.)
MICCATI 2006. LNCS, vol. 4190, pp. 289-296. Springer, Heidelberg (2006)

. Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R.: Segmen-

tation of Bone in Clinical Knee MRI using Texture-based Geodesic Active Con-
tours. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS,
vol. 1496, pp. 1195-1204. Springer, Heidelberg (1998)

. Yang, J., Duncan, J.S.: 3d image segmentation of deformable objects with joint

shape-intensity prior models using level sets. Med. Image Anal. 8, 285-294 (2004)

. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in

geodesic active contours. In: Proc. IEEE Conf. Comput. Vis. Pattern Recogn.,
vol. 1, pp. 316-323 (2000)

. Lamecker, H., Seebaf3, M., Hege, H.C., Deuflhard, P.: A 3d statistical shape model

of the pelvic bone for segmentation. In: Proc. of the SPIE, vol. 5370, pp. 1341-1351
(2004)

. Dong, X., Gonzalez Ballester, M.A., Zheng, G.: Automatic extraction of femur con-

tours from calibrated x-ray images using statistical information. J. Multimed. 2(5),
46-54 (2007)

Costa, M., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of
bladder and prostate using coupled 3d deformable models. In: Ayache, N., Ourselin,
S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252-260. Springer,
Heidelberg (2007)

Wang, Y., Staib, L.: Physical model-based non-rigid registration incorporating sta-
tistical shape information. Med. Image Anal. 4(1), 7-20 (2000)

Kervrann, C., Heitz, F.: A hierarchical markov modeling approach for the seg-
mentation and tracking of deformable shapes. Graph. Model. Image Process 60(3),
173-195 (1998)

Huang, R., Pavlovic, V., Metaxas, D.N.: A graphical model framework for coupling
mrfs and deformable models. In: Proc. Conf. Comput. Vis. Pattern Recogn (CVPR
2004), vol. 02, pp. 739-746 (2004)

Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984)
Martin-Fernédndez, M., Alberola-Lépez, C.: An approach for contour detection of
human kidneys from ultrasound images using markov random fields and active
contours. Med. Image Anal. 9(1), 1-23 (2005)

Volino, P., Magnenat-Thalmann, N.: Implementing fast cloth simulation with colli-
sion response. In: Proc. Int. Conf. on Computer Graphics (CGI 2000), pp. 257-266.
IEEE Computer Society, Los Alamitos (2000)

Nealen, A., Miller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based
deformable models in computer graphics. Computer Graphics Forum 25(4), 809-
836 (2006)

Delingette, H.: General object reconstruction based on simplex meshes. Int. J.
Comput. Vis. 32(2), 111-146 (1999)

Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for
locating structures in medical images. In: Barrett, H.H., Gmitro, A.F. (eds.) IPMI
1993. LNCS, vol. 687, pp. 33-47. Springer, Heidelberg (1993)

Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3d statis-
tical shape models using direct optimisation of description length. In: Heyden, A.,
Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3-20.
Springer, Heidelberg (2002)



	MRI Bone Segmentation Using Deformable Models and Shape Priors
	Introduction
	Shape Variation Modeling
	Global Shape Statistics Based on PCA
	Local Deformations Modeling Based on MRF

	Segmentation Algorithm
	Deformable Model Evolution
	Image Force
	PCA-Based Force
	MRF-Based Force
	Multilevel Segmentation Strategy

	Experiments and Results
	Conclusion and Future Work


