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ABSTRACT 

Background 

Recent convolutional neural network (CNN) performs low-error reconstruction in fast 

magnetic resonance imaging (MRI). Most of them convolve the image with kernels and 

have successfully explored the local information. However, the non-local image 

information, which is embed among image patches that are relatively far from each 

other, may be lost since the convolution kernel size is usually small. We aim to 

incorporate a graph to represent non-local information, and improve the reconstructed 

images by Enhanced Self-Similarity Using Graph Convolutional Network (GCESS).   

Methods 

First, image is reconstructed into graph to extract the non-local self-similarity in the 

image. Second, GCESS uses graph convolution and spatial convolution to process the 

information in the image, so that local and non-local information can be effectively 

utilized. The network strengthens the non-local similarity between similar image 

patches while reconstructing images, making the reconstruction details more reliable. 

Results  

Experimental results on in vivo knee and brain data demonstrate that the proposed 

method achieves better artifacts suppression and details preservation than state-of-the-

art methods, both visually and quantitatively. Under 1D Cartesian sampling with 4x 

acceleration (AF=4), the PSNR of knee data reached 34.19 dB, 1.05 dB higher than that 

of the compared methods; the SSIM achieved 0.8994, 2% higher than the compared 

methods. Similar results were obtained for the reconstructed images under other 

sampling templates as demonstrated in our experiment. 

Conclusions 

The proposed method successfully construct a hybrid graph convolution and spatial 

convolution network to reconstruct images. Along with the network training, the non-

local self-similarities are enhanced, and will benefit the image details reconstruction. 

Experiments demonstrate that the proposed method outperforms the state-of-the-art 

reconstruction method in suppressing artifacts, as well as in preserving image details. 



Keywords: Graph convolutional network, deep learning, fast magnetic resonance 

imaging, image reconstruction  



Background 

Magnetic resonance imaging (MRI) is an indispensable non-radiative medical 

imaging technology with excellent tissue resolution. However, due to the physical limit, 

its data acquisition is relatively long. Thus accelerating the data acquisition attracts 

great interest[1]. To achieve this goal, the representative methods include parallel 

imaging[2] and undersampling[1]. However, undersampling inevitably introduces 

image artifacts. Compressed sensing (CS)[1] remove these artifacts by constraining the 

image sparsity in a transform domain, especially under an adaptively trained sparse 

representations[3, 4]. To fit for a target image, a sparser representation can be obtained 

via self-learning the similar patches and greatly improve the reconstructed image[5-7]. 

Through the similar patches, two prior information could be learnt, including the non-

local similarity and the way of sparsifying images. For example, the non-local total 

variation (NLTV)[7] explores the similarity by measuring Gaussian distance of image 

patches and use the weighted total variation to sparsity image pix. Patch-based non-

local operator (PANO)[5] learns similarity through grouping similar patches of a pre-

reconstruction of the target image and sparsify grouped patches with 3D wavelets. The 

graph-based redundant wavelet transform (GBRWT)[6], by viewing each patch as a 

node on a graph and the difference of image patch as the edge, the similarity is denoted 

as a shortest travel over the graph. The order of traveling each node (image patch) is 

also the order of sorting image pixels. Then, 1D wavelets is used to sparsify the sorted 

image pixels. All these methods requires a pre-reconstructed image to learn the 

similarity, thus the reconstruction may be unsatisfactory if the pre-reconstruction is not 

good under high acceleration factor of fast sampling[8].  

Inspired by deep learning[9-11], early deep learning MRI reconstruction methods 

commonly utilize convolutional neural network (CNN) to perform the 

reconstruction[12, 13] and have achieved great success[14-23]. Unlike previous 

compressed sensing methods using the pre-defined sparsifying, deep learning methods 

enables convolution kernels learned from MRI image database. They take advantages 

of local spatial information of grid-like structure by the use of convolutional kernels 



and have obtained good feature expression capacity. In recent years, DONet[24] learns 

multi-scale spatial-frequency features from both the real and imaginary components of 

MR data for fast parallel MRI image reconstruction, which enlarges the receptive field 

globally. DC-WCNN[25] use wavelet transform instead of pooling layer to extract 

multiple information in MRI images. These methods process and analyze image from 

a global perspective, but ignores the non-local self-similarity inner an image. Recently, 

the graph structure has become an important topic owing to its adjacency relation 

representation[26]. The graph is non-Euclidean data, and common CNN architectures 

cannot process this kind of data. Therefore, deep networks that can be directly applied 

to graphs have attracted great attention[26-29]. Similarity-Guided Graph Neural 

Network (SGGNN)[30] creates a graph to represent the pairwise image relationships 

and utilized the similarity between images to learn the edge weights with rich labels of 

gallery instance pairs directly. We are motivated to represent non-local self-similarity 

of MRI image as a graph, in which the most adjacent nodes with similar structures can 

be used to further remove artifacts and preserve details for the target node.  

In this work, we propose a Graph Convolution network with Enhanced Self-

Similarity (GCESS) to reconstruct MRI images from undersampled k-space data. We 

use graph convolutions to filter patches, and reconstructed images are recomposed from 

these filtered patches. As the network training, updated graph filters and enhanced 

graph weights are obtained. An accurate estimation of self-similarity is important for 

graph convolutional neural networks. Ideally, optimal self-similarity should be 

estimated on a fully sampled image, which is not available in fast MRI. To alleviate this 

problem, we propose to estimate self-similarity from a pre-reconstructed image 

obtained by a conventional reconstruction method SPIRiT[31]. We also include a 

spatial convolution process to effectively utilize local and non-local simultaneouly for 

image reconstruction. Our main contributions are: 1) Non-local self-similarity guided 

graph convolution is combined with local spatial convolution for improved MRI 

reconstructions. 2) Extensive results on in vivo datasets show that, the proposed GCESS 

provides better reconstruction performance than state-of-the-art methods visually and 

quantitatively, especially in artifact suppression and detail preservation. 



Methods 

In this section, we review the basic MRI reconstruction model[32], and then propose 

the GCESS network. This network incorporates non-local self-similarities and local 

feature which are respectively represented by graph convolution and local spatial 

convolution process for MRI images. First, a patch graph connects the non-local 

information of MRI images to enhance the self-similarity, where graph nodes are 

vectorized image patches and edge weights represent differences between patches. 

Then, graph convolutional kernels are updated by the network training process and 

apply to renovate node features. During the training process, the interconnected weight 

between similar image patches is further enhanced and feeds back to the graph 

convolution filter. The graph convolution and spatial convolution are combined to form 

our GCESS, which simultaneously takes advantage of non-local self-similarities and 

local information for improved MRI reconstruction. 

When an image is sufficiently sparse in the transform domain, the theory of CS[1] 

enables accurate image recovery from limited measurement data. The basic MRI 

imaging model in CS can be written as [32]:  

2

2
1

min ( )
J

j u j

j

R
=

− +
x

y F C x x ,                  (1) 

where Nx £   is the vectorization form of a reconstructed image, M

j y £   is the 

undersampled k-space data acquired from the th
j  coil, jC  is the sensitivity map of 

th
j  coil,  M N

u

= F UF £   denotes the undersampled Fourier transform operator  

( M N ).  
2
  stands for 2l  norm which enforces the fidelity of the reconstruction 

to the measured k-space data.    is a weight to balance the data consistenc and 

regularization term. ( )R x   denotes the regularization term capturing the assumed 

model of the underlying in image, such as sparse transform and proximity to deep 

learning reconstructions. In this work, a deep network regularization term constrains 

local and non-local information will be introduced. We will start from the representation 

of non-local self-similarity in the following sections. 

Graph Representation of Self-Similarities 



The local and non-local information is vital to be constrained for MRI 

reconstructions. Local information is treated in the way of local spatial convolution like 

most methods[14-22]. To constrain non-local information with self-similarity, a patch 

graph is constructed to form a graph convolutional network. Graph nodes are vectorized 

image patches. Weights in a patch graph denote similarities between image patches. 

Graph network learning will enhance the non-local self-similarity in the image and 

update graph convolution filters. 

 

Fig. 1.  The whole process of constructing a graph from an image. Representation of non-local 

self-similarity with a patch graph of fully sampled MRI image. The image patch bounded by the 

solid yellow line is set as the target image patch. Similar image patches are represented by green 

dotted lines distributed in the image. (a) the eight most similar image patches are found in the 

global image. (b) graph is constituted with a similar patch found in (a). (c) vectorized image 

patches (nodes). 

Specifically, for every node (Target image patch) in the graph, we search the eight 

most similar image patches (Including self-connection) as the connected nodes. The 

patch graph is set as ,( )G V E  with N  nodes i
v V  and edges ( ),

i j
v v E , 

, 1,2, ,i j N= L . Fig. 1(a)-(b) show that one target image patch (node 1v ) connects with 

its most similar patches. The weight (Euclidean distance[33, 34] between i
v  and 

j
v ) 

on the edges ( ),
i j

v v E  constitute different adjacency matrix ˆ N NA R . Therefore, 

image patches with more similarities, which are not adjoined in the grid-like images, are 

connected by edges with small weights in the graph. These similarities will be enhanced 

by graph convolution filter update process to assist MRI reconstructions.  

To enhance the pairwise relations of a node with adjacent nodes’ information, the 

Gaussian function is utilized to weight all Euclidean distance[35]:  



( )

2

2

2
exp

i j

ij

v v



 − = −
 
 

A
V

,                       (2) 

where ( ) V  is the standard deviation of the nodes. Gaussian function has 

normalization ability for weights which can avoid the filter from updating unnecessary 

dimensional gaps to reduce computational complexity. Obviously, with Gaussian 

function, the self-connected edge weight of target patch is 1. This process further 

enforces the most important weights.  

A graph representing self-similarity is summarized in the Fig. 1. The connected 

patches share information, and can be aggregated to reconstruct the target patch. The 

selection of connected patches is affected by the reference image. Reference images 

with great artifact will make the selected connection not consistent with the true similar 

relationships. The comparison of undersampled similarity, reconstructed similarity and 

optimal similarity are shown in Fig. 2. Here, undersampled similarity means that 

similarity weights are calculated from undersampled image, reconstructed similarity 

means that similarity weights are calculated from image reconstructed by a 

conventional MRI reconstruction method, i.e. iterative Self-consistent Parallel Imaging 

Reconstruction (SPIRiT)[31], and optimal similarity means that similarity weights are 

calculated from fully sampled image. Adjacency weight is annotated on the graphic 

(Fig. 2) according to spatial position of image patches. The resulting chart shows that 

the similar relationship in the undersampled image is inconsistent with the optimal one. 

The similarity relationship is crucial in graph convolution which will be used to train 

graph convolution to facilitate the target image reconstruction. Therefore, the similarity 

weight calculated from a carefully pre-reconstructed image is designed to make the 

similarity weight be more consistent with optimal similarity, as shown in Fig. 2(b). The 

effect of similarity on the reconstruction results will be introduced in the next section. 



                        

Fig. 2.  Selection of most seven similar connected patches in different reference image. (a) the 

target patch v1 and its seven most similar patches v2-v8 in undersampled, reconstructed and 

optimal similarity. To better see the difference, image patches are selected from fully sampled 

image. (b) similarity weights to the target patch in different references (self-connection is 

excluded). The seven most similar nodes emphasize with larger dots compared with others. Note: 

Optimal similarity means that weights are calculated from fully sampled image. Undersampled 

similarity means that weights are calculated from an undersampled image. Reconstructed 

similarity means that weights are calculated from image reconstructed by conventional parallel 

MRI methods.  

Graph Convolution with Enhanced Self-similarity 

The deep network regularization incorporates a graph convolution learning process 

using non-local similarity. In practice, non-local patch-pair similarities can be enhanced 

by the graph convolution, and can be utilized in the nodes’ reconstruction. The nodes’ 

feature in the graph is initialized as vectorized image patches. Adjacency matrix A  

corresponds to the measured similarity of each patch pair. In the graph, each node has 

one degree. The degree 
N

ii ij

j

=D A ( , 1,2, ,i j N= L ) refers to the sum of the influence 

of the i-node on all graph nodes, and node degrees form a diagonal degree matrix, i.e. 

( )
ii

diag=D D . The graph Laplacian is normalized 
1 1

2 2 T

N

− −
= − =L I D AD UΛU , where 

U  is the matrix of eigenvectors and Λ  is a diagonal matrix of eigenvalues of the 

normalized graph Laplacian. The spectral graph convolution[26] can be used to study 

the non-local similarities represented by the graph,  

T

  =g M Ug U M ,                       (3) 



where  
N CM R  is a matrix of node features stacked by row. 

T
U M  is the Fourier 

transform of M . ( )diag =g  is a spectral filter parameterized by 
Nθ R . Without 

loss of generality, scalar nodes are used instead to explain the proposed graph 

convolution process, and thus 
Nm R  is used instead of M  in the following 

explanation. The g  can be further understood as a function of the eigenvalues of L  , 

i.e. ( )g Λ .   

Computing the eigen-decomposition has low efficiency and high computational 

complexity. To circumvent this problem, it was suggested by Hammond et al.[36] that 

( )g Λ  can be well-approximated by a truncated expansion in terms of Chebyshev 

polynomials ( )k
T Λ . The independent variables of ( )k

T Λ  are required to be varied 

within the range  1, 1− . In this case, the eigenvalues Λ  are rescaled as 

( )max2
N

λ= −Λ Λ I% , where 
max
λ  denotes the largest eigenvalue of L . 

max
λ  

approximately equals to 2, which can be expected that neural network parameters will 

adapt to this change in scale during training. The graph convolution with Chebyshev 

polynomial can be reformulated as  

( ) ( )
1

0

'
0 1

' ' '
*

T

k

k
k
θ T θ θ 

=

=  = +g m Ug Λ U m L m m Lm% % % ,         (4) 

with rescaled normalized graph Laplacian ( )max2
N

λ= −L L I% . 
0

'  and 
1

'  are 

coefficients of Chebyshev polynomials. The 1st order Chebyshev polynomials are 

defined as ( )1
1T = +L L% %. Setting the parameters to the same value 

0 1

' ' '  = = − , the 

equation (4) is further simplified as 

1 1 1 1

2 2 2 2

0 1

' ' '
*

N
θ θ θ

− − − −
= − =

 
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 

+g m m D AD m I D AD m .          (5) 

The eigenvalue of 

1 1

2 2
N

− −
+I D AD  is more than 1. Therefore, repeating this 

operation in the deep learning model will lead to numerical instability and explosion 

gradient. To alleviate these problems, 

1 1

2 2
N

− −
+I D AD is renormalized as 

1 1

2 2
− −

D AD%% % . 

N
= +A A I%  is the adjacent matrix of graph that each node has self-connecting edge and 

N

ii ij

j

=D A%%  is the degree of i-th node. Then the graph convolution becomes 
1 1

2 2'
θ θ

− −
 g m D AD m%% % .                     (6) 



This formula realizes node feature filtering guided by similarity weight with a 

spectral graph convolution operation. Then the i-th node feature can be rewritten as:  
1 1

2 2

N
ij j

ji ii jj

 
− −  

= 
 


A m

D AD m
D D

%
%% %

% %
,                  (7)   

where 
ii

D%  denotes i-th node (Target node) degree and 
jjD%  denotes j-th node degree 

in the graph. 
ijA%  is the similarity weights between i-th and j-th node. The node features 

are updated by fusing most similar connected nodes with a graph convolution process. 

The non-local information is aggregated by selecting the most similarity weight through 

the graph. The larger weight of 
ijA%  representing, the more similarities between nodes 

(
i

v  and 
j

v ), and the greater contribution can be obtained in target node reconstruction. 

In order to reduce the interference of unimportant weights, except for the most similar 

weights, others are set to zero. 

Simultaneously, through the implementation of network training, the target image 

can quickly obtain the information of image patches with strong similarity through the 

connection edge. In the process of graph convolution, the convolution kernel 

continuously adjusts its parameter weight through training, so as to adaptively control 

the information transfer between these image patches and the target one. Such adaptive 

adjustment can improve the aggregate reconstruction of target patches by connecting 

patches. In this way, the information gathered by convolution will further enhance the 

self-similarity in the image. The proposed feature updating is intuitive since the rich non-

local information with enhanced self-similarity are effectively exploited. Using 

similarity weights to guide the refinement of the nodes’ feature reconstruction will lead 

to the more accurate reconstructed feature. It is worth noting that filter   adaptively 

performs weighting with the most similarity in the graph to update target node features 

for reconstruction more accurately.  

Generalizing the graph filtering process to a signal 
N CM R  with C input 

channels (A C-dimensional feature vector for every node):  
1 1

2 2
− −

=Z D AD MΘ%% % ,                      (8) 

where C FR  is filter parameter and N FZ R  is feature matrix after convolution. 

This is also in line with practical MRI reconstruction, where noise and artifacts usually 



contaminate image pixels. In this case, when patch nodes are used instead of scope pixel, 

edge weights calculation and the subsequent graph convolution will be insensitive to 

noise and artifacts. Then the aggregation of non-local information with self-similarity 

to reconstruct target image will be robust. 

Graph Convolutional Network for MRI Reconstruction 

A regularized MRI reconstruction framework incorporated graph convolution as 

the Graph Convolutional Network (GCN) can be formulated as:  
1 1

2
2 2

2
1

min ( )
J

j u j

j

C
− −

=

− + −
x,Θ

y F x x D AD MΘI %% % .           (9) 

where ( )I  convert graph information back to image, named image transformer (Itrans). 

Since the k-space data are undersampled, no ground truth image is available to learn 

patch similarity. Here we use the pre-reconstructed image using SPIRiT[31] to learn 

patch similarity. The learned similarities are more consistent with the optimal similarity 

than those learned from undersampled image, which is clearly illustrated in Fig. 2 in 

previous section.  

 

Fig. 3.  This network block consists of GCN and DC parts, with the blocks cascaded. Graph 

transformer (Gtrans) and image transformer (Itrans) are the function of image-to-graph and 

graph-to-image, respectively. The adjacency matrix A and features M are obtained from the 

reconstructed image and the undersampled image respectively.  

The flowchart of using GCN in a network to reconstruct MRI images is illustrated 

in Fig. 3. The Graph transformer (Gtrans) module in Fig. 3 transforms an image to be a 

graph, including graph nodes (patches) and graph weights (similarities). The flowed 

A  from Gtrans denotes that graph weights flow into next module, and flowed iM

( 1, ,i N= L ) from Gtrans denotes graph nodes (patches) flow into next module. Data 

consistency (DC) will be described in detail together with the proposed method in the 

following Section. E. The reconstructed images shown Fig. 4 and RLNE in Table 1 



show the benefit of GCN. We use the relative 
2
  norm error (RLNE)[5] which is 

defined as:  

2 2
ˆ /RLNE = −x x x ,                    (10) 

where x̂   is the reconstructed image and x   denotes the fully sampled image. 

Similarity calculated from undersampled image is denoted as GCN with undersampled 

similarity (UnGCN). Similarity calculated from pre-reconstructed image is denoted as 

GCN with reconstructed image (RecGCN). The number of blocks (Filter trainable 

parameters number is 64 × 36 × 2 × 10) is set to 10.  

Table 1.  Quantitative results (RLNE) of the compared method (Mean ± 
standard). 

Method AF=4 (1D Cartesian) 

SPIRiT UnGCN RecGCN 

RLNE×100 10.10  1.16 9.80  0.97 8.55  0.81 

As shown in Fig. 4, GCN with properly learned similarities shows an effective 

reconstruction of MRI images, which indicates that non-local information with self-

similarities can be used to reconstruct target image patch effectively. When similarities 

are inaccurate, that is, only undersampled image can be used for calculation of similarity 

weights may cause the found connected patches to be vastly different, and hence degrade 

the reconstruction. Reconstructed image with UnGCN is degraded compared with 

reconstructed image with RecGCN. In the following experiments, similarities are 

calculated from the SPIRiT reconstructed image, considering the undersampled data in 

real applications. 



 
Fig. 4.  The proposed GCN for MRI reconstructions. (a) is the fully sampled image. (b) is the 

undersampled image. (f) is the 1D Cartesian undersampling pattern with AF=4. (c)-(e) are 

reconstructed images by SPIRiT, UnGCN, and RecGCN, respectively. (g)-(j) are the 

corresponding error maps.  

The Proposed GCESS for MRI Reconstruction 

Ignore local context information in image domain is unwise for MRI 

reconstructions. We propose deep learning network GCESS to combine local 

information represented by CNN and non-local information grasped by GCN, 

( )2

2
1

min
J

j u j u

j

C f
=

− + −
x,Θ

y F x x x Θ .                (11) 

 



 

Fig. 5.  The proposed GCESS for MRI reconstruction. (a) is the proposed network consisting 

of GCESS and DC, with blocks cascaded. The graph is learned from SPIRiT pre-reconstructed 

image. (b) is a detailed analysis of the main part of the network block. 

 

Fig. 6.  The proposed GCESS network compared with state-of-the-art MRI reconstruction 

methods. (a) is the fully sampled image. The experiments correspond to a 2D random sampling 

with AF=8 as shown in (g). (b)-(f) are the images of reconstructed results by SPIRiT, IUNET, 

DCCNN, MoDL, and GCESS, respectively. (h)-(l) are the corresponding error maps. The PSNR 

of (b)-(f) are, 32.51, 29.04, 33.67, 33.99 and 34.42 dB, respectively.  



 

Fig. 7.  The proposed GCESS network compared with state-of-the-art MRI reconstruction 

methods. (a) is the fully sampled image. The experiments correspond to a 2D random sampling 

with AF=10 as shown in (g). (b)-(f) are the images of reconstructed results by SPIRiT, Unet, 

DCCNN, MoDL, and GCESS, respectively. (h)-(l) are the corresponding error maps. The PSNR 

of (b)-(f) are 33.46, 32.79, 33.95, 33.63 and 34.29 dB, respectively. 

The f  is the forward mapping function of GCESS network, including parallel 

implement of GCN and CNN. Θ  is the parameters of GCESS. H

u u
=x F y  is the zero-

filled reconstruction. The flowchart of our proposed network is shown in Fig. 5. Graph 

Convolutional Network (GCN) combined with CNN to constitute GCESS module. The 

undersampled image u
x  is the input of the integrative network. Before u

x  enters the 

GCN module of block 1, a SPIRiT-based pre-reconstructed image is obtained to learn 

similar weight by Gtrans.  

With graph convolution, non-local similarity information can be extracted from the 

adjacency matrix as Fig. 1 showing. Additionally, CNN focus on representing pixel-

level fine and coarse features and is incorporated to reconstruct image. It can be seen 

from the Fig. 5 that when the image is filtered by spatial convolution, the details of the 

image paches have been reconstructed, so that the information of all image paches is 

well reconstructed. At the same time, while the graph convolution is reconstructing the 

image, it further uses the most similar image paches scattered in the grid image range of 

the target image patch to further restore the target one. The Itrans put graphs node 

features back into MRI images canvas to carry out GCN reconstruction, and combine 

with reconstructed result of CNN to form GCESS. The ResNet[10] adds the input to the 

neural networks preliminary result of GCESS,  following by a DC module.   



The sampled partial k-space data have been acquired so that network don’t have 

the necessary to reconstruct. DC using the sampled k-space data wisely will enhance the 

data fidelity[22]:  

ˆ ˆ( )H u−= +1 Hk k ke ,                    (12) 

where k̂  is the reconstructed k-space data corresponding to reconstructed image. 

( )H −1 H  strands for the inverse undersampling pattern. e  represents the 

multiplication of corresponding elements in the matrix. 
u

k  denotes the k-space data 

which is acquired from coils. The acquisition of k-space from the coils is not noise free. 

Thus, the   is used to balance the k-space data fidelity between sampled data and the 

reconstructed k-space data from the network. DC is realized by replacing the k-th 

predicted data with the original k-space data if it has been sampled. To obtain the 

forward pass of the layer performing data consistency in k-space:  

( ) ( )1ˆ ˆ, ,
J

H

dc u j j u

j

f  −= +x k C F FC x k .             (13) 

We set   to a very small value (
6

1 1 10 −= −  ) to ensure that the collected 

data is fully fidelity meanwhile the noise is well suppressed.  

 

 

Fig. 8.  The proposed GCESS network compared with state-of-the-art MRI reconstruction 

methods. (a) is the fully sampled image. The experiments correspond to a 1D Cartesian sampling 

with AF=4 as shown in (g). (b)-(f) are the images of reconstructed results by SPIRiT, Unet, 

DCCNN, MoDL, and GCESS, respectively. (h)-(l) are the corresponding error maps. The PSNR 

of (b)-(f) are 28.68, 30.73, 34.05, 32.83 and 34.69 dB, respectively.  



 

Fig. 9.  The proposed GCESS network compared with state-of-the-art MRI reconstruction 

methods. (a) is the fully sampled image. The experiments correspond to a 1D Cartesian sampling 

with AF=4 as shown in (g). (b)-(f) are the images of reconstructed results by SPIRiT, Unet, 

DCCNN, MoDL, and GCESS, respectively. (j)-(j) are the corresponding error maps. The PSNR 

of (b)-(f) are 28.67, 29.44, 33.33, 32.15 and 34.61 dB, respectively. 

Result 

Experiments are implemented in Python 3 using PyTorch as the backend. Training, 

validation, and testing were performed on a seventh-generation Intel Core i7 processor 

with 32 GB of RAM and an RTX 3090 GPU (24 GB memory). 

Datasets 

This paper uses two datasets: the knee dataset of variational network (VN) [20] and 

the fastMRI[37] brain dataset, both from open repositories. The coil sensitivity maps 

were estimated from the central k-space region of each slice using ESPIRiT[38]. 

The public knee dataset provided by VN [20] are used in our experiments to evaluate 

the performance of the proposed method. It is coronal density weighted k-space data 

acquired from a 2D turbo-spin echo sequence at a 3T MRI system with 15 coils 

(Siemens Magnetom Skyra). There are 20 subjects and each subject contains about 35 

slices. For each subject used for the experiment, we all selected the middle twenty slices 

of size 256 256 . Fourteen subjects were used for training, two for validation, and the 

remaining for the test.  

We used multi-coil T2 weighted k-space data of the fastMRI[37] open dataset. There 

are 45 subjects and contains about 427 slices. For each subject used for the experiment, 



we all selected the middle twenty slices of size 320 320 . The training slice is 296, 36 

for validation, and the remaining for the test.  

Table 2.  Quantitative results (RLNE, PSNR, and SSIM) of the compared 
method (Mean ± standard).  

Knee dataset 

Pattern Method RLNE×100 SSIM×100 PSNR 

 

1D 

Cartesian 

AF=4  

SPIRiT 10.10  1.16 81.75  1.97 28.32  0.98 

Unet 9.02  1.29 80.88  3.66 29.36  1.00 

DCCNN 5.86  0.94 88.20  1.87 33.14  1.36 

MoDL 7.01  0.97 85.81  3.15 31.56  1.19 

GCESS 5.10  0.88 89.94  2.39 34.19  1.52 

 

2D Random 

AF=8 

SPIRiT 6.32  0.69 83.13  1.55 32.41  1.13 

Unet 9.44  1.14 74.36  5.67 28.95  1.24 

DCCNN 5.21  0.80 87.46  3.03 34.16  1.80 

MoDL 4.87  0.75 86.78  3.67 34.86  1.90 

GCESS 4.69  0.76 88.12  3.34 35.09  1.93 

 

2D Random 

AF=10 

SPIRiT 6.90  0.67 80.45  2. 01 31.65  1.10 

Unet 9.81  1.29 72.38  6.35 28.63  1.31 

DCCNN 5.67  0.88 85.06  3.77 33.42  1.81 

MoDL 6.13  0.78 83.05  3.90 32.70  1.57 

GCESS 5.22  0.85 85.39  4.15 34.16  1.94 

Brain dataset 

Pattern Method RLNE×100 SSIM×100 PSNR 

 

1D 

Cartesian 

AF=4 

SPIRiT 14.90  1.93 85.24  2.41 29.83  0.64 

Unet 13.06  1.16 90.54  1.69 30.94  0.91 

DCCNN 8.48  1.14 94.62  1.29 34.73  1.02 

MoDL 12.17  5.20 90.79  4.26 32.01  2.82 

GCESS 7.57  1.17 95.36  1.27 35.73  1.14 

Note: The lowest RLNE, highest PSNR and SSIM values are bold faced.  

Network 



As Fig. 5 showing, 10 iteration blocks that have 2 GCNs and 4 CNNs layers with 

a Batch Normalization (BN) of each layer are connected sequentially to build the whole 

network. CNN consist of four layers and each layer contains 64 filters whose size is 

3 3 . Gtrans is the operator to construct images to graph. Graph node features will be 

the input of GCN. Itrans is the inverse operator of Gtrans, in which output features will 

be put back to canvas to be the reconstructed image. The models in our experiment were 

trained 100 epochs. All filters are initialized by using “normal” initialization[39], and 

Adam[40] is selected as the optimizer in the training progress with a learning rate of 

0.0015.  

The first step in computing the adjacency matrix is to calculate the Gaussian 

distance as the difference between each image patch. The calculation of Gaussian 

distance is a long process. Therefore, the adjacency matrix update during training leads 

to time-consuming. The time to calculate one adjacency matrix of 256 256  image 

each is 4.6s and each of 320 320  image is 9.6s. However, the non-local information 

in the undersampled parallel MRI images is inaccurate. To solve these problems, we use 

SPIRiT as pre-reconstruction method to fix non-local information extracted from the 

graph. The reconstructions time of SPIRiT is 15.8s. The training time of GCESS is 11.2h 

while the reconstructing time is 0.14s (Exinclude computing adjacency matrix and pre-

reconstruction time).  

Evaluation Criteria 

To evaluate the image reconstruction quality of all compared methods in an 

objective view, we use RLNE[5], structure similarity index measure (SSIM)[41], and 

the peak signal-to-noise ratio (PSNR) as the quantitative criteria. The RLNE is defined 

in eq. (10).  

The SSIM is defined as: 
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where x  and ˆx  denote the means of x  and x̂ ,  x  and ˆ
x  is the standard 

deviations of x  and x̂ , and ˆ
xx  is the covariance of x  and x̂ . 1C , 2C  is a 

constant to maintain stability close to zero. 

 The PSNR is defined as:  
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P  and Q  represent the dimension of the frequency encoding and phase encoding, 

respectively.  

The lower reconstruction error with the lower RLNE indicates higher consistencies 

between reconstructed and fully sampled images. Higher PSNR means better signal-to-

noise ratio, and higher SSIM values indicate better detail preservation and fewer image 

distortions in the reconstruction. 

Comparison with existing methods 

The MRI reconstruction using the proposed GCESS is compared with other three 

deep learning methods and one conventional method. The conventional method used 

for comparative experiments is SPIRiT[31]. We test the parameters of SPIRiT to make 

the algorithm perform its best on the dataset we are using. The testing result shows that 

it adopted the parameter calibration kernel size 3 3  and Tikhonov regularization in 

the calibration was set to be 310− . Tikhonov regularization in the reconstruction was 

set for 510−   implementing SPIRiT, which took 30 iterations. The other three deep 

learning methods are IUNET[42], DCCNN[22] and MoDL[19]. IUNET[42] is the 

baseline of MRI image reconstruction. DCCNN is one of the earliest methods to apply 

deep learning to MRI reconstruction. The number of CNN layers in each layer is 6 and 

the number of iterations is 5, which is consistent with the original paper. To be fair, we 

added a BN layer to each layer of CNN to optimize the entire network. MoDL[19] is a 

classic model-driven approach in deep learning MRI reconstruction framework in 

recent years. The forward layers and backward layers of CNN both contain 64 filters 

which size is 3 3 . Since the performance of MoDL saturates around 8-10 iterations, 

we used this typical setting in the experiment. Each iteration has 4 CNN layers with 64 



filters per layer which size is 3 3 . 

To evaluate the performance of the proposed method, one-dimensional (1D) 

Cartesian undersampling pattern and two-dimensional (2D) random undersampling are adopted. 

The reconstructed images and corresponding error maps of the compared methods with 

different acceleration factors are shown in Fig. 6-9. From the reconstruction errors in 

Fig. 6-9, the SPIRiT and the IUNET have obvious artifacts as shown in Fig. 6-9 (b). 

MoDL shows better artifacts suppression ability than DCCNN, and the proposed 

GCESS suppresses artifacts best. Comparing errors in Fig. 6(c)-(d) to Fig. 7(c)-(d), it 

shows that, with the increase of acceleration factor the reconstruction results of MoDL 

deteriorate faster than those of the proposed GCESS. 

The average numerical performance with standard deviations of the testing knee 

datasets of the proposed method and state-of-the-art methods are summarized in Table 

2. The Table 2 shows quantitative values for 2D random undersampling pattern AF=8 

and 10 for different methods and 1D Cartesian undersampling pattern AF=4 for 

different methods. It can be observed that PSNR, SSIM, and RLNE values of GCESS 

from the mean show the best reconstructed results. 

Ablation Studies 

To verify the effectiveness of the proposed integrated network can extract both non-

local and local information, we conduct ablation experiments to test the effects of several 

important components in the network proposed.   

           

Fig. 10.  Ablation studies results of the proposed GCESS network. (a) is the fully sampled 

image. (f) is the 1D Cartesian undersampling pattern with AF=4. (b)-(e) are the images of 



reconstructed results by SPIRiT, GCN, CNN, and GCESS, respectively. (g)-(j) are the 

corresponding error maps. The PSNR of (h)-(e) are 29.63 ,31.69, 34.51 and 34.95 dB, 

respectively.  

We remove the graph convolution from GCESS to obtain CNN for MRI 

reconstruction. Similarly, we remove the convolutional neural network from GCESS to 

obtain GCN (the same as GCN in SectionⅡ.D). Fig. 10 shows the reconstructed result 

with 1D Cartesian undersampling pattern AF=4. In Fig. 10, GCN provide the image with 

nice artifacts suppression. The GCESS compared with the global error of CNN with a 

significant improvement. By integrating both non-local and local information, GCESS 

extra promotion in quantitative results. The Table 3 gives the quantitative results of the 

whole test dataset with 1D Cartesian undersampling pattern AF=4. GCESS has better 

metrics than the other two networks across-the-board values. 

Table3.  Quantitative results (RLNE, PSNR, and SSIM) of the compared 
method (Mean ± standard).  

Method RLNE×100 SSIM×100 PSNR 

GCN 8.55  0.81 84.39  2.82 29.78  0.91 

CNN 5.72  1.13 89.21  2.68 33.39  1.69 

GCESS 5.19  0.88 89.94  2.39 34.19  1.52 

Note: The lowest RLNE, highest PSNR and SSIM values are bold faced.  

Discussion 

This work focusses on the GCESS network for MRI reconstructions. The network 

structure not only inherits the extracting local information advantage of CNN but also 

utilizes GCN to make full use of non-local information to eliminate artifacts. Local 

spatial convolutional operations on grid-like data cannot capture non-local self-

similarity information due to the locality of convolutional kernels. To extract non-local 

information, we construct MRI image into graph to enhance the connection between 

image patches. The non-local information can enhance connected relations between 

image patches which does not adjoin in the grid-like data but shares lots of structure 

information. After constructing the graph, MRI reconstructions are regarded as node 

(patch) reconstruction using GCN. 



Our method also have limitations. The first step of constructing the graph is finding 

the eight most similar image patches for each patch. This process must calculate the 

Gaussian distance as the similarity between patches (Time-consuming 8.6s). Although 

we have tried numerous sorts of methods like stacking image patches or using GPU to 

speed up computation, the problem of time-consuming still exists. Because of the above 

time reasons, it is difficult to update the graph after every epoch of the training process. 

Thus, we use SPIRiT as our pre-reconstruct method to fix non-local information 

extracted from image. To meet the time requirement of clinical practice, a more 

computationally efficient method or an embedded graph learning network is to be further 

developed. This will be considered in our next work. 

Conclusions 

In this work, Graph Convolution network with Enhanced Self-Similarity (GCESS) 

is proposed which attempt to combine non-local self-similarity information and local 

information for MRI reconstruction. Local information is introduced in a common way 

as a convolutional neural network. The non-local self-similarity is represented by the 

graph, followed by a graph filtering process. As the network training, self-similarities 

will be enhanced and graph convolution filter will be updated. The enhanced self-

similarity information then guides the image reconstruction by fusing the non-local 

information passed through enhanced graph edges. This process incorporates additional 

non-local similarity information within the target patch and makes better artifact 

suppression and edge preserving. Experimental in vivo datasets show that the proposed 

network enables better reconstruction results than the state-of-the-art methods. Notably, 

the proposed methods allow reconstructions with smaller errors, and with better details 

and fine structures. 
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