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INTRODUCTION

A clinical prognosis is an estimate of the likely course 

and outcome of a disease. In general, the type, location, 

stage, and histologic grade of the tumor are the most 

important factors that predict the outcome of cancer 

patients. Among these factors, the prognosis of solid tumors 

is greatly affected by tumor stage. However, in patients 

with hepatocellular carcinoma (HCC), prognosis assessment 

is complicated due to the biological heterogeneity of 

the disease and the lack of consensus over the best 

classification system (1, 2). To assess the prognosis of HCC 
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patients, it is recommended that the staging system take 

into consideration tumor stage, liver function, physical 

status and treatment efficacy (1, 3). Traditionally, TNM or 

Okuda classification is used for staging HCC despite some 

limitations (1, 3). The Barcelona-Clinic Liver Cancer staging 

system links staging with a specific treatment strategy and 

with an estimation of life expectancy (4). Currently, there is 

no agreement on a worldwide recommended staging system.

Biomarkers are especially useful in cancer patients in 

a number of ways, including measuring the progress of 

disease, establishing outcome, and evaluating recurrence. 

Biomarkers are measurable indicators of the severity 

or presence of some disease state and act as surrogate 

endpoints (5-8). Four technological approaches can 

provide biomarkers such as body fluid, solid tissue samples, 

physiological measurements, and imaging (8). Among 

these, imaging biomarkers have the unique benefit in that 

they distinguish the exact disease focus. They are relatively 

non-invasive and repeatable. Imaging biomarkers can be 

classified in 4 ways: diagnostic, monitoring, predictive, 

and response biomarkers (8). Despite the advances in 

imaging biomarkers in the areas of diagnosis, monitoring, 
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and response, there are only few predictive or prognostic 

imaging markers, especially in patients with HCC.

Until now it is widely accepted that tumor size, 

multifocality, and vascular invasion are the most important 

prognostic factors of HCC (9-11). These variables are 

incorporated into various staging systems, and imaging 

plays a major role in the assessment of these variables. 

Therefore, the established roles of imaging include not 

only screening and surveillance of at-risk patients, but 

also diagnosis, staging, and prognostication of HCC (12). 

For these purposes, magnetic resonance imaging (MRI) 

is advantageous because of its high soft tissue contrast, 

capacity for multiple parameters, and use of various 

contrast agents. Furthermore, in addition to the severity 

of liver disease and tumor characteristics, several other 

features related to survival have emerged from a large 

number of studies. Therefore, some magnetic resonance 

(MR) imaging features may have prognostic, as well as the 

diagnostic values (Table 1). In this review, we discuss the 

MRI features of HCC and their implications for prognosis.

Size and Multifocality

The size and number of tumors, which together represent 

tumor burden, are important prognostic factors for HCC 

(9, 10); they are included in various radiological staging 

systems (13). As tumor size increases, HCCs tend to have 

a higher frequency of vascular invasion, extrahepatic 

metastasis and a decrease in patient survival. The 

availability and success of curative treatment options, such 

as liver resection or transplantation, depends heavily on 

the size and number of HCCs. Patients with one 2–5-cm 

HCC nodule or 2 to 3 HCC nodules measuring < 3 cm, who 

have no macrovascular invasion or extrahepatic metastases, 

have priority for transplantation (14). Liver resection for 

HCCs < 3 cm in size improves long-term patient survival 

(15). However, tumors > 3 cm have a higher incidence of 

microvascular invasion, especially in tumors of “nodular 

with extranodular growth” or “confluent multinodular type” 

(16-18). For patients with small HCCs, various treatment 

options are available, and a favorable prognosis is expected. 

Small HCCs measuring < 2 cm consist of 2 distinct types: 

1) small HCCs with indistinct margins, which are considered 

“early HCC” or “HCC of vaguely nodular type” and 2) 

small HCCs with distinct margins, which are considered 

“small and progressed HCC” or “HCC of distinctly nodular 

type” (19). Histologically, early HCCs consist of well-

differentiated tumor cells (20) invading the fibrous tissue 

surrounding portal tracts, which is referred to as stromal 

invasion (21, 22). They grow by replacing the surrounding 

liver parenchyma unlike the progressed HCC (23, 24). As 

the early HCCs spread, they do not displace or destroy the 

surrounding vascular structures but replace the surrounding 

parenchyma presenting an indistinct margin (23-25). 

About 80% of small and progressed HCCs are moderately 

differentiated, and the other 20% are both well- and 

moderately-differentiated (20). Although “early HCC” 

has the least risk of microvascular invasion, “small and 

progressed HCC” is thought to exhibit vascular invasion 

and intrahepatic metastasis (26). Therefore, small HCCs of 

distinctly nodular type represent progressed cancer in spite 

of their small size. While HCCs of distinctly nodular type 

frequently show a typical enhancement pattern, HCCs of 

vaguely nodular type tend to show an atypical enhancement 

pattern such as a lack of arterial hyperenhancement or 

venous/delayed washout (27). Early HCCs frequently show 

hypo- or iso-enhancement on arterial-phase imaging, 

due to incomplete arterial neovascularization (28), and 

Table 1. Imaging Features of HCCs and Their Values

Imaging Features of HCC Diagnostic Marker Predictive Value for Tumor Differentiation Prognostic Marker

Size No No Yes

Multifocality No No Yes

Fibrous and/or pseudocapsule Yes No Yes

Intratumoral fat Yes Yes Yes

T1 hyperintensity Yes Yes No

Mosaic appearance Yes No No

Nodule-in-nodule appearance Yes Yes No

Corona enhancement Yes No Yes

Vascular invasion Yes No Yes

Signal intensity on hepatobiliary phase No Yes Yes

ADC value Yes Yes Yes

ADC = apparent diffusion coefficient, HCC = hepatocellular carcinoma
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cannot be detected reliably using extracellular agents (29). 

However, because organic anion transporting peptide (OATP) 

8 expression decreases before the sufficient arterial inflow 

during multistep hepatocarcinogenesis, early HCCs may 

appear hypointense in the hepatobiliary phase (30, 31), 

and some early HCCs are observed only in the hepatobiliary 

phase (32, 33).

More than one third of patients with HCC have multifocal 

hepatic nodules (34), which are defined as tumor 

nodules clearly separated by intervening non-neoplastic 

liver parenchyma (35). Multifocal tumors may represent 

either multiple independent HCCs arising simultaneously 

(multicentric HCC) or intrahepatic metastases from a 

primary HCC (36). Multicentric tumors may exhibit varying 

histological grade and other features, while all metastatic 

tumors of a single HCC are considered progressed lesions 

with advanced tumor grade. The prognosis of patients with 

intrahepatic metastasis from HCC tends to be worse than 

those with multicentric HCCs (37). Intrahepatic metastases 

develop by 2 different pathways. Small satellite nodules 

around the primary tumor are formed when tumor cells 

enter the portal venules that drain from the primary tumor 

and spread into the surrounding parenchyma (38, 39). 

Metastatic nodules outside the drainage area, including 

other segments or the contralateral lobe, develop via 

systemic circulation of tumor cells (40). 

Fibrous Capsule and/or Pseudocapsule

The presence of a fibrous capsule is one of the 

characteristic findings of nodular, progressed HCC (41), and 

is found in 24–90% of Asians and 12–42% of non-Asians 

with HCC (11). Since cirrhotic or dysplastic nodules (DNs) 

usually do not develop a fibrous capsule, the presence of 

a capsule is an important finding in HCC (23). Although 

some investigators have found that capsule appearance 

does not increase the diagnostic accuracy for HCC because 

it usually coincides with other hallmark imaging features, 

other investigators assert that capsule appearance is 

valuable, as it permits diagnosis of HCC without a definite 

washout appearance (14, 42). Capsule presence is regarded 

as a major diagnostic criterion for HCC, along with 

arterial hyperenhancement, according to the liver imaging 

reporting and data system (43), and Organ Procurement and 

Transplantation Network. 

Histologically, the fibrous capsule consists of an inner 

layer rich in pure, fibrous tissue and an outer layer 

containing portal venules (or sinusoids) and newly formed 

bile ducts (41, 44). The fibrous capsule is a common 

pathological feature of progressed HCC, but not of early 

HCC, DNs, or regenerative nodules (23). The fibrous capsule 

shows a thin rim of hypointensity on T1-weighted images 

and a hypointense or hyperintense rim on T2-weighted 

images (Fig. 1). On dynamic MRI, the enhancing rim shown 

Fig. 1. 55-year-old man with encapsulated progressed HCC.
A. T1-weighted three-dimensional gradient echo image with fat suppression (TR/TE/FA = 2.5 ms/1 ms/11°) in late hepatic arterial phase after 

administration of gadoxetic acid shows hyperenhancing mass with hyperemia of surrounding liver parenchyma (arrow) in segment 8. B. Mass 

is hypointense on transitional phase with thin capsule appearance (arrow). Note that relatively high enhancement of background parenchyma 

on transitional phase may obscure capsular enhancement and reduce confidence of reader. C. Fat-suppressed fast spin echo T2-weighted image 

shows slight hyperintensity and hypointense capsule (arrow). FA = flip angle, HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time 
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on portal venous or delayed phase images (45) are from 

the retention of the extracellular contrast agent within 

the prominent peritumoral sinusoids and/or fibrosis (45, 

46). On hepatobiliary contrast agent-enhanced MRI, the 

relatively high enhancement of the background liver 

parenchyma may obscure capsular enhancement during 

the late dynamic or transitional phase. Some HCCs do not 

have a true fibrous capsule even though the MRI may 

show a hypointense rim on T1-weighted and T2-weighted 

imaging (45): an enhancing rim on delayed phase images 

can mimic the fibrous capsule. Such a false-positive fibrous 

capsule, i.e., a pseudocapsule, on MRI represents prominent 

histopathological hepatic sinusoids and/or peritumoral 

fibrosis (41, 45).

Hepatocellular carcinoma with a fibrous capsule is 

considered a favorable prognostic factor, as it is associated 

with more effective transarterial chemoembolization (TACE) 

and lower recurrence rates after resection or ablation (47-

49). This may be due to the barrier effect of the fibrous 

capsule that inhibits HCC dissemination (50). HCCs with 

a pseudocapsule may also confer a favorable prognosis 

because they exhibit similar behavior in terms of vascular 

invasion and tumor grade compared to a HCC with a true 

fibrous capsule (41, 45). It is important to note that 

encapsulated HCC does not have a better prognosis than 

early-stage or small HCC, because the presence of a capsule 

indicates progressed HCC (12, 51). In other words, HCCs 

with intact capsules have a better prognosis than HCCs of 

similar grade and size without capsules or with disrupted 

capsules (41, 45, 51).

Intratumoral Fat in HCC

Hepatocellular carcinomas sometimes contain an internal 

fat component (11), which is reportedly found in up to 

19.6% of HCCs on light microscopy and in up to 10% 

of HCCs on MRI (44, 52). In patients with cirrhosis, the 

presence of intralesional fat raises concern for malignancy 

or premalignant lesions (53). Since intralesional fat is very 

rare in hepatic malignancies except for HCC, the detection 

of fat may help to exclude intrahepatic cholangiocarcinoma 

(29). Despite potential benefits, the diagnostic value of 

intralesional fat has not yet been determined. Intralesional 

fat is shown to be noncontributory in radiological 

diagnosis of HCC, as the presence of fat coincides with 

other more discriminatory imaging features, such as 

arterial hyperenhancement or delayed washout (54, 55). 

Intralesional fat can be detected by identification of a 

signal drop on opposed-phase images, compared to in-

phase, T1-weighted, chemical-shift gradient-recalled-echo 

MR images (Fig. 2) (43, 55-57). 

Intralesional fatty change or fatty metamorphosis 

occasionally occurs during hepatocarcinogenesis (53), and 

diffuse fatty metamorphosis is considered as one of the 

Fig. 2. 76-year-old man with fat-containing HCC.
A, B. Axial dual-echo gradient echo images (TR/TE = 4/1.2 ms, in-phase; 2.4 ms, opposed-phase) show mass in dome of liver. Signal loss (arrow) 

of mass on opposed-phase (B) compared to in-phase (A) indicates intralesional fat. Presence of intralesional fat permits confident diagnosis of 

HCC. HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time
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characteristics of early-stage HCC (52). Fatty change is most 

frequently found in HCCs with a diameter of approximately 

1.5 cm, and the prevalence decreases incrementally with 

tumor size and histologic grade. This feature is uncommon 

in HCCs > 3 cm in diameter and/or in moderately 

differentiated HCCs (25). Approximately 6% of moderately 

differentiated HCCs reportedly have fatty change, while 

no poorly differentiated HCCs exhibit this feature (52). In 

early-stage HCCs, the blood source gradually shifts from the 

vessels of the portal tracts to the newly formed non-triadal 

arteries. At this transitional stage, the lack of blood supply 

and increased cellular density may cause transient hypoxia, 

which may lead to intratumoral fatty metamorphosis 

(19, 52). However, the molecular mechanism of fatty 

metamorphosis by hypoxia in HCCs is not fully understood. 

Patients with fat-containing HCC may have a better 

clinical outcome than patients without fat-containing HCCs 

due to longer time to tumor progression and decreased risk 

of metastasis. This may be due to the fact that intralesional 

fat is characteristic of early and well-differentiated HCC, not 

of progressed HCC (58). The prognosis of progressed HCC 

with intralesional fat has not been established.

T1 Hyperintensity

Hepatocellular carcinomas may have variable signal 

intensity on T1-weighted images. Although most hepatic 

lesions are hypointense relative to liver parenchyma on T1-

weighted images, some HCCs show T1 hyperintensity (59-

62). T1 hyperintensity can be attributed to the presence 

of T1 shortening substances such as fat, copper, highly-

concentrated proteins, glycogen and hemorrhages within 

the nodules (63). 

Hepatocellular carcinomas are more commonly 

hypointense on T1-weighted images. In a previous report, 

T1 signal intensity of HCCs was hypointense in 65% of 

cases, isointense in 23%, and hyperintense in 12% (64). 

Unenhanced T1-weighted imaging plays a minor role in the 

diagnosis of HCC because HCCs and non-malignant hepatic 

lesions have various and overlapping T1 signal intensity 

(65, 66). However, the signal intensity on T1-weighted 

images may be associated with histologic grade and clinical 

outcome (59, 61). It has been previously reported that 

64–66% of HCCs of Edmondson-Steiner grade I or with 

well-differentiated histology show hyperintensity on T1-

weighted imaging (Fig. 3) (59, 61). However, the proportion 

of HCC nodules with hyperintensity on T1-weighted imaging 

gradually decreases as the histological differentiation grade 

progresses (61). Therefore, HCCs with T1 hyperintensity 

tend to have better tumor histologic grade, while HCCs 

with T1 hypointensity tend to be more poorly differentiated 

(59, 61). Besides, T1 hyperintense HCCs without T2 

hyperintensity or arterial hypervascularity usually follow a 

benign clinical course (67). 

Fig. 3. 71-year-old man with HCC showing T1 hyperintensity.
A. Unenhanced fat-saturated T1-weighted three-dimensional gradient echo image with fat suppression (TR/TE/FA = 2.5 ms/0.9 ms/11°) shows 

hyperintense mass (arrow) in segment 4. B. Mass is barely visible on fat-suppressed fast spin echo T2-weighted imaging due to isointense signal 

(arrow). FA = flip angle, HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time 
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Nodule-in-Nodule Appearance

Nodule-in-nodule appearance represents the presence 

of a small nodule within a larger nodule (43). This 

imaging appearance corresponds to the nodule-in-nodule 

growth pattern on histology (68) and suggests a focus 

of progressed HCC within a well-differentiated HCC or DN 

(19). Histologically, the inner nodule is composed of less 

differentiated cancer tissue, containing less fat and/or iron, 

while the parent nodule is a well-differentiated HCC or DN 

rich in fat and/or iron (69, 70). When less-differentiated 

cancerous tissues within the well-differentiated nodules 

proliferate in an expansive fashion, a ‘nodule-in-nodule’ 

appearance is frequently seen. Thus, a nodule-in-nodule 

appearance could be interpreted as a morphologic marker of 

the progression of dedifferentiation of the tumor (19, 68). 

The inner nodule, corresponding to a developing and 

distinctly nodular-type HCC, shows T2 hyperintensity, 

T1 hypointensity, and arterial enhancement on dynamic 

imaging (Fig. 4) (28, 71). On the other hand, the 

preexisting parent nodule, corresponding to either a DN 

or early HCC tissue, demonstrates T2 hypointensity, T1 

hyperintensity, and hypovascularity on dynamic imaging 

(11, 72, 73). The inner HCC nodule has radiological and 

pathologic features typical of progressed HCC with the 

potential for rapid growth and doubling time (74). However, 

consideration of the nodule-in-nodule appearance of HCC as 

a prognostic factor is not established (29). 

Corona Enhancement

Corona enhancement, one of the characteristics of 

hypervascular HCC, is described as a transient zone or 

rim of enhancement around a hypervascular HCC in the 

late arterial phase seen in either CT hepatic arteriography 

(75) or multiarterial phase dynamic MRI (Fig. 5) (63, 

76). Since corona enhancement is a very unusual finding 

other than HCC, it is one of the most reliable features for 

distinguishing HCC from other hypervascular tumors or 

pseudolesions such as arterioportal shunts (77). Because 

corona enhancement is transient, it is hard to recognize on 

routine CT or MRI. Corona enhancement is seen only in the 

perfusion phase of dynamic study, such as the arterial or 

early portal venous phases and not the equilibrium phase 

(76). This is different from capsular enhancement, which 

is mainly seen as an enhancing rim in the delayed phase 

images (76).

In addition to the ancillary imaging features, the 

importance of corona enhancement is related to blood 

drainage in HCC. The drainage vessels of HCC change during 

multistep carcinogenesis (78). As the tumor cells proliferate 

more rapidly, they first invade the intranodular hepatic 

veins; however, tumor blood drainage via intranodular and 

perinodular hepatic veins disappears early, as perinodular 

hepatic veins are collapsed by tumor compression. Then, 

venous blood from tumors begins to drain into surrounding 

hepatic sinusoids and portal veins (75, 78). In HCCs with 

a fibrous capsule, perinodular hepatic sinusoids collapse, 

Fig. 4. 56-year-old man with HCC showing nodule-in-nodule appearance.
A. Pre-contrast T1-weighted three-dimensional GRE image shows hypointense inner nodules within hyperintense outer nodule, consistent with 

nodule-in-nodule architecture. B. Subtracted arterial phase image shows hyper-enhancement of inner nodules (arrows). C. Inner nodules (arrows) 

exhibit hyperintensity relative to outer nodule and surrounding liver on fat-suppressed fast spin echo T2-weighted image. Outer nodule is 

hypointense. GRE = gradient echo, HCC = hepatocellular carcinoma
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and the fibrous capsule interrupts the connection between 

intranodular and extranodular sinusoids. Consequently, 

tumor venous blood drains into the surrounding liver 

parenchyma via portal venules within the capsule, which 

can be seen as thick corona enhancement on imaging (40, 

75, 78). Thus, corona enhancement may provide prognostic 

information. Local recurrence is frequently observed at 

the area of corona enhancement, as this corresponds to 

the initial drainage pathway of the tumor (40). The area 

of corona enhancement is the first site of intrahepatic 

metastasis of HCC, and daughter nodules are commonly 

found in this area. Therefore, resection or ablation of 

tumors should include the regions of corona enhancement 

to avoid tumor recurrence (40).

Vascular Invasion by HCC

Vascular invasion is more common in HCCs that are larger 

or of higher histologic grade (38, 79-83). Tumor cells more 

frequently involve the portal venous system than hepatic 

veins (64, 82, 84). Vascular invasion is divided into macro- 

and microvascular invasion, depending on the level of 

involved vascular structures (14). Both types of vascular 

invasion are related to poor prognosis because they provide 

the route for tumor cells to access the portal or systemic 

circulation, which can result in intrahepatic or systemic 

metastases. Thus, HCCs with vascular invasion have frequent 

multifocality and a higher recurrence rate after hepatic 

resection, ablation therapy, or liver transplantation (85, 

86). Therefore, surgical resection or liver transplantation is 

usually contraindicated in HCCs with macrovascular invasion 

(87).

It is difficult to preoperatively predict microvascular 

invasion with imaging studies as it occurs at a microscopic 

level (88). Microvascular invasion of HCC is reportedly not 

predictable using morphologic and enhancement features of 

MRI, such as T1 and T2 signal intensity, margins, presence 

of capsule or pseudocapsule, wedge-shaped peritumoral 

enhancement, or quantitative tumor enhancement (18, 76). 

However, several tumor characteristics on MRI have been 

suggested as markers for risk of microvascular invasion. 

Morphologically, tumors with more than 3 foci and a tumor 

size > 3 cm exhibiting gross patterns of “nodular with 

extranodular growth”, “confluent multinodular type”, or 

“infiltrative type” are reported to be closely related to 

microvascular invasion (16-18). Therefore, multiple tumors 

or tumors > 3 cm with non-smooth margins on MRI are 

likely to have microvascular invasion. Additionally, HCCs of < 

2 cm, especially those of distinct nodular type, may exhibit 

microvascular invasion (32). These tumors usually show a 

typical dynamic enhancement pattern and hyperintensity 

on T2-weighted and diffusion-weighted images (32). Some 

studies have suggested that large or irregular and distorted 

corona enhancement in HCC may predict microvascular 

invasion (76, 89-91). However, this finding is not been 

validated by other studies. Peritumoral hypointensity and 

Fig. 5. 66-year-old man with HCC showing corona enhancement.
A, B. T1-weighted three-dimensional GRE image with fat suppression (TR/TE/FA = 4.5 ms/2.1 ms/15°) in (A) early and (B) late hepatic 

arterial phase after administration of gadolinium-based contrast agent shows hyper-enhancing mass (arrow) in segment 6. Notice irregular 

circumferential enhancement (arrow) in liver parenchyma around mass in late hepatic arterial phase. C. Enhancement of perilesional parenchyma 

fades in portal venous phase. Transient enhancement of perilesional parenchyma is known as corona enhancement. Note capsular appearance of 

mass (arrow). FA = flip angle, GRE = gradient echo, HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time
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non-smooth tumor margins on the hepatobiliary phase 

of gadoxetic acid-enhanced MRI may also be indicative 

factors of microvascular invasion (Fig. 6) (17, 91). In 

areas of peritumoral hypointensity of the liver parenchyma, 

expression of OATPs and canalicular transporter multidrug 

resistance-associated protein 2 receptors decrease, probably 

because of hemodynamic alteration related to tumor 

obstruction of minute portal veins (17). The tumor margin 

may be non-smooth if the tumor is infiltrative or with a 

minute budding portion at its periphery (91). 

Organic Anion Transporter Polypeptide 
Expression and Signal Intensity on 
Hepatobiliary Phase Imaging

Gadoxetic acid and gadobenate dimeglumine are 2 

hepatobiliary contrast agents, currently available in clinical 

practice (12). They behave like extracellular agents after 

injection, are taken up by functioning hepatocytes and 

excreted into the biliary system. OATP 8 (also known as 

OATP1B1/3) is thought to be responsible for uptake of 

hepatobiliary contrast agents by hepatocytes (92, 93). 

Thus, nodules with low or no OATP expression do not 

take up hepatobiliary agents and appear hypointense in 

the hepatobiliary phase, while nodules with preserved or 

elevated OATP 8 expression take up the agents and tend to 

be isointense or hyperintense. 

The expression of these transporters decreases during 

hepatocarcinogenesis. Expression levels are high in 

regenerating nodules and low-grade DNs and are lower in 

many high-grade DNs, early HCCs, and progressed HCCs 

(92, 94). On the hepatobiliary phase of gadoxetic acid-

enhanced MRI, HCCs are usually hypointense from the 

lack of gadoxetic acid uptake due to down regulation of 

OATP 8 expression (95, 96). Studies have shown that the 

degree of tumor enhancement in the hepatobiliary phase 

after injection of gadoxetic acid inversely correlates with 

histologic grades (92, 97). Poorly-differentiated tumors 

tend to show lower signal intensity, as compared to well-

differentiated or moderately-differentiated ones. Inverse 

correlation has been associated to the gradual decline in 

OATP expression seen during hepatocarcinogenesis (92, 

94). This suggests that quantitative analysis of tumor 

enhancement in the hepatobiliary phase may predict 

histologic and prognostic features (92). However, other 

researchers show that the degree of tumor enhancement 

does not correspond with tumor grades (95, 98) or only 

correlates in a subset of patients with preserved liver 

function (99). 

Some HCCs show hyperintensity on hepatobiliary 

phase due to increased uptake of hepatobiliary contrast 

media (Fig. 7) (100-103). The overexpression of OATP 8 

in some HCCs may be due to genomic alteration during 

hepatocarcinogenesis (92). The prevalence of these 

hyperintense HCCs on hepatobiliary phase varies from 5 to 

12% (100-102). Most patients have well- or moderately-

differentiated tumors, but poor differentiation is observed 

rarely (92, 95, 97, 100, 102, 103). Thus, the hyperintensity 

of HCCs on hepatobiliary phase may not be dependent on 

histologic differentiation of the tumor, but rather on the 

degree of OATP 8 expression or other potential genomic 

alterations (94, 97, 104). 

Hyperintense HCCs on hepatobiliary phase may indicate 

a favorable clinical outcome in patients (95) since these 

tumors have infrequent microvascular invasion and have a 

longer interval of recurrence, as compared with hypointense 

HCCs (95, 102, 104, 105). Moreover, hyperintense HCCs 

most commonly appear as expanding gross-type, not 

Fig. 6. 51-year-old man with HCC and microvascular invasion.
A. Gadoxetic acid-enhanced T1-weighted three-dimensional GRE sequence (TR/TE/FA = 3.4 ms/1.7 ms/15°) acquired in late hepatic arterial phase 

shows heterogeneous mass at segment 8 of liver. B. Transitional phase image at three minutes depicts hypointense mass. C. Margin of mass is 

non-smooth or lobulated on hepatobiliary phase imaging acquired 20 minutes after injection (arrow). D. Gross pathology photograph of resected 

specimen reveals confluent, multinodular type HCC. Histopathologic examination proves frequent microvascular invasion. FA = flip angle, GRE = 

gradient echo, HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time
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infiltrative or diffuse-type, which are prone to poor 

prognosis (95). Patients with iso- to hyperintense HCCs on 

hepatobiliary phase tend to have lower levels of prognostic 

serum tumor markers (a-fetoprotein, protein induced by 

vitamin K absence or antagonist-II [PIVKA-II]) (104, 106, 

107). Hyperintense HCCs on hepatobiliary phase are more 

common in older patients, suggesting that they grow more 

slowly (95, 98, 100, 103). 

Correlation of MR Imaging and 
Immunohistochemical Markers

Prognosis is not easy to determine in patients with HCC 

due to the heterogeneous nature of the tumors and the 

lack of appropriate biomarkers. Despite the advancement 

of molecular medicine, there are no well-established 

biomarkers to predict prognosis of HCC. Currently used 

tumor markers in HCC, such as alpha-fetoprotein or PIVKA-

II, have limited sensitivity and specificity; however, some 

immunohistochemical markers have the potential to be used 

for prognosis and treatment stratification. 

Hepatocellular carcinomas with biliary phenotypic 

markers such keratin 7 and keratin 19 (K19) may be 

more aggressive and have a worse prognosis (108, 109). 

Some HCCs expressing progenitor cell markers, such as 

epithelial cell adhesion molecule (EpCAM) and K19 have 

Fig. 7. 64-year-old man with HCC showing hyperintensity in hepatobiliary phase.
A. Gadoxetic acid-enhanced T1-weighted three-dimensional GRE image (TR/TE/FA = 3.4 ms/1.7 ms/15°) in late arterial phase shows exophytic, 

hyperenhancing mass (arrow) in left posterior liver. B. In hepatobiliary phase, mass is hyperintense with central hypointense areas (arrow). FA = 

flip angle, GRE = gradient echo, HCC = hepatocellular carcinoma, TE = echo time, TR = repetition time

A B

Fig. 8. 51-year-old man with HCC.
A. Hepatobiliary phase image acquired 20 minutes after injection shows hypointense nodule in segment 7 of liver (arrow). B. Nuclear grade III 

trabecular and pseudoglandular HCC with hepatic cells was confirmed (hematoxylin and eosin staining, x 100). C. Immunoreactivity of keratin 19 

was strongly positive (x 100). Cell density ratio was 2.1. HCC = hepatocellular carcinoma

A B C
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aggressive clinical outcomes due to a higher recurrence 

rate after resection or liver transplantation, resistance to 

chemoradiation therapy, and a higher rate of metastases 

(24, 108-117). It is reported that HCCs expressing EpCAM 

or K19 show different radiologic features on MRI, as 

compared with HCCs lacking these markers (Fig. 8) (110). 

Gross multinodular confluent- or infiltrative-type tumors 

that are associated with an unfavorable prognosis are more 

common (110). A progressive or persistent enhancement 

pattern on dynamic study, similar to the enhancement 

pattern of cholangiocarcinoma, is more frequently seen in 

HCCs expressing progenitor cell markers (110). On gadoxetic 

acid-enhanced MRI, K19 expression is inversely correlated 

with tumor enhancement of HCC on hepatobiliary phase. 

Therefore, tumor enhancement on hepatobiliary phase is 

lower in K19-positive HCCs than in K19-negative HCCs (110, 

118). 

Diffusion-Weighted Imaging

One of the characteristic radiologic features of many 

malignant tumors is elevated signal intensity on diffusion-

weighted imaging, caused by a reduced apparent diffusion 

coefficient (ADC) of water in the tumor microenvironment 

(Fig. 9) (119). The mechanism of reduced ADC is not 

completely understood, but may reflect greater diffusion 

hindrance and reduced mobility of water molecules due to 

decreased extracellular space and increased tortuosity of 

the extracellular space matrix (120-123). Most but not all 

(124) studies show that the addition of diffusion-weighted 

imaging to MRI improves the detection of HCC (125-127) 

and intrahepatic HCC metastases (128). The ADC value may 

provide information on tumor behavior. Since cellularity and 

the nuclear-to-cytoplasmic (N/C) ratio are major features 

used to determine histologic grading, high-grade tumors 

have densely-packed cells and a high N/C ratio in general. 

Densely-packed tumor cells can inhibit effective motion of 

water molecules and can restrict diffusion. Thus, the ADC 

value and the appearance on diffusion-weighted imaging 

likely reflect tumor cellularity and microenvironment.

Some studies suggest that measuring the ADC value 

can predict tumor histopathologic grade (129-133), 

microvascular invasion (88), the presence of progenitor cell 

markers (110), and early recurrence after resection (132). 

However, these correlations are not always consistent, 

and some studies show no significant correlation between 

ADC and histopathologic grade of HCCs due to the large 

overlap of ADC among different histopathologic grades 

(134). Because the ADC value and diffusion-weighted signal 

intensity ratios particularly depend on techniques, magnetic 

field strength, and MRI scanners, diffusion-weight-based 

prediction thresholds may not yet be generalized. 

Fig. 9. 63-year-old man with HCC showing restricted diffusion.
A. Gadoxetic acid-enhanced T1-weighted three-dimensional GRE sequence (TR/TE/FA = 3.4 ms/1.7 ms/15°) in late arterial phase shows 

hyperenhancing mass (arrow) in right lobe of liver. B. Apparent diffusion coefficient map shows hypointensity (arrow) suggesting restricted 

diffusion. Restricted diffusion is highly suggestive of malignancy, but is not specific for HCC. FA = flip angle, GRE = gradient echo, HCC = 

hepatocellular carcinoma, TE = echo time, TR = repetition time

A B
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Diffusion-weighted imaging is used to monitor efficacy 

of treatment using TACE and target therapy (135-140). 

Some studies report that the ADC value of HCCs increase 

after TACE (136-138), and a high baseline ADC value could 

predict poor response to TACE (135, 140). In HCCs treated 

with an antiangiogenic agent (sorafenib), the ADC value 

may temporarily decrease in the early phase of treatment 

and increase again in long-term follow-up (> 3 months) 

(139). However, ADC values vary widely and may not 

contribute to the accurate diagnosis of tumor necrosis by 

any cut-off levels. Increased ADC may be caused not only by 

tumor necrosis, but also by perilesional inflammation and 

arterial reperfusion after TACE (141).

CONCLUSION

MRI can not only be used for non-invasive diagnosis and 

staging, but also for predicting tumor biology as an imaging 

biomarker in patients with HCC. Favorable findings of HCCs 

on MRI include small size, presence of fibrous capsule/

pseudocapsule, intralesional fat, high ADC value, and 

smooth margins or hyperintensity on hepatobiliary phase 

images, while unfavorable findings of HCCs include large 

size, multifocality, low ADC value, non-smooth margins or 

hypointensity on hepatobiliary phase images. 
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