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In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily
acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images
for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation
techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a
new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information
from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to
be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on
synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-
art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology.

1. Introduction

In Magnetic Resonance Imaging (MRI), data is acquired with
a finite resolution that is limited by several factors such as the
Signal-to-Noise Ratio (SNR), hardware and time limitations
or patient’s comfort. In typical clinical settings, several types
of images are obtained with different voxel resolutions.
Traditionally, in-plane resolution has been higher than
resolution in the slice direction yielding nonisotropic voxel
sizes.

In many applications, such as image segmentation or
registration, data has to be upsampled to decrease its voxel
size to make it compatible with a higher-resolution dataset
[1, 2]. In such cases, interpolation techniques [3, 4] have been
traditionally applied. Techniques such as linear interpolation
or spline-based methods have been used extensively in
the past to decrease voxel size and increase apparent data
resolution. However, such techniques estimate new points
assuming that the existing ones (in the low-resolution (LR)
image) have the same value in the high-resolution (HR)

images which is only valid within homogeneous regions. As
a result, interpolated images are typically blurred versions of
the underlying HR images.

A better approach to increase effectively the resolution
of the reconstructed data is to use Superresolution (SR)
techniques [5]. In MRI, superresolution techniques have
been previously applied to increase image resolution in
functional MRI (fMRI) [6] and Diffusion Tensor Imaging
(DTI) studies [7]. Unfortunately, most of such techniques are
based on the acquisition of multiple low-resolution images
with small shifts, a process which is time consuming and
therefore not adequate for typical clinical settings.

Fortunately, if HR images of the same subject within the
same or other image modality are available, it is possible to
recover some of the lost high-frequency information within

the LR image. This idea was recently applied in a method

proposed by Rousseau [8] where a low-resolution volume is

reconstructed using information of an HR reference volume

while taking into account an expected degradation model.
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Figure 1: Block diagram of the proposed method. The registered HR reference data is used reconstruct the LR data iteratively until no
significant difference is found between two consecutive reconstructions.

In Rousseau’s method the HR data is used to regularize a
deconvolution-based reconstruction using a Nonlocal Means
denoising method [9]. The method proposed in this paper is
related to Rousseau’s work in the sense that we also use HR
data to constrain the reconstruction process but our method
is based on a totally different strategy to compute the image
reconstruction.

2. Material and Methods

In MRI, image voxels in LR data y can be related to the
corresponding underlying HR voxels x through a simple
degradation model:

y = DHx + n, (1)

where D is a decimation operator (defined as taking each
Lth value starting from zero in each dimension), H is the
convolution matrix, x is the underlying HR data, and n is
a Rician distributed random noise [10]. In MRI, H can be
roughly approximated by a 3D boxcar function since the
values on LR data can be well modeled as an average of the
corresponding HR voxel values. Therefore, the value y j of
any voxel in the LR image can be expressed as follows:

y j =
1

N

N∑

i=1

xi + n, (2)

where the value of the LR voxel y j is the average of the
corresponding Nxi voxels in the subjacent HR image plus
some noise from the measurement process.

Therefore, the aim of a superresolution method is to find
the xi values from the y j values. This is a very ill-posed
problem since there are infinite xi values that meet such a
condition. A common approach to solve this problem is to
minimize a merit function such as

x̂ = arg min
x

∥∥y −DHx
∥∥2
. (3)

Due to the nonuniqueness of the solution for this prob-
lem, extra information is needed to constrain the possible

solutions of (3) to obtain plausible results. One commonly
used approach is to apply smoothness constrains in the
reconstruction process that are based on the assumption of
smoothness of the reconstructed data:

x̂ = arg min
x

(∥∥y −DHx
∥∥2

+ λR(x)
)

, (4)

where R(x) is a regularization term and λ is a weight that
balances the contribution of smoothness and data fidelity
terms. However, such smoothness assumption penalizes
high-frequency content of the reconstructed image that is
precisely what we want to obtain.

In contrast to this optimization approaches, we propose
to estı́mate x̂ using a direct iterative method using coplanar
HR data to control the reconstruction process. We prefer an
iterative reconstruction-correction scheme to avoid classical
optimization problems such as local minima and parameter
initializations.

2.1. Proposed Method. The method proposed in this paper is
not based on the smoothness assumption but on the assump-
tion that if a registered HR image/volume of the same subject
from the same or other modality is available, anatomical
information from this HR data can be used to recover some
image details in the superresolution-reconstructed LR data.
Furthermore, by applying a specific filter to minimize the
noise present in the LR data, we can impose as an additional
constraint the fact that the downsampled version of the
reconstructed data has to be exactly the same as the original
LR data. This constraint has been previously applied in the
SR context and referred as subsampling consistency [11]:

y −DH x̂ = 0. (5)

To apply the proposed method, two preprocessing steps have
to be performed.

(i) Data Registration. In order to extrapolate voxel local
similarities from the HR reference data to the LR-
reconstructed data both HR reference and LR data
must be in the same geometrical space.
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Figure 2: (a) Effect of initial interpolation method in the proposed method (all methods compared reached a similar stable result after
11 iterations). (b) PSNR values of the proposed method as a function of the radius of the search area. As can be noted, no significant
improvement is found beyond that using a radius equal to 3.

Table 1: PSNR values (larger values are better) of the different methods compared for several slices thicknesses for the normal brain anatomy
case.

Slice Thickness (mm) 2 3 5 7 9

NN 25.13 21.91 19.04 17.68 16.70

B-Spline 28.09 23.77 20.20 18.44 17.18

Rousseau — 26.71 — — —

Proposed 40.65 37.64 34.37 32.24 30.64

(ii) Image Denoising. Due to the presence of noise, the
constrain expressed in (5) cannot be directly used.
To simplify the problem, LR data is first denoised
using a recently proposed robust denoising method
for 3D MR images [12] based in the well-known
Nonlocal Means filter early proposed by Buades et al.
[9]. To deal with bias introduced by the Rician nature
of the noise in MR, the Rician adaptation proposed
in [13] has been used. It has been demonstrated
that such filter (i.e., the BNLM3D filter) is able to
remove noise effectively while minimally affecting
the image structure. Additionally the HR data is also
filtered using the same filter to allow computing voxel
similarities in a voxelwise manner which reduces
the computational burden of the method while it
increases the number of similar voxels (the compari-
son of voxel intensities is rotationally invariant while
this is not the case of patch-based comparison).

The proposed method uses as input data an HR reference
data and a preinterpolated version of the LR data. It is an
iterative procedure based on two steps that corresponds to
the two assumptions used which are the following.

(1) Reconstruction. Locally, similar voxels in the HR
data tend to be similar in the reconstructed LR data.

Therefore, averaging voxels in the interpolated version of
the LR data using as reference the HR data similarities will
enforce this condition. This is the key contribution of the
proposed procedure. First, the LR data is interpolated in
order to obtain a volume with the same voxel size as the
HR reference data. To reconstruct the interpolated data, a
3D Neighborhood filter [14] could be used. However, the
weights would not be calculated using the reference HR data
information jointly with the LR data. The inclusion of LR
data information in the reconstruction process allows the
method to be robust to small misalignments between LR and
HR data and also allows a coherent reconstruction even in
cases when a feature is not visible in HR data by using LR
self-similarity to help in the reconstruction process:

x̂
t+1
p =

1

Cp

∑
∀q∈Ω

x̂
t
qe
−(zp−zq)2/h2

e−‖N(xtp)−N(xtq)‖
2
/kh2

, (6)

where z is the HR reference data, p and q are data indexes, xt

is the current reconstructed data at iteration t (being x0 the
initial interpolated version of LR data), Ω is a 3D search area,
N(xti) is a 3×3×3 voxel window surrounding reconstructed
voxel i at iteration t, h and k parameters control the filtering
strength and Cp is the normalization factor.
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Figure 3: A sagittal slice for the normal anatomy case. From top to bottom, results with different slice thicknesses (2, 3, 5, 7, 9 mm) and
from left to right, the NN reconstruction, the B-Spline reconstruction, and the proposed method.

Table 2: PSNR values of the different methods compared for several slices thicknesses for the multiple sclerosis anatomy case.

Slice Thickness (mm) 2 3 5 7 9

NN 26.21 22.99 20.09 18.72 17.73

B-Spline 29.33 24.99 21.29 19.59 18.33

Rousseau — 27.33 — — —

Proposed 41.04 38.08 34.81 32.64 30.96
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Figure 4: From top to bottom: Original Axial, Sagittal and Coronal sections of the HR T2 data, NN interpolation, B-Spline interpolation,
Rousseau’s method and proposed reconstruction. We have the results for 3 mm slice thickness reconstruction. Note that MS lesions are better
reconstructed using the proposed method.

The weights used during the reconstruction process
are based on a combination between a sigma filter in the
denoised HR image (first term in (6)) and a nonlocal means
filter in the denoised and interpolated LR image (second
term in (6)). Higher weights are thus given to voxels with
similar intensity in the HR image and with similar local
context in LR image at the same time. This strategy enables
to take advantage of the information redundancy present
in LR image as well as to use the structural information of

the HR image to drive the reconstruction process. When
a structure is only present in one of the images or has
different signal properties (e.g., multiple sclerosis lesion), the
reconstruction process is only driven by the image containing
the most suitable information since the weights derived from
the other image are nondiscriminating (i.e., all voxels have
similar weights in homogeneous areas). By this way, the
proposed method is robust to reconstruction artifacts such
as ghosting structures. This aspect will be further discussed
in experiment part where experiments on phantom with MS
lesion are proposed.

(2) Mean Correction. In order to take into account the
MR acquisition properties, we impose the constraint that the
downsampled version of the reconstructed LR data must be
equal to the original LR data. To ensure that, the mean value

of the reconstructed HR voxels needs to be corrected to fit
the value of the original LR voxel. This is accomplished by
adding the corresponding offset to each reconstructed voxel:

x̂
t+1 = x̂

t+1 −NN
(
DH x̂

t+1 − y
)
, (7)

where NN is the Nearest neighbor interpolation operation.
These two steps are iteratively repeated (decreasing

the strength of the filtering each time) using the current
reconstructed data in the next reconstruction step (instead
of the initial interpolated data) until no significant difference
is found between two consecutive iterations (mean absolute
difference between two iterations is inferior to a given
tolerance, tol). A block diagram of the proposed method can
be observed in Figure 1.

3. Experiments and Results

3.1. Experimental Data. To validate the proposed method,
a synthetic dataset was used. High resolution T1-w and
T2-w datasets with both normal and pathology (multiple
sclerosis) from the publicly available Brainweb database
were used [15, 16]. The HR T1-w and T2-w volumes
have 181 × 217 × 180 voxels with a resolution of 1 mm3.
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Figure 5: From Top to Bottom, 0, 1, 2, and 4% noise case. From left to right, LR noisy T2-w data, LR-denoised T2-w data, B-spline
interpolation, and proposed reconstruction.

The Peak Signal-to-Noise Ratio (PSNR) measure was
used to compare the reconstructed data and the original
HR data (note that PSNR is equivalent to RMSE as it is
an RMSE-derived measure but range invariant which is
useful for comparing the results of images with different
quantization levels). All the experiments were performed
using Matlab 7.4 (Mathworks Inc.). Example data and source
code of the proposed method can be downloaded from

http:/personales.upv.es/jmanjon/reconstruction/super.html
in order to enable the reproducibility of this work.

3.2. Implementation Details. As the proposed methodology
can be implemented in a number of different manners, we
will discuss here how these different alternatives were selected
prior the comparison of the proposed methodology with
other methods.
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Figure 6: Comparison on real clinical data. Top-Left: HR T2-w volume. Top-Right: downsampled version of the HR T2-w volume. Bottom-
Left: B-spline reconstruction. Bottom-right: reconstruction using the proposed method. Note that the proposed methodology yields a
significantly less blurred reconstruction than other methods compared. A close-up of the cerebellum area clearly shows the improved
reconstruction.

Table 3: PSNR values of the different methods compared for several
noise levels.

Noise (%) 0 1 2 4

NN 19.04 18.93 18.78 18.56

B-Spline 20.19 20.03 19.82 19.52

Proposed 34.37 29.58 26.52 23.85

Table 4: Average IPSNR values of the proposed referred to B-Spline
method in function of misregistration.

Random
Shift (mm)

0 1 2 3

IPSNR 13.92 5.12± 0.25 0.53± 0.35 −0.09± 1.47

3.2.1. Initial Interpolation. To find out how the initial inter-
polation affects the reconstruction results of the proposed
method, different interpolation methods (Nearest Neighbor,
Trilinear, Cubic, and B-spline interpolation) were compared
for the initial step. Results are shown in Figure 2(a). As
can be noted, the proposed method obtained nearly the
same stable solution in all the cases, independently of the
initial interpolation method used in approximately the same

number of iterations. Thus, a Nearest Neighbor interpolation
seems to be the better option since it has the simplest and
fastest implementation.

3.2.2. Size of Search Volume. The proposed methodology was
applied with different search area sizes and the results were
analyzed (see Figure 2(b)). From this experiment, we found
that a search volume Ω of size 7 × 7 × 7 voxels (3D window
radius = 3) was the best option. Increasing the search volume
beyond this size provides only a slight improvement while
considerably increasing the computation time.

3.2.3. Value of h and k Parameters. The value of h parameter
plays a major role in the reconstruction process; thus its
correct adjustment is very important. In the present method,
an iterative decremental assignment of its value is proposed.
This approach enables a stable coarse to fine reconstruction
in a similar manner as done for Nonlocal demosaicing [17].
In this approach, the use of high values of h produces the
averaging of different parts of the image while small values
directly copy similar values. For 8-bit quantization input
data, decreasing values of h (32, 16, 8, 4, and 2) were used in
all experiments. Each value is used once and then decreased
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Figure 7: Comparison on real clinical data. Top-Left: HR T1-w volume. Top-Right: LR T2-w volume. Bottom-left: B-Spline reconstruction.
Bottom-right: reconstruction using the proposed method. In each case a close-up is presented to better show how the proposed method
provides a more consistent and less blurry reconstruction.

until the last h value (2 in our case) and then the process
is iterated with h = 2 until the mean absolute value of
the difference between two consecutive reconstructions falls
below a given tolerance. For other quantization levels h
values can be linearly adjusted.

Regarding the k parameter, if this parameter is too small,
the method will be very robust to misregistration but few
improvements in the reconstruction will be achieved since
almost not information from HR data will be used. In
contrast, if k is too high, only HR information will be
used which will lead in a good reconstruction when data is
perfectly registered but the robustness of the method can
be seriously affected when LR and HR data is geometrically
incoherent. We have found experimentally that a factor
k = 256 enables to obtain good reconstructions while
maintaining the robustness of the method.

3.2.4. Computational Complexity. Since the proposed
approach is an iterative process, the computational burden
of the method is high (being the filtering step the heaviest
part). To reduce the processing time, we have implemented
the proposed method using symmetric weight computation

on the filtering step which reduces the computational
burden a factor 2. Besides, a multithreading implementation
was used which allowed to reduce the processing time
another factor 4 in the Quad Core 2.4 GHz Pentium
machine used in the experiments. This lets an average
time of around 8 minutes per iteration. This makes the
required time for reconstructing a typical MR volume to
be approximately 1 hour. Further time reduction can be
achieved by processing only object voxels avoiding useless
computations at background voxels.

To summarize, in all the experiments the search volume
Ω in the HR volume was set to have a radius equal to 3
(i.e., a 3D region of 7 × 7 × 7 voxels); the size of the local
3D neighborhoods used to compute the similarity in the
reconstructed LR images was set to 3 × 3 × 3 voxels and
h = [32, 16, 8, 4, 2]. The parameter k was set to 256 and
the tolerance was set to 0.01 (0.005% of the image range).

3.3. Comparison on Normal Brain Anatomy. The first com-
parison consisted in reconstructing Brainweb HR T2-w vol-
ume from their downsampled versions using HR T1-w data
as HR reference. The HR T2-w volume was downsampled
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Figure 8: Comparison of real clinical data experiment. Top-Left: HR T1 data. Top-Right: LR FLAIR volume. Bottom-left: B-Spline
reconstruction. Bottom-right: reconstruction using the proposed method. In each case a close-up of the coronal slice is presented to better
show how the proposed method provides a less blurry reconstruction.

in the z direction to have different slice thickness (2, 3, 5,
7, and 9 mm). The Brainweb HR T1-w data used as reference
had 1 mm3 voxel resolution. The resulting reconstructed data
was compared to the Nearest Neighbor (NN) and B-Spline
interpolation as implemented on MATLAB 7.4. In addition,
the authors of the method recently proposed in Rousseau
[8] provided results for the 3 mm slice thickness case for
comparison. In these experiments, no noise was added to
simplify the analysis of the results. It has to be noted that
in general the proposed method is always applied after a
denoising step; thus zero noise condition can be nearly met.
The results can be observed in Table 1 and Figure 3. As can
be noticed the proposed method drastically improved the
results in all the cases.

3.4. Comparison on Pathological Brain Anatomy (Multiple
Sclerosis). In this case, the same experiment was repeated as
above, but this time using the MS T2-w HR and MS T1-
w HR phantoms available from the Brainweb website. The
proposed method was also compared to the NN and B-Spline
interpolation. Again, Rousseau’s method results for 3 mm

slice thickness were supplied by the authors. The results can
be observed in Table 2. In Figure 4, a visual comparison of
the results for 3 mm slice thickness can be done. Once more,
the proposed method drastically improved the results in all
the cases.

We were curious about the effect of the proposed method
in the MS lesions, since lesions appearing as T2-w hyper
intensities are not often clearly visible in T1-w. We observed
that MS lesions were well reconstructed, even though the T1-
w regularization information did not help much to recover
such structures. This fact can be understood taking into
consideration the fact that the proposed method extracts
information not only from the HR reference data but also
from redundant patches in the LR data.

3.5. Noise Sensitivity. It is clear that the zero noise case is an
idealization of the real MR image conditions. To address this
issue, another experiment was performed on the Brainweb
data, but this time adding Rician noise. An LR T2-w volume
of voxel resolution 1 × 1 × 5 mm was reconstructed to
1 mm3. Both HR reference T1-w and LR T2-w data were
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corrupted with several levels of Rician distributed noise (0,
1, 2, and 4% of the maximum intensity). The noiseless
phantoms were considered to be complex valued with the
imaginary part equal to zero for the generation of Rician
noise. Noise was generated by adding Gaussian noise to the
real and imaginary parts and then computing the complex
modulus, thus forming a magnitude image.

To ensure a fair comparison, NN and B-Spline interpola-
tion methods used also the denoised data to compute the HR
T2-w volume. Qualitative results are shown in Figure 5 and
quantitative results are presented in Table 3.

Again, the proposed method outperformed the other
methods in all noise levels. One can notice that performance
of the proposed method decreases with the noise ampli-
tude as the denoising process inevitably erases some high-
frequency information in the images. It is also important to
note that in this experiment we have added the same level
of noise to LR and HR data as it is supposed to be machine
dependent, but in many cases HR data is acquired with
3D acquisitions and therefore can be less noisy than an LR
multislice acquisition (e.g., a typical T1-w volume compared
to DWI-MRI). In such cases, the reconstruction of the LR
data is highly improved due to the fact that the HR data does
maintain its high-frequency information.

3.6. Registration Sensitivity. As it has been pointed out
previously, the accuracy of the proposed method highly
depends on the correct registration of the LR and HR images.
To evaluate how the misalignment affects the accuracy of the
proposed method, the HR T1-w reference volume was shifted
in the 3 directions (x, y, and z). In this experiment, a 1× 1×
5 mm voxel resolution LR T2-w volume was reconstructed
to 1 mm3 voxel resolution using as reference a randomly
shifted HR T1-w volume. The experiment was performed by
applying random shifts in all 3 directions by a certain amount
(1, 2, and 3 mm) and the experiment was repeated 10 times
for each shift value to estimate the variability of the method.
Results are shown in Table 4. In this case the IPSNR measure
was used which represents the improvement of the PSNR
of the proposed method compared to the B-Spline method
which was taken as reference.

From these results, it can be concluded that the proposed
method is able to tolerate a small misregistration (up to 1 or
2 mm) while maintaining an improved performance over the
reference B-Spline interpolation. This is mainly due to the
inclusion of information of LR data during reconstruction.
This is important since in real world conditions small
misalignments can be present after registration. However,
most of current linear registration methods are able to obtain
a sub-millimeter accuracy which enables the application of
the proposed methodology [18].

3.7. Real Clinical Data. To evaluate quantitatively and qual-
itatively the proposed approach on real clinical data, three
real datasets were used. In the three cases, the 3D search
region was set to 7 × 7 × 7 voxels, the h values used were
consecutively 12%, 6%, 3%, 1.5%, and 0.7% of the HR image
range, and the tolerance was set to the 0.0005%.

The first case consisted in a dual PD-w/T2-w study.
In this way, we were sure that PD-w and T2-w data were
perfectly registered as they are acquired at the same time.
This dataset was obtained with a PD-w/T2-w volumetric
sequence (256 × 256 × 56 voxels with a voxels resolution of
0.94 × 0.94 × 3 mm) in a Philips Gyroscan 1.5 Tesla scanner
(The Netherlands). In this case, the T2-weighted volume was
downsampled to a voxel resolution of 0.94 × 0.94 × 6 mm
(i.e., a reduction factor 2 in z direction). Both reference
PD-w and T2-w volumes were filtered using the BNLM3D
method and PSNR values were computed using as reference
the denoised version of the HR T2-w volume. The NN
interpolation method obtained a PSNR equal to 27.68 dB,
the B-Spline method 28.90 dB, and the proposed method
32.51 dB. In Figure 6, the different results can be visually
compared. One can see that the reconstruction using the
proposed approach not only obtained a better PSNR value
than the other methods but also showed a better anatomical
content.

The second dataset consisted in an HR T1-w (170×256×
256 voxels) and an LR T2-w (85× 256 × 256 voxels) images
acquired on a 3T Siemens Tim Trio (Erlangen, Germany)
machine. The resolution of the T1-w data was 1 mm3 while
the resolution of the T2-w data was 2 × 1 × 1 mm3. In this
case, the LR data was upsampled to 1 mm3 using the B-Spline
and the proposed method. Figure 7 shows the reconstruction
results using the compared methods. As in this case we
had not HR to compare, the results were judged visually.
Such qualitative analysis showed that the reconstruction
using the proposed approach was less blurry than B-Spline
interpolation. To apply the proposed method the LR and HR
were first filtered using the BMNLM3D filter and then the LR
T2-w data was registered to the HR T1-w data using SPM5
software [19] with a 3D rigid transformation.

Finally, the third dataset consisted of a pathological
dataset containing a brain tumor. In this case, an HR T1-
w volume (224 × 256 × 174 voxels) and an LR FLAIR-w
volume (224× 256× 29 voxels) were used. The resolution of
the T1-w data was 1 mm3 while the resolution of the FLAIR
data was 1 × 1 × 6 mm3. This dataset (named CEREBRIX)
was downloaded from a public MR DICOM data repository
(http://pubimage.hcuge.ch:8080/). Again, the LR data was
upsampled to 1 mm3 using the B-Spline interpolation and
the proposed method and the results were qualitatively eval-
uated. In Figure 8, the reconstruction results are compared
to B-Spline reconstruction. Again, the visual inspection
of the results showed a less blurry reconstruction when
using our proposed approach showing consistent anatomical
information. To apply the proposed method, the data was
filtered using the BNLM3D filter and the LR FLAIR data was
registered to the HR T1 data using also the SPM5 software
with a 3D rigid transformation.

4. Conclusion

We have presented a new superresolution method that
enables the recovery of HR data information from LR data
when coplanar HR data volume of the same subject from
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the same or other modality is available. The proposed
method has been validated, using synthetic and real datasets.
Our experiments demonstrated that the proposed method
outperforms classical state-of-the-art interpolation methods.

We have presented several experiments where images
with highly anisotropic voxels have been reconstructed to
have isotropic voxels (e.g., 1 × 1 × 9 mm3 to 1 mm3) when
HR data of such resolution is available. It is worth noting here
that this reconstruction can be performed in any dimension
when suitable data is available (e.g., 3× 3× 3 mm3 to 1× 1×
1 mm3).

Our iterative approach relies on a correct registration
of LR and HR data to assure that HR similarities can
be extrapolated to help in the reconstruction of LR data.
However, it was shown that the proposed method is robust to
a small misregistration. Moreover, a proper denoising step is
mandatory prior to the reconstruction process. In this sense,
we have used a BNLM3D method that performed very well
in all cases.

The use of a 3D boxcar function as convolution matrix
used in the mean correction step is supported by the concept
of partial volume on MRI where voxel intensity can be
modeled as a linear combination of the voxel intensities of
the adjacent HR data. Our experiments on real data seem
to confirm this assumption yielding plausible results when
using this model.

It is important to note that no special hardware or
specific imaging sequences are needed to apply the proposed
approach. The proposed methodology can be applied to
increase the resolution of multimodal studies after data
registration. This can potentially benefit multispectral MR
data segmentation and the extraction of multimodal features
from the reconstructed data.

Other specially interesting application could be the
application of the proposed technique to artificially increase
the resolution of fMRI or DTI studies where typically an HR
reference volume is acquired together with the LR functional
data.
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