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Abstract

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are valuable tools to
detect metabolic changes in tumors. The currently emerging era of molecular medicine, which is
shaped by molecularly targeted anticancer therapies combined with molecular imaging of the
effects of such therapies, requires powerful imaging technologies that are able to detect molecular
information. MRS and MRSI (MRS/I) are such technologies that are able to detect metabolites
arising from glucose and choline metabolism in noninvasive in vivo settings and at higher
resolution in tissue samples. The roles that MRS/I plays in diagnosing different types of cancer as
well as in early monitoring of tumor response to traditional chemotherapies are reviewed.
Emerging roles of MRS/I in the development and detection of novel targeted anticancer therapies
that target oncogenic signaling pathways or targets in choline or glucose metabolism are
discussed.
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1. Introduction

Although a lot of progress has been made in diagnosing cancers early and improving
available treatment options, cancer still is a devastating disease that claims one in four death
in the United States (1). A unique problem with anticancer therapies is that cancer cells can
adapt to these therapies and survive them, leading to treatment resistance. This problem
arises due to the genomic instability of cancer cells, which is additionally triggered by their
cooperative interaction with stromal cells and the tumor microenvironment (TME).
Together, cancer cells, stromal cells, and the TME progress to form a primary tumor, invade
surrounding normal tissue, and give rise to metastatic nodules at distant sites. To overcome
the problem of resistance to treatment, and to render anticancer chemotherapies less toxic,
tremendous research efforts have been invested in the development of molecularly targeted
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anticancer therapies. The investigation of strategic molecular targets has uncovered
successful targets in oncogenic signaling pathways, such as receptor tyrosine kinases and
their downstream effectors, as well as targets in key pathways affecting proliferation,
apoptosis, angiogenesis, invasion and metastasis, previously defined as the hallmarks of
cancer (2). Recent preclinical and clinical cancer research findings have clearly shown that
personalized molecular targeting is necessary for the successful treatment of cancer, in
which more than one critical target is being hit at once.

One important biological outcome that results from the interplay between genetically altered
tumor cells and the physiological TME is the altered tumor and cancer cell metabolism.
Glucose metabolism and choline metabolism are significantly different in tumors. This is a
result of changes in oncogenic signaling pathways that lead to changes in expression and/or
activity of enzymes involved in glucose and choline metabolism. The altered tumor
metabolism can be detected with noninvasive imaging modalities such magnetic resonance
(MR), positron emission tomography (PET), and single photon emission tomography
(SPECT), which are well suited to detect metabolic biomarkers or surrogate markers in
cancer diagnosis and anticancer treatment. In this review we have focused on noninvasive
magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) and their roles
in guiding molecular medicine by playing important roles in molecular target discovery,
molecular targeting, diagnosis, and noninvasive monitoring of choline and glucose
metabolism in cancer to assess treatment success or failure.

MRS is very helpful in studying metabolism because the signals of different metabolites
occur at different chemical shifts. The aberrations in the genome and proteome of cancer
cells result in their unique metabolic phenotype. The cancer metabolic phenotype is
characterized by high glucose uptake, increased glycolytic activity and lactate production,
decreased mitochondrial activity, low bioenergetic status, and aberrant phospholipid
metabolism (3-5). Tissue-specific metabolites such as N-acetyl aspartate in the brain, and
citrate in the prostate, show an MRS-detectable decrease as a result of an expanding cancer
cell population combined with a reduction of the normal tissue fraction (5-7). Proton or 31P
MRS or MRSI detection of these endogenous metabolites can help diagnose cancer (8-15),
and monitor anticancer therapy in some cases, as outlined in this review. The fact that MRS/
I is noninvasive makes it such a powerful technique because this opens up the possibility to
perform dynamic monitoring of tumor metabolism in patients. However, the spectral
resolutions achieved in vivo are relatively low at currently approved clinical magnetic field
strengths, making it necessary in some cases to observe combined overlapping signals in
vivo, such as the total choline containing signal at 3.2 ppm. Ex vivo applications of MRS
provide a much higher spectral resolution, and novel techniques based on magic angle
spinning that can avoid extraction of the tissue have evolved over the past decade. Such
high-resolution (HR) magic angle spinning (MAS) MRS techniques are currently being
implemented in the diagnostic clinical workflow following biopsy or surgical resection of
tumors, and will be further explained in this review.

MRS studies on the aberrant cancer cell metabolism have resulted in the identification
relevant enzymes as novel anticancer targets (4, 16-19). The total choline (tCho) signal is
already being explored in the clinical setting as MR biomarker for assisting in tumor
diagnosis and early monitoring of tumor response to anticancer therapy (20-22). Molecular
targeting of targets in choline phospholipid metabolism can be noninvasively detected and
imaged by MRS and MRSI (MRS/I). Pharmacological and molecular approaches to target
choline kinase, a key enzyme in choline metabolism, are currently being developed (16, 23),
and are discussed in detail below. In this review, we have described some recent biomedical
MRS applications of 1H, 31P, and 13C MRS in preclinical models of cancer, and have
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outlined new developments, such as 13C hyperpolarization to improve the MR detection
sensitivity of 13C-labeled substrates.

2. Key molecules driving the altered choline metabolism in cancer

MRS is especially useful in studying metabolism in heterogeneous tissues such as tumors
with its ability to identify different compounds by their chemical shifts. MR detects
radiofrequency (RF) signals emitted after MR active nuclei such as 1H, 31P, 13C, and 19F are
excited by external alternating magnetic fields. MR spectra can be acquired with or without
spatial localization. In the absence of spatial information, the signal is acquired from the
entire sensitive region of the coil that detects the RF signal. Localized MRS can either be
acquired from a single volume element (single-voxel), or from multiple voxels (multi-voxel)
to generate images of the spatial distribution of metabolites, referred to as MRSI. When
measuring such localized MR spectra, phase-encoding gradients are added to the MRS or
MRSI (MRS/I) sequence to generate images of signals with spatially encoded chemical shift
information. This phase encoding can be applied in one, two, or three spatial dimensions,
and its application is useful in deciphering metabolic distributions in heterogeneous tissues
such as tumors.

Elevated metabolites in choline phospholipid metabolism in cancer, which can be
noninvasively detected and imaged by MRS/I (16, 23), present unique targets to exploit for
molecular targeting. Malignant transformation has been observed to alter the profile of the
choline compounds glycerophosphocholine (GPC) and phosphocholine (PC) in breast (24)
and ovarian (25) cancer cells, which was detected by using MRS/I. GPC is the predominant
signal in nonmalignant breast and ovarian epithelial cells, whereas PC displays the highest
concentration in ovarian and breast cancer cells (24, 25). Prostate cancer cells contain
elevated PC and GPC levels (26). The choline phospholipid metabolites typically detected in
high-resolution 1H MR spectra are free choline (Cho), PC, and GPC. Similarly, in high-
resolution 31P MR spectra, signals from PC and phosphoethanolamine (PE), and GPC and
glycerophosphoethanolamine (GPE) are detected. In clinical settings, 1H or 31P MRS or
MRSI detection of these choline metabolites has been proven useful in the diagnosis of
cancer (8-15), and in monitoring the response of tumors to anticancer therapy (20-22), as
detailed in subsequent sections.

2.1 Magnetic resonance spectroscopy techniques for detecting and differentiating cancer,
and monitoring anticancer therapy, based on choline metabolites

Proton MRS signals from water-soluble choline metabolites arise between 3.2 – 3.3 ppm
from the nine chemically equivalent protons in the choline-N(CH3)3 groups. In Figure 1,
color-coded 1H nuclei are displayed in the chemical structure formula that give rise to the
MR signals that are shown with the same color-code in representative MR spectra. Because
nine protons contribute to this signal, it displays a higher signal intensity than the 1H signals
in the methylene groups of the same choline metabolites, which only contain two equivalent
protons each (see Figure 1). Using 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid (TSP) as a
chemical shift reference at pH 7.4, free choline is detected as a peak at 3.21 ppm, PC at 3.23
ppm, and GPC at 3.24 ppm, in high-resolution (HR) 1H MR spectra of cell or tissue extracts,
or in HR magic angle spinning (MAS) MR spectra. The chemical structures of Cho, PC, and
GPC are shown in Figure 1. It is not possible to resolve Cho, PC, and GPC in vivo, even at
higher magnetic field strengths, because of the broader line widths that result from restricted
molecular motion and magnetic field inhomogeneities. As an alternative, a single unresolved
peak arising from total choline containing compounds (tCho), comprising of these three
signals is detected, as shown in Figure 1. Multi-voxel in vivo 1H MRSI of one or multiple
slice(s) through a region of interest provides multiple spectra from a slice or volume of
tissue that can be processed to obtain the spatial distribution of tCho or other metabolites.
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2.1.1 1H MRS/MRSI in cancer detection and treatment based on choline
metabolites—Clinical multi-center trials are currently underway to establish single-
voxel 1H MRS or multi-voxel 1H MRSI as a tool for cancer detection. Numerous of studies
investigated the feasibility and diagnostic value of combined MRI and MRS/I in the
detection of cancer (9, 13, 14, 27-31). Several research groups investigated the feasibility of
combined dynamic contrast enhanced (DCE) MRI and MRS in evaluating breast lesions (14,
30). In a study by Jacobs et al, five patients with breast carcinoma and four with benign
lesions were evaluated (30). Persistent enhancement of lesion time intensity, which
describes how the inspected tissues absorb and release the contrast agent over the period of
time that coincides with the MRI examination, was found in two benign cases, plateau
enhancement in two of four benign and four of five malignant lesions, and one malignant
case exhibited a washout pattern (30). The tCho signal-to-noise ratio (SNR) was
significantly different (P < 0.003) between benign and malignant lesions (30). A
combination of DCE MRI and MRS proved feasible, and improved specificity compared to
either modality alone (30). Throughout the past few years, several studies with hundreds of
breast cancer patients have demonstrated that an increased MRS-detected tCho signal that
overlaps with the contrast-enhancing breast lesion in DCE MRI can be used to identify
malignant breast tumors and distinguish them from benign breast lesions (14, 31, 32).
Recent studies of prostate cancer (28, 29) compared the area under the receiver operating
curve (ROC) of combined MRI and MRS, MRI alone, and MRS alone. These studies found
that the combination of MRI and MRS yielded superior diagnostic results than either
modality alone, in terms of sensitivity (72.3%), specificity (92.6%) and accuracy (80.1%) of
combined MRI and MRS for detection of prostate cancer. Combining whole prostate
qualitative MRI with MR spectral estimation was shown in previous research studies to be
feasible in routine clinical practice (28, 29).

Many studies use peak area ratios as a criterion to describe the changes in metabolic profiles
in cancer detection. The advantage of using ratios is that the effects of cell density variations
that can affect the calculation of metabolite concentrations are canceled against each other
when calculating a ratio. MRS of the prostate provides information of the cellular
metabolites of the gland. Normal prostate tissue contains high levels of citrate, occurring at
chemical shifts of 2.50 ppm and 2.72 ppm {van der Graaf, 1996 #412}. In prostate cancer
(33), the citrate level is diminished or undetectable and the tCho level is elevated (Figure 2).
The total creatine (tCr) peak, usually around 3.0 ppm, is very close to the tCho peak (3.2
ppm) in these in vivo MR spectra and may not always be separable. The tCr signal is
assumed to remain unaltered between healthy and cancerous tissue. For this reason and
practical purposes, the ratio of tCho plus tCr over citrate [choline + creatine]/citrate (CC/Ci)
is used for spectral analysis to make it feasible for clinical practice (33). 1H MRS of brain
tumors compared to normal brain detected decreased N-acetylaspartate (NAA) and
frequently increased tCho. An increase in the ratio of tCho to NAA (tCho/NAA) was highly
correlated with increased tumor malignancy and can be used as a noninvasive index of
tumor grade (9, 34-36).

Results of numerous ex vivo (37-39) and in vivo (40, 41) studies have shown that neoplastic
breast tissue contains elevated levels of tCho. Since the sensitivity of in vivo MRS is limited,
adding a quantitative analysis of 1H MRS, such as calculating the tCho concentration of the
lesions (14), to the breast imaging examination could help to improve the radiologist’s
ability to characterize malignant breast lesions. Two referencing strategies have been used
for converting measured signal amplitudes into concentrations. The first method is to use
external referencing, in which the in vivo measurement is compared with a measurement
from an external phantom of known concentration (42, 43). The second referencing strategy
proposed for breast MRS is to use the water peak from a non-suppressed spectrum from the
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same voxel as an internal reference. The tCho concentration is calculated by comparing the
tCho and water signal intensities and correcting for the differences in relaxation (40, 44).

MRS/I cannot only help with the diagnosis of cancers in the clinic, but also monitor
clinically approved anticancer treatments. Multiple studies have identified changes in tCho
as having a high likelihood of detecting early response to treatment in breast cancer (21, 45,
46). Neoadjuvant chemotherapy (NACT) is the standard treatment for patients with
inoperable locally advanced breast cancer (LABC). A recent study (22) compared changes
in tCho concentration and in tumor size at follow-up after NACT between patients, who
achieved pathologic complete response (pCR) and those who did not, by using MRI and
quantitative 1H MRS (22). Figure 3 shows the maximum intensity projection MR images
(left) and corresponding MR spectra (right) from a 40-year-old patient who achieved pCR
(22). In this study, patients who had a greater reduction in tCho compared with changes in
tumor size were more likely to achieve pCR (22). Another recent study (47) was designed to
investigate the changes in the signal-to-noise ratio (SNR) of the tCho resonance (ChoSNR)
using MRSI and an anatomical parameter, such as the volume of the tumor, in patients with
LABC, and then determined the potential clinical utility of these parameters in the
assessment of tumor response during the various stages of NACT. This study concluded that
ChoSNR might serve as a useful parameter in predicting tumor response in the absence of
the absolute tCho concentration (47). ChoSNR gave a sensitivity of 85.7% with a specificity
of 91% (47). An early response of prostate cancer to hormone-deprivation therapy (48, 49)
and cryosurgery (50) was detected by a decrease in [tCho/citrate] ratios quantified from 1H
MR spectra. Anticancer treatments leading to apoptosis or necrosis induced characteristic
changes in choline phospholipid metabolites (51). An early response to therapy in
lymphomas was also associated with a reduction of tCho (52). Some cancers, e.g. cervical
cancer, did not exhibit a change in the tCho signal following neoadjuvant therapy, followed
by surgical resection of the tumors (53). However, these cervical cancers displayed a
reduced tumor volume along with decreased triglyceride signal and no survival advantage
associated with the reduced tumor volume or decreased triglycerides (53).

2.1.2 HR MAS 1H MRS in cancer detection and treatment based on choline
metabolites—The relatively new applications of ex vivo high-resolution MR technique
HR MAS 1H MRS to fresh tissues, which can be implemented in the clinical workflow, is
currently gaining importance in diagnosis and treatment monitoring of cancer. HR MAS 1H
MRS is well suited to examine intact biological tissue ex vivo at high spectral resolution (7,
54-56). In the clinic, HR MAS 1H MRS can be useful for analyzing the metabolome of
biopsy specimens prior to pathological classification (7, 54-56). In HR MAS 1H MRS, the
solid sample is spun at a frequency of up to 12 kHz at the magic angle of θm, which is
54.74° with respect to the direction of the magnetic field. At this magic angle, where
(3cos2θm-1)/2 approaches zero, residual dipolar interactions average out, and therefore the
normally broad lines become narrower and the spectral resolution increases for better
identification and analysis of the spectrum (7, 54-56). One major advantage of this technique
is that, unlike in HR MRS of tissue extracts, the HR MAS 1H MRS-analyzed tissue can be
used for subsequent histologic, biochemical, and genetic analyses (7, 54-57). The high
spectral resolution of HR MAS 1H MR spectra makes their data analysis more challenging.
A combination of different multivariate data analysis methods such as principal component
analyses or neural network applications is typically used to process these rich data sets (57).
A recent study demonstrated that HR MAS 1H MRS was able to detect the metabolic
phenotype of tumors, demonstrating a marked metabolic difference between healthy breast
and breast tumor tissue evident by clearly separated score plots of three principal
components (57). Absolute metabolite quantification can also be performed from HR
MAS 1H MR spectra either alone or in combination with multivariate data analysis (58).
Knowledge of absolute tumor metabolite levels can help understand the disease process on a
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biochemical and molecular level. A known amount of TSP can be added to the samples for
quantification, or a pre-calibrated Electronic REference To access In vivo Concentrations
(ERETIC) can be applied to HR MAS 1H MRS to quantify metabolites in intact cancer
samples (58). HR MAS 1H MRS has a great potential to be used clinically as a complement
for histopathological analysis, for detecting and characterizing cancers (57, 58).

2.1.3 31P MRS/MRSI in cancer detection and treatment based on choline
metabolites—Phosphorus-containing choline metabolites can be detected with 31P MRS,
as demonstrated in Figure 1. Following chemical shift calibration to a reference compound
such as methylene diphosphonic acid at 18 ppm, a signal from PC at 3.9 ppm and GPC at
0.5 ppm are observed in HR 31P MR spectra of cell or tumor extract, as shown by color-
coded signals and their corresponding 31P nuclei with the same color-code in the chemical
structures. In the in vivo setting, a mixed phosphomonoester (PME) signal containing
unresolved PC and phosphoethanolamine (PE) resonances, and a mixed phosphodiester
(PDE) signal containing unresolved GPC and GPE resonances are observed in 31P MR
spectra (see color-coding in Figure 1).

Since 1H MRS has a higher sensitivity and a higher availability of a scanning standard
compared with 31P MRS, it is much more popular on clinical scanners. However, a multi-
institutional group has been created to investigate the utility of in vivo 31P MRS in studying
human cancers in vivo (59). The standardization of the acquisition protocol for in vivo-
localized 31P MRS across different institutions has resulted in comparable in vivo data,
decreasing the possible problems related to a research study carried out under a multi-
institutional setting. A recent clinical study demonstrated the feasibility of partially
resolving PC from PE, and GPE from GPC by using 1H-decoupled 31P MRS at 1.5 T (60)
and at the higher field strength of 3T that is also clinically available. A large-scale multi-
center trial across nine institution using 31P MRS for non-invasive monitoring of
chemotherapy of solid non-Hodgkin’s lymphoma (NHL) pre- and post-treatment, was
performed on either General Electric (GE) or Siemens clinical 1.5T MR scanners (61). In
this multi-center 31P MRS trial, the PME/NTP ratio significantly decreased following
treatment in complete (P<0.001) and partial (P<0.05) responders, but not in non-responders
(P>0.1) (61). The PME/NTP ratio in the pre-treatment 31P MR spectra also correlated with
the treatment outcome, indicating that the PME/NTP ratio can serve as a significant
predictor of long-term clinical response and time-to-treatment failure in NHL.

Two recent studies reported a novel 1H to 31P polarization transfer method by applying
chemical shift selective refocusing pulses at 3T, which can achieve a more than twofold
increase of SNR compared to direct 31P MRS methods (62, 63). This selective refocused
insensitive nuclei-enhanced polarization transfer (sRINEPT) method provided baseline-
resolved PE, PC, GPE, and GPC peaks in human brains (62, 63). The sRINEPT method
allowed to generate a three-dimensional 31P MRSI data set with good SNR from voxel sizes
of 17 cm3 within a clinically acceptable measurement time of 17 minutes (63). Evaluation of
intact tissue samples from experimental tumors has been performed using 1H-decoupled 31P
HR MAS MRS (64, 65). The concentrations of the well-resolved tissue metabolites showed
good agreement with concentrations measured from extracts of the same pieces of tissue
(64, 65).

2.1.4 13C MRS/ MRSI in cancer detection and treatment based on choline
metabolites—For studies of choline metabolites, 13C MRS can be useful to detect 13C-
labeled metabolites following administration of 13C-labeled free choline or methionine as
substrates in cancer cells and solid tumors (23, 66-70). The 13C label in either the −CH2 or
the NCH3 groups of free choline can be followed with 13C MRS to detect the incorporation
of a 13C label in the downstream metabolites and products, such as PC and GPC.
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Quantitative flux rates can be calculated by metabolic modeling. Carbon-13 MRS methods
that attempt to detect the 13C directly suffer from relatively low sensitivity. However,
magnetization transfer techniques can improve the 13C MRS sensitivity. Examples of such
magnetization transfer techniques that can drastically improve the detection sensitivity
of 13C nuclei are nuclear Overhauser effect (NOE) methods, heteronuclear cross-
polarization (HCP) experiments (71), and indirect inverse detection methods (72). In NOE
techniques, the 13C signals are enhanced because magnetization is transferred from
neighboring protons through space using dipole-dipole spin coupling, or through chemical
bonds using the J-coupling between 13C and 1H spins. Direct 13C detection methods using
magnetization transfer to enhance 13C signals are NOE, distortionless enhancement by
polarization transfer (DEPT), insensitive nuclei enhanced by polarization transfer (INEPT),
and HCP. Indirect detection schemes, in which the magnetization is transferred from 1H
to 13C and then back to 1H, are heteronuclear multiple quantum coherence (HMQC) and
heteronuclear single quantum coherence (HSQC) methods. Carbon-13 signal detection in
HMQC and HSQC is done indirectly as 1H frequencies, which significantly enhances the
sensitivity due to the higher gyromagnetic ratio γ of 1H (72).

2.2 Altered enzymes in choline metabolism of cancer

1H MRS consistently detects significant differences in choline phospholipid metabolites of
malignant versus benign breast lesions. It is critically important to understand the molecular
causes underlying these metabolic differences, because this may identify novel targets for
anticancer therapy selective for cancer cells. The major molecular causes for the increased
PC and tCho levels in cancer cells and tumors include an increased expression and activity
of choline kinase alpha (CHK-α) (16, 18, 23, 73-76), a higher rate of choline transport (77,
78), and increased activities of phosphatidylcholine (PtdCho)-specific phospholipase C
(PtdCho-PLC) (25, 79) and D (PtdCho-PLD) (25, 80-82), and several phospholipases A2
(83, 84). Other enzymes in the choline phospholipid metabolic pathways are in the process
of investigation (85). All these enzymes participate in the biosynthetic and breakdown
pathways of the major membrane phospholipid phosphatidylcholine (PtdCho) (23) as shown
in the schematic in Figure 4.

CHK-α is responsible for the generation of PC from its precursor Cho in the biosynthesis
pathway of PtdCho. Both CHK-α (16, 18) and its product PC (24) have been recently
reported as essential molecules in cell proliferation and transformation. One study correlated
CHK-α expression and activity with clinical features in breast cancer patients, demonstrating
that CHK-α is overexpressed in 17% of human mammary carcinomas, and its activity is
increased in 38.5% of the analyzed breast tumors (18). The levels of CHK-α expression
were also explored in both normal and tumoral cell lines derived from lung, colon, and
prostate samples (86). In keeping with the role of CHK-α and PC in malignant
transformation, CHK-α expression was found up-regulated at a high percentage in human
tumor-derived cell lines as well as in different human tumoral tissues (86).
CTP:phosphocholine cytidylyltransferase (CCT) is the rate-limiting enzyme in the
biosynthetic pathway of PtdCho and its downregulation may be contributing to the elevated
PC and tCho levels in cancer cells as well (87, 88). Within the breakdown pathways of
PtdCho catabolism, PtdCho-PLC activation has been implicated in contributing to the
aberrant choline phospholipid metabolism in cancer (25, 79, 89-91). The overall activities of
PtdCho-PLC and PtdCho-PLD were higher in human ovarian carcinoma cell lines as
compared with normal or immortalized ovary epithelial cells (25, 79). CHK-α (4, 16-19,
92-94) and PtdCho-PLD (81) and PtdCho-PLC (25) have been explored as molecular targets
for anticancer therapy as outlined in section 2.4. Additional insight into the enzymes that are
altered in choline metabolism in cancer can be found in recent reviews (4, 95, 96).
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2.3 Oncogenes and signaling pathways arriving at cancer-phenotypic endpoints of choline
metabolism

Multiple growth factors, cytokines, oncogenes, and chemical carcinogens have the ability to
regulate and impact upon the enzymes in choline phospholipid metabolism (4, 97, 98).
Cancer cells display distinct phenotypic endpoints in choline metabolism characterized by
high PC, relatively high GPC, and high tCho as a result of deregulated oncogenic signaling
pathways that impact upon the enzymes involved in choline metabolism, some of which are
outlined below. While GPC is the dominating signal in normal breast and ovarian
epithelium, PC is higher than GPC in ovarian and breast cancer cells (24, 25).
Carcinogenesis of prostate epithelium results in elevated PC and GPC levels (26).

Some of the most important players in deregulated oncogenic signaling cascades are mutant
ras oncogenes. Transformation with the H-ras oncogene resulted in an inhibitory effect on
CCT (87, 88) as shown in Figure 4. Ras oncogene transformation of NIH 3T3 fibroblasts
decreased PtdCho-PLC activity, and correlated with PtdCho-PLC translocation from the
cytosol to the plasma membrane (90). Gain-of-function mutations in Ras can activate
PtdCho-PLD, mediated by positive regulatory pathways through RAL-GDS and
phosphatidylinositol 3-kinase (PI3K), and negative feedback signaling through RAF-1 and
RAL-GDS (99). Mutant ras oncogene transformation caused an increase in CHK-α activity,
which correlated with increased PC levels (100). Ras-mediated regulation of CHK-α also
involved RAL-GDS and PI3K (101). Taken together, the drastic increase that can be
observed in cellular PC levels following mutant ras-oncogene transformation (88, 102) is
most likely due to the combined effects of oncogenic RAS protein regulation of CHK-α
(101, 103), CCT (87, 88), PtdCho-PLD (99), and PtdCho-PLC (90) activity.

Mitogen activated protein kinases (MAPK) such as extracellular signal-regulated kinases
(ERK), which are activated by phosphorylation, are frequently deregulated in several types
of cancer, and are currently being explored as drug targets (104). Inhibition of ERK1/2
phosphorylation resulted in a significant drop in the PC levels of cancer cells (104),
indicative of a positive correlation between ERK activation and high PC levels as shown in
Figure 4. CHK-α silencing significantly reduced phosphorylated ERK levels, and was able
to attenuate MAPK signaling (105). PC may serve as a noninvasive pharmacodynamic
MRS-detected marker for monitoring MAPK signaling blockade (104).

The PI3K pathway is deregulated in most cancer, and is a major target for cancer drug
development (106, 107). PI3K inhibition resulted in a concentration- and time-dependent
decrease in PC and tCho, most likely due to a decreased in CHK-α protein expression levels
(106, 107), as indicated in Figure 4. MRS monitoring of the effects of PI3K inhibitors may
provide a noninvasive pharmacodynamic biomarker for PI3K inhibition (106, 107). The
reversal of this pathway was demonstrated when CHK-α silencing decreased cellular PC,
PtdCho, and phosphatidic acid levels as well as signaling through the PI3K/AKT pathway,
with reduced levels of phosphorylated AKT detected following CHK-α silencing (105).

A recent study has demonstrated that the transcription factor hypoxia-inducible factor
(HIF)-1 was able to bind to the putative Chk-α promoter regions and increase CHK-α
expression along with cellular PC and tumor tCho levels detected by MRS/I (108). HIF-1
alpha is stabilized under hypoxic conditions, which can frequently arise within the tumor
microenvironment, and enables cancer cells to adapt to hypoxic conditions by inducing the
expression of a multitude of genes. Additional HIF-1 responses in cancer cells are discussed
in section 3.

Expression of the Her-2 oncogene in nonmalignant human mammary epithelial cells
significantly increased PC and tCho levels (24). An interesting link was recently revealed
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between PtdCho-PLC and Her-2, where inhibition of PtdCho-PLC was able downregulate
HER-2 overexpression on the plasma membrane of breast cancer cells (109). Additional
oncogenic signaling pathways affecting enzymes in choline metabolism are currently under
intense investigation and were recently reviewed in (4, 95, 96).

The connection between oncogenic signaling pathways and choline metabolism makes it
possible to use the tCho and PC signals as surrogate markers for molecular therapies that
target these oncogenic signaling pathways. For example, a decrease of tCho and PC was
observed upon targeting mitogen activated protein kinase (MAPK) (104), fatty acid synthase
(110), and BCR-ABL tyrosine kinase (111). However, PC levels increased following histone
deacetylase (HDAC) inhibition (112), demonstrating that the treatment effects on choline
metabolism when targeting signaling pathways must be carefully examined before
designating noninvasive surrogate markers such as PC and tCho for these novel molecular
therapies. An overview of the key oncogenic pathways affecting enzymes in choline
metabolism is shown in the right part of Figure 4. Several oncogenic signaling pathways that
affect choline phospholipid metabolic enzymes can also modulate the expression and/or
activity of enzymes in glucose metabolism as outline in section 3.4.

2.4 Targeting of choline metabolism for cancer therapy

CHK-α (4, 16-19, 92-94) and PtdCho-PLD (81) and PtdCho-PLC (25) have been explored
as molecular targets for anticancer therapy, and have been silenced or inhibited in studies of
MRS-monitored, targeted anticancer therapies. Downregulation or inhibition of CHK(-α) or
PtdCho-PLD can be detected noninvasively with 31P or 1H MRS (25, 79, 92, 93). Preclinical
anticancer treatments with CHK inhibitors caused tumor growth arrest and apoptosis (19,
92, 94), and silencing CHK-α with siRNA significantly reduced breast cancer cell
proliferation and increased differentiation (16). A recent study showed that longitudinal
noninvasive single-voxel 31P MRS monitoring of tumoral PC and PME levels was feasible
to assess successful gene therapy with an intravenously injected lentiviral vector, which was
able to deliver CHK-α-specific short-hairpin RNA (shRNA) in a preclinical breast cancer
model (93). A more extensive review of targeting choline metabolism for cancer therapy can
be found in recent reviews on his topic (4, 95, 96).

3. Key molecules in the altered glucose metabolism in cancer

A common feature across most, if not all, cancer types is abnormal glucose metabolism.
Cancer cells typically exhibit a high rate of glucose uptake and utilization. In contrast to
normal cells, glucose is converted to lactate also under aerobic conditions. This phenomenon
was first studied by Otto Warburg in the 1920’s and is therefore known as the Warburg
effect (113, 114). As the connections between malignant transformation and cellular
metabolism on the molecular level gradually have been uncovered, this field of cancer
research has enjoyed increased attention in recent years. This research has demonstrated
upstream regulation of several metabolic pathways by major oncogenes such as Myc and
PI3K/Akt, and that abnormalities in these metabolic systems therefore are interconnected
(115, 116). These metabolic features of cancer cells both facilitate cell survival in hypoxic
environments and provide a basis for increased cell proliferation both with respect to energy
demand and cellular building blocks. Another factor that enables the cancer cells to adapt to
hypoxic conditions is the hypoxia-inducible transcription factor (HIF-1). Stabilization of this
factor induces the expression of several genes involved in glucose metabolism, angiogenesis
and other mechanisms.

The high uptake of glucose and the extensive production of lactate make it feasible to use
MRS in the assessment of glucose metabolism. Both glucose and lactate can be observed in
proton spectra. In 13C MRS, assessment of glucose and lactate is typically facilitated
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through the use of isotopically enriched substrate. The most widely used substrate is [1-13C]
glucose, which give rise to two separate resonances from the anomers α-glucose (94.8 ppm)
and β-glucose (98.7 ppm). The isotopical enrichment is retained throughout glycolysis,
resulting in the formation of [3-13C] lactate (22.8 ppm) and [3-13C] alanine (19.0 ppm). In
addition, [2-13C] acetyl-CoA enters the TCA cycle giving rise to [4-13C] glutamate and
other enriched TCA intermediates.

MRS provides unique possibilities for noninvasive studies of the flux through metabolic
pathways in tumor cells. The microenvironment of solid tumors and the regulation of
metabolic pathways are closely associated. MRS has an advantage compared to classical
biochemical methods in that both spatial and temporal variation in metabolic activity can be
studied in in vivo. This has led to clinical exploitation of the altered glucose metabolism in
cancer management (117, 118), but MRS is also a versatile research tool. Glucose
metabolism in cancer cells has been studied for more than two decades using 13C-labeled
substrates (119, 120), allowing detailed description of the metabolic fate of glucose in
various experimental systems.

3.1 Magnetic resonance spectroscopy techniques for detecting and differentiating cancer
based on glucose metabolism

Glucose metabolism in cancer can be studied using various MRS techniques. High
resolution MRS can be applied to cell cultures, tissue samples and extracts. Proton
spectroscopy is routinely used in cancer diagnosis and management, and assessment of
lactate production is an important parameter in brain cancer. Other metabolites in the
glycolysis are present in low concentrations and are seldom considered as biomarkers in
proton spectroscopy. Most studies of the glycolytic pathway use 13C MRS for tracing the
metabolic fate of [1-13C] glucose or other isotopically enriched substrates. 13C MRS has
also been used to study glucose metabolism in vivo (121, 122). Following administration
of 13C-enriched substrates to tumor-bearing animals, the fate of the substrates can be studied
taking tumor microenvironmental factor into account. However, 13C MRS is not yet
routinely employed in clinical diagnosis or management of cancer. This may change as new
spectroscopic techniques, such as hyperpolarised 13C MRSI, are further developed.

3.1.1 Clinical 1H MRS/I of glucose metabolism—Clinical 1H MRS has proven
valuable in assessment of several cancer types due to tissue-specific changes in metabolite
pattern (123). However, assessment of glycolysis using 1H MRS is difficult in several cancer
types, as concentrations of most glycolytic metabolites cannot be measured. The exception
is lactate, which may be present in measurable concentrations in cancer. Therefore, 1H MRS
is widely used in diagnosis, staging and treatment monitoring of brain cancer. Lactate is
present in minute concentrations in normal brain tissue, but reaches high concentrations in
cancer due to abnormal glycolytic activity. Together with decrease in N-acetyl-aspartate
(NAA) due to displacement of healthy neurons, lactate is a functional biomarker for brain
cancer.

Typically, 1H MRS/I is used in combination with MR imaging for diagnostic purposes. The
relative intensities of lactate, choline and NAA can be used to distinguish between cancer,
benign lesions and post-surgery lesions in the brain. High levels of lactate are associated
with high-grade tumors, allowing grading of brain tumors based on metabolite
concentrations (124). High resolution MRSI may also aid in tumor delineation, which is a
key factor in brain tumor surgery planning (125, 126).

In situations where in vivo does not allow evaluation of lactate concentration, ex vivo

analysis of biopsy tissue may be an alternative approach. Great care must be taken in sample
collection and handling to avoid anaerobic glucose metabolism (127). However, provided
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that samples are collected, stored and prepared for analysis under controlled conditions, the
concentration of lactate can be accurately determined ex vivo using HR MAS MRS (7). In
prostate cancer, significant differences in lactate and alanine concentration between benign
lesions and prostate cancer biopsies has been reported (128).

3.1.2 Regulation of glycolytic activity studied by 13C MRS—13C MR spectroscopy
is a powerful tool for studies of metabolic pathways. The natural abundance of 13C is low
(1.1%), which gives this technique low inherent sensitivity. However, this can be turned into
an advantage by use of isotopically enriched substrates. The metabolism of 13C-labeled
substrates can be traced in both in cultured cells and in vivo, as the fate of the
incorporated 13C can be monitored over time with little interference from background
signals. The large chemical shift range for carbon allows resolution and identification of
metabolites throughout entire metabolic pathways.

The abnormal glucose metabolism in cancer has been studied by 13C MRS for more than
two decades (120). For studies of glucose uptake, glycolytic flux and lactate formation,
[1-13C] glucose or [1,6-13C]glucose is typically used. These isomers allow evaluation of the
uptake and degradation of glucose, as well as the formation of metabolic intermediates and
ultimately the formation and elimination of [3-13C] lactate. The rate of glycolysis can be
quantitatively estimated through compartmental modeling, which is advantageous in studies
of drug efficacy (129).

Initial studies in this field verified high flux through glycolysis in cancer cells (120,
130-133). In vivo investigation of the effect of tumor hemodynamics, hypoxia and substrate
supply, has confirmed that high lactate concentrations principally are associated with
aerobic glycolysis, not inadequate perfusion (134). It has also repeatedly been demonstrated
that the rate of glycolysis can be modulated through cytotoxic drugs or, in the case of breast
cancer, endocrine treatment (135-137). The effect of direct glycolytic inhibitors has also
been investigated using 13C MRS. Through dynamic studies of both cultured cells and
culture medium, the kinetics of glucose metabolism can be studied, including the rates of
glucose uptake and lactate secretion (138). 13C MRS of tumors has the advantage of
allowing longitudinal studies of glucose metabolism in vivo. In some applications, however,
limitations in sensitivity or quantitative performance suggest the use of other methods.
Glucose metabolism in tumors may in such cases be evaluated ex vivo using 13C HR MAS
MRS. After administration of 13C-enriched tracers to the tumor-bearing animals and
subsequent harvesting of tumor tissue, samples are available for immunohistochemistry or
gene expression analyses after acquiring the 13C spectra (139).

Overall, 13C MRS is a versatile technique for evaluating the effect of drugs on glucose
metabolism in cancer. Targeting the metabolic abnormalities of cancer with new drug
entities is likely to benefit from 13C MR spectroscopy as it allows noninvasive monitoring of
surrogate biomarkers for therapeutic effect.

The low sensitivity constitutes a problem for clinical use of 13C MRS. However, through
optimized MRS protocols and injection of [1-13C] glucose, it has been shown that the
kinetics of lactate formation in brain cancer can be investigated (140). Compared to 1H MRS
of brain cancer, this approach may be advantageous as it allows assessment of lactate
formation rather than just presence of lactate in tumor tissue. The rate of lactate formation
reflects the glycolytic capacity of the cancer cells, and are therefore suggested to be a better
biomarker for grading brain tumors (134). In order to minimize the dose of [1-13C] glucose
needed, polarization transfer pulse sequences and high field strengths (3T and above) are
preferential. Although the method described by Wijnen et al suffers from relatively low
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spatial (50 cm3) and temporal (2.3 min) resolution, it can be used to demonstrate that the
rate of lactate formation in tumor tissue is higher than in normal brain tissue.

The potential clinical value of 13C MRS has also been demonstrated ex vivo in biopsies from
prostate, lung and colon cancer. In natural abundance spectra, cancer-specific changes in
various metabolites were found, allowing differentiation of tumor tissue from that of
adjacent non-malignant tissue (141). Although similar data may be obtained more
conveniently using proton MRS, the amount of information in 13C spectra could
theoretically contain information that is not available in proton spectra. When applying
multivariate analysis methods to metabolite patterns, 13C MRS data could potentially add
statistical power and be used either alone or in combination with proton MRS data to resolve
subtle differences between tissues.

3.1.3 Hyperpolarized MRS—Through the introduction of dynamic nuclear polarization
(DNP), the interest in studies of glucose metabolism using MRS has been greatly increased.
This technique can increase the signal-to-noise ratio by more than 50,000-fold, using
hyperpolarized 13C-labeled substrates (142, 143). At 1.5T, the polarization level of 13C at
thermal equilibrium is as low as 1×10−6. Using a relatively rapid hyperpolarization
procedure, polarization levels of >2×10−1 can be achieved (143). The substrate to be
hyperpolarized is present in the solid state and doped with a single-electron containing
compound. At low temperatures (1K), the electrons can be highly polarized due to their high
gyromagnetic ratio. In DNP, this polarization is transferred to coupled nuclear spins by
microwave irradiation near the resonance frequency of the electrons. The hyperpolarization
is retained when the material is rapidly heated and dissolved, producing an injectable liquid
within few seconds.

Due to time constraints and specific properties of hyperpolarized material, dynamic MRSI of
hyperpolarized substrates offers challenges, which typically are absent in spectroscopic
imaging at thermal equilibrium. Firstly, the time window for imaging is restricted to two to
three times the T1 relaxation time. This means that hyperpolarized 13C MRSI must be
completed within a few minutes after preparation of the tracer. Secondly, the longitudinal
magnetization that has been created in the hyperpolarization procedure is not recovering
during imaging. Thus, in addition to the inevitable loss due to T1 relaxation, the RF pulses
applied in imaging convert longitudinal magnetization to transverse magnetization. In order
to minimize magnetization loss, two imaging strategies are employed. Through the use of
rapid low flip-angle RF pulses, only a small fraction of longitudinal magnetization is
destroyed by each pulse. In addition, as much signal as possible is acquired per excitation
through the use of rephasing pulses (144). Another issue is that imaging metabolic
conversion is associated with rapid changes in signal. In sequences that use multiple
excitations, these changes may convolve into k-space and cause image artifacts (145). Due
to the very low interference from background and the more than 50,000-fold increase in
signal after DNP, the signal-to-noise ratio is very high in the initial phase of
hyperpolarized 13C MRSI. As hyperpolarized 13C imaging primarily is restricted by time
and not by signal strength, EPI-based readout has often been found suitable (146). By using
metabolite-specific low flip-angle excitation pulses, adiabatic refocusing pulses and echo
planar readout, hyperpolarized 13C MRSI is performed in small animals with voxel sizes in
the range of 0.135 cm3 with a temporal resolution of around 5 seconds, as shown in an
example of a preclinical prostate cancer model in Figure 5 (146, 147).

The first substrate to be proven useful in characterization of cancer was [1-13C] pyruvate
(148). For both physiochemical and biochemical reasons, this is an attractive substrate
for 13C enrichment. Biologically, pyruvate is the end product of glycolysis and a starting
point for the TCA cycle, lactate production and alanine production. Among its desirable
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physiochemical properties is its compatibility with the DNP hyperpolarization method.
Pyruvate forms an amorphous solid at low temperatures, which, after hyperpolarization can
be readily dissolved in a suitable heated buffer (144). In addition, the signal from the C-1
carbon of both pyruvate, lactate and alanine has a long T1 (approximately 45 seconds in
blood) (149). Thus, longitudinal magnetization of [1-13C] pyruvate is maintained for a
clinically relevant period of time, allowing spectroscopic imaging of pyruvate uptake and
metabolism in distal tissues. In humans, intravenously injected substances reach all major
organs within approximately 15-40 seconds (144). Pyruvate is rapidly taken up and
metabolized by most organs. After uptake, the pyruvate metabolite pattern is dependent on
the nature of the tissue. In tissues where [1-13C] pyruvate predominantly is feeding into the
TCA cycle, it is decarboxylated, producing acetyl-CoA. The resulting generation of
H13CO 3

− can be assessed in real-time using MRS (150). In muscle tissue, transamination of
[1-13C] pyruvate leads to formation of [1-13C] alanine, whereas its predominant metabolic
fate in cancer is reduction to [1-13C] lactate (148, 151). The rate of [1-13] lactate formation
depends on LDH expression and the endogenous pyruvate and lactate concentrations, and
application of dynamic modeling has suggested that the rate of conversion may be
associated with tumor grade (152, 153). The conversion rate is dose-dependent, which must
be taken into account during interpretation of MRSI data following [1-13C] pyruvate
injection (153). The blood-brain barrier (BBB) may be a limiting factor for pyruvate uptake
in healthy brain tissue within the time frame of hyperpolarized MRSI. However, in
xenografted gliomas, it has been shown that uptake and lactate production differs
significantly from normal tissue (154). This is assumed to be an effect of disrupted BBB in
tumor tissue.

Primarily, [1-13C] pyruvate has been shown to be useful in distinguishing tumor tissue from
healthy surrounding tissue, both in prostate cancer, brain cancer and sarcoma. However, as
treatment with cytotoxic drugs may reduce the glycolytic rate in cancer, hyperpolarized
[1-13C] pyruvate could also potentially be used in therapy monitoring. This was first shown
in a solid murine lymphoma model, where the rate of [1-13C] lactate formation and the LDH
activity was significantly decreased after treatment with etoposide (155). The potential value
of hyperpolarised 13C MRS in monitoring the effect of drugs targeting metabolic pathway
has recently been demonstrated by Ward et al, who showed that inhibition of PI3K by
LY294002 or everolimus caused a decrease in [1-13C] lactate formation both in
glioblastoma (in vitro and in vivo) and breast cancer (in vitro) (156). This reduction was
associated with decreased HIF-1 expression and LDH activity, in accordance with
downstream effects of PI3K inhibition.

Although [1-13C] pyruvate is well suited for studies of glucose metabolism in cancer,
several other substrates have also been suggested. One example is [2-13C] fructose, which
can reach sufficient polarization levels through DNP and has a T1 which allows
hyperpolarised MRSI studies. Fructose has an early entry into glycolysis through the action
of hexokinase, yielding fructose-6-phosphate. In a transgenic mouse model of prostate
cancer, it was shown that hyperpolarized [2-13C] fructose was taken up by both benign and
malignant tissue, but that significant conversion to [2-13C] fructose-6-phosphate only
occurred in voxels containing malignant tissue (157). Another potential marker of tumor
response to therapy is [1,4-13C] fumarate. In a murine lymphoma model, the production of
[1,4-13C] malate was significantly increased 24 hr after administration of etoposide (158).
This change correlated with loss of plasma membrane integrity, suggesting the use of
[1,4-13C] fumarate for early detection of cell death following chemotherapy.

For concurrent assessment of different metabolic pathways and tumor microenvironment,
several substrates may be hyperpolarized, injected and imaged at the same time.
Simultaneous hyperpolarization of [1-13C] pyruvate, H13CO3

− (allowing tumor pH
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measurements), [1,4-13C] fumarate and 13C urea (allowing evaluation of tumor perfusion)
has been reported, providing a multimodal approach to evaluation of tumor aggressivity and
response to therapy (159).

In summary, labeling and hyperpolarizing endogenous or exogenous substrates with 13C in
specified locations allow downstream tracing of metabolic within clinically relevant
timeframes. The polarization is retained through serial metabolic conversions, and the ability
to image metabolic fluxes is in principle limited only by the longitudinal relaxation (160).
This technology is rapidly developing and holds the potential to revolutionize the use of
MRSI in molecular imaging of cancer. The method has been applied to a wide range of
preclinical applications, and clinical studies have recently been initiated. Due to the
combination of endogenous tracers, high sensitivity, non-invasiveness and absence of
ionizing radiation, it is expected that hyperpolarized MRSI will be a valuable supplement to
existing imaging modalities in the management of cancer.

3.2 Altered enzymes in glycolysis and tricarboxylic acid cycle (TCA) of cancers

The altered glucose metabolism in tumors involves several different processes. Firstly,
cancer cells exhibit enhanced glucose uptake through upregulation of facilitative glucose
transporters, primarily GLUT1. Overexpression of glucose transporters has been shown in
most cancers (161). It has also been demonstrated that glucose transport rates are higher in
cancer cell lines than normal cell lines even at the same rates of proliferation, suggesting an
association between malignant transformation and increased glucose consumption (162).

Several enzymes in glycolysis have also been shown to be generally upregulated in cancer
(163). Both the rate-limiting enzymes 6-phosphofructokinase (PFK1) and pyruvate kinase
(PK) as well as concentration-dependant enzymes such as hexokinase 2 (HK2),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), triose-phosphate isomerase (TPI),
phosphoglycerate kinase 1 (PGK1) and enolase 1 (ENO1) are upregulated, allowing a
sustainable high glycolytic flux.

Increased lactate production is a prerequisite for sustaining a high glycolytic flux.
Conversion of pyruvate regenerates NAD+ from NADH, avoiding the depletion that
otherwise would occur as a result of glycolytic NAD+ consumption. This is facilitated
through upregulation of lactate dehydrogenase A (LDHA). Thus, the net effect of aerobic
glycolysis in cancer cells is the formation of large amounts of lactate, which is present inside
the cells in abnormally high concentrations and secreted through the action of MCT4, a
monocarboxylic acid transporter, which also is upregulated in cancer (164, 165).

3.2.1 Role of the TCA cycle in cancer—Although cancer cells exhibit a significant
increase in lactate production from pyruvate, their switch to aerobic glycolysis is not
complete. A small fraction of their pyruvate is metabolized via the mitochondrial
tricarboxylic acid (TCA) cycle (166). This generates some ATP, but more importantly also
supplies the cancer cells with precursor molecules for pathways that consume TCA cycle
intermediates. Cancer cells also typically use glutamine as a carbon source for anaplerosis.
Using 13C MRS, it has been shown that glutamine catabolism exceeds the nitrogen
requirements for nucleotide production. Instead, glutamine provides a supplementary carbon
source allowing tumor cells to use glucose-derived carbon and TCA cycle intermediates for
biosynthesis of fatty acids and other macromolecules (166). Although the flux trough the
TCA cycle is relatively smaller than the flux through glycolysis in many cancers, their TCA
cycle is functionally intact and the enzymes of the TCA cycle are not generally dysregulated
in cancer. Interesting exceptions are succinate dehydrogenase and fumarate hydratase, which
have been established as tumor suppressors (167). Mutations in these genes have been
shown to cause certain cancers such as paraganglioma, phaeocytochromas and renal cell
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carcinoma (168-170). Intriguingly, these cancers conform to Otto Warburg’s original
hypothesis that mitochondrial defects are a root cause of cancer.

3.3 Oncogenes and signaling pathways arriving at cancer-phenotypic endpoints of
glucose metabolism

The increased glycolysis in cancer is associated with different regulation mechanisms,
which are displayed in Figure 4. Firstly, glycolytic enzymes are induced by abnormal
activity in several different groups of oncogenes. Secondly, stabilization of HIF-1 may also
contribute to this enzyme induction. The relative role of these two systems are not
completely clear, but it should be noted that cancer cells which do not experience hypoxia,
such as leukemic cells which reside in the blood stream under high oxygen tension, may be
highly glycolytic (115). Thus, HIF-1 may not itself contribute to the switch from normal
metabolism to extensive aerobic glycolysis, but is rather a mechanism for sustaining high
glycolytic flux and cellular proliferation rate under hypoxic conditions.

3.3.1 PI3K/AKT/mTOR, c-Myc, and p53 as regulators of glycolytic activity—In
normal cells, glycolysis is tightly controlled through feedback mechanisms such as
inhibition of PFK-1 and PK by ATP. In cancer cells, a coordinated regulation of proteins
controlling glycolysis is frequently brought about through the action of upstream signaling
pathways. Most of the regulatory mechanisms that increase glucose metabolism in cancer
cells involve mutations in the PI3K/Akt pathway, Myc or p53, all frequently occuring
tumorigenic mutations in cancer.

Mutations that enhance PI3K signaling is a common feature of many cancer types, and
amplification of its downstream effectors AKT and mammalian target of rapamycin
(mTOR) regulates several cellular responses to growth factor stimulation, which in itself
may be sufficient to switch the metabolism from mitochondrial respiration to aerobic
glycolysis (115). AKT signaling induces expression of GLUT1 trough the action of
mammalian target of rapamycin (mTOR), and also activates HK2 association with
mithochondria promoting phosphorylation of glucose (171, 172).

Another oncogenic transcription factor that has been associated with increased glycolytic
flux is c-Myc. Increased c-Myc expression upregulates lactate dehydrogenase A (LDHA),
which in turn converts pyruvate to lactate. It has also been shown that c-Myc directly
regulates other genes in the glycolysis such as GLUT1, HK2, PFK1 and enolase 1 (ENO1)
(173, 174).

A major tumor suppressor gene, p53, has also recently been shown to be involved in cancer
cell glucose metabolism. Although mechanisms are not completely elucidated, mutations in
this gene modulate the balance between oxidative phosphorylation and glycolysis through
various transcription factors (175).

3.3.2 HIF-1 as regulator of glycolytic activity—Cancer cells are frequently exposed to
decreased oxygen availability. The HIF-1 transcription factor complex is activated in
hypoxia and coordinates several adaptive mechanisms. In order to reduce oxygen
consumption requirements by reducing oxidative phosphorylation and increasing lactate
production, HIF-1 stimulates LDHA activity and reduces pyruvate dehydrogenase-kinase 1
(PDK1) activity. In addition, HIF-1 stimulates expression of both glucose transporters and
glycolytic enzymes (176). Several enzymes in the glycolysis are positively regulated by both
HIF-1 and c-MYC, potentially making them attractive targets for therapeutic drugs (116).

In summary, mutations in major oncogenes and tumor suppressor genes stimulate glucose
transport, increases flux through glycolysis and suppress the entry of pyruvate into the TCA
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cycle. This abnormal regulation of glucose metabolism is specific for cancer cells, as they
acquire a self-sustainable anabolic phenotype that is not depending on extrinsic growth
factors.

3.4 Targeting of glucose metabolism for cancer therapy

It may seem contradictory for tumor cells to generate energy through lactate production
when oxygen levels would allow oxidative phosphorylation. However, the above-mentioned
changes in glycolytic activity all contribute to a significantly increased glycolytic flux in
cancer cells. This means that aerobic glycolysis may provide adequate amounts of energy to
cancer cells while also providing essential precursors for biosynthesis (115, 177). In
addition, the cancer cells gain an increased probability of surviving periods of limited
oxygen supply. Secretion of lactate may also play a role in blocking immune responses and
aid in invasion of neighbouring tissue (178).

As the high level of aerobic glycolysis appears to be beneficial for the survival and
proliferation of tumor cells, metabolic pathways have recently been recognized as attractive
drug targets. One possible approach in this respect is the direct targeting of enzymes
involved in glucose metabolism. Inhibition of glucose transport has negative effects on
tumor growth in vivo, but has currently no clinical utility (179). Several hexokinase
inhibitors have also entered clinical trials based on encouraging findings in vitro and in vivo

(180-183). Glycolytic inhibitors have been shown to sensitize tumors to other
chemotherapeutic agents, providing a new possible approach to treatment of chemoresistant
cancers (184-186). Currently, their role in cancer management is unclear. Ongoing clinical
studies will hopefully provide new insight in the role of this drug class.

It has become increasingly evident that multiple genetic and epigenetic alterations are a
major mechanism in cancer development, and that these alterations in many cases contribute
to altered glucose metabolism. This has resulted in development of drugs that target
upstream regulation of metabolic pathways rather than effector enzymes. An example is
imatinib, which inhibits the chronic myeloid leukemia-specific oncogene product BCR-
ABL. Among other effects, imatinib decreases HK and G6PD activity, thereby suppresseing
aerobic glycolysis and depriving cells of metabolic intermediates (187). Currently, drugs
targeting PI3K, mTOR, AKT and HIF-1 are in clinical trials, suggesting that inhibition of
oncogenic signalling pathways may be an important approach to treatment of cancer in the
near future (188).

Development of drugs that directly or indirectly inhibit the increased glucose metabolism is
likely to benefit from noninvasive techniques, such as MRS, for assessment of drug efficacy.
In preclinical drug development, MRS has been frequently used for studies of glucose
metabolism kinetics in cell cultures and in vivo model systems (138, 156, 189, 190). An
increasing number of studies suggest that MRS also may play a role in clinical cancer
management through direct assessment of glucose metabolism (128, 140, 191). The current
interest in targeting of oncogenic signalling pathways regulating cancer glycose metabolism
combined with the developments in hyperpolarized 13C MRSI for molecular imaging
suggest an important role for use of MRS in cancer management in the future.

4. Conclusions

Versatile MRS techniques are currently already available to detect a multitude of metabolic
information noninvasively in vivo, and in HR MRS applications ex vivo. The metabolic
information provided by MRS can give important information on the molecular make-up of
tumors, which is crucial in the ongoing transition of clinical cancer care towards
personalized molecular medicine. The information contained in the MRS-detected
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metabolome can be utilized to aid in the diagnosis of cancer, to help select appropriate
anticancer therapies, to monitor the tumor response to anticancer treatments, and to develop
and evaluate novel targeted molecular therapies. Particularly in the development of novel
anticancer therapies that target enzymes in choline and glucose metabolism, MRS
techniques are currently proving extremely valuable, with a high potential for clinical
translation. Certain MRS-detected metabolites can also serve as biomarkers or surrogate
markers for novel molecular therapies that target oncogenic signaling pathways that have a
downstream effect on a given MRS-detected metabolite. MRS can easily be integrated with
MRI applications that provide complementary information on tumor anatomy.

The limitations of MRS techniques lie in their relatively low detection sensitivity, which can
result in insufficient spatial and spectral resolution for clinical cancer detection and
treatment monitoring. However, the availability of ever increasing magnetic field strengths
and inventions of novel techniques such as hyperpolarization are continuing to push the
limits of currently available MRS techniques. With its unmatched ability to provide a
multitude of molecular information, MRS applications will undoubtedly play an important
role in the future of molecular and personalized cancer care.
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Figure 1.

(A) Chemical structures of the choline phospholipid metabolites free choline (Cho),
phosphocholine (PC), and glycerophosphocholine (GPC). (B) High-resolution ex vivo 1H
MR spectra of triple-negative human MDA-MB-231 breast cancer cell extracts (top) and in
vivo 1H MR spectra of the same cell line grown as orthotopic tumor (bottom). (C) High-
resolution ex vivo 31P MR spectra of triple-negative human MDA-MB-231 breast cancer cell
extracts (top) and in vivo 31P MR spectra of the same cell line grown as orthotopic tumor
(bottom). Assignments: Cho, free choline; GPC, glycerophosphocholine; GPE,
glycerophosphoethanolamine; DPDE, diphosphodiester; NDP, nucleoside diphosphate;
NTP, nucleoside triphosphate; Lac, lactate; Lipid-CH2-, methylene groups of mobile lipids;
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Lipid-CH3-, methyl groups of mobile lipids; PC, phosphocholine; PE,
phosphoethanolamine; PCr, phosphocreatine; Pi, inorganic phosphate; tCho, total choline-
containing compounds (Cho+PC+GPC). The 1H and 31P nuclei in Cho, PC, and GPC and
their respective 1H and 31P signals in the MR spectra are color-coded to identify the MR
signals that arise from the corresponding nuclei.
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Figure 2.

Axial T2-weighted MR image and MRSI of the normal prostate gland and prostate cancer
obtained at 1.5 T. (A) The MRSI was acquired from the whole gland (heavy white box)
showing a large low signal intensity lesion (arrows) in the left peripheral gland. (B) The
right voxel from the peripheral gland shows a high T2-weighted MRI signal intensity with
the normal metabolic profile of prostatic gland, characterized by a high level of citrate and
lower levels of choline and creatine. (C) The corresponding spectrum from the left voxel
shows increased choline and reduced citrate, indicative of the metabolic profile of prostatic
tumor combined with low signal intensity on T2-weighted MRI. Adapted from (33).
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Figure 3.

Maximum intensity projection MR images (left) and corresponding MR spectra (right) from
a 40-year-old patient breast cancer patient who achieved pathological complete response.
(A) Before treatment, a 3.4-cm lesion (arrow) shows a heterogeneous enhancing pattern. An
elevated tCho peak (right) is visible at 3.23 ppm in the water-fat suppressed MR spectrum.
Gaussian model fitting of the tCho peak gave 2.33 ± 0.54 mmol/kg tCho. (B) Enhancing

lesion (white arrow) and water-fat suppressed spectrum (black arrow) acquired after one

neoadjuvant chemotherapy (NACT) cyclophosphamide (AC) cycle. Lesion size was reduced

to 2.6 cm, the tCho peak was visible at 3.22 ppm, and tCho = 1.15 ± 0.25 mmol/kg. The

tCho level was reduced by 51%, while the tumor size decreased by 23%. (C) At second

follow-up after two AC cycles and one taxane regimen, the lesion (white arrow) further
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shrank to 1.3 cm, indicating good response. (D) After completion of all neoadjuvant

chemotherapy cycles, the breast lesion completely regressed. The tCho peak (arrow) was no

longer detectable (100% reduction) in the water-fat suppressed spectrum. Adapted from

(22).
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Figure 4.

Schematic showing the most important cancer-related cell signaling pathways (center) that

impact upon enzymes in glucose metabolism (left) and enzymes in choline phospholipid

metabolism (right). Arrows depict an activation in the direction of the arrow, and short

vertical lines at the end of a line symbolize inhibition in the direction of vertical line.

Abbreviations: acetyl-CoA, acetyl coenzyme A; AKT, v-akt murine thymoma viral

oncogene homolog 1; CCT, CTP:phosphocholine cytidylyltransferase; Chk-α, choline

kinase alpha; c-Myc, v-myc myelocytomatosis viral oncogene homolog; CPT,

diacylglycerol; CT, choline transporter; CTP, cytidine-5′-triphosphate; Erk, extracellular

signal-regulated kinases; GLUT, glucose transporter; GPC-PDE, glycerophosphocholine

phosphodiesterase; HIF-1, hypoxia inducible factor 1; HK, hexokinase; LDH, lactate

dehydrogenase; LPL, lysophospholipase; mTOR, mammalian target of rapamycin; PDH,

pyruvate dehydrogenase; PFK1, phosphofructokinase 1; PI3K, phosphatidylinositol 3-

kinase; PKM2, pyruvate kinase muscle isozyme 2; PtdCho-PLA2, phosphatidylcholine-

specific phospholipase A2; PtdCho-PLC, phosphatidylcholine-specific phospholipase C;

PtdCho-PLD, phosphatidylcholine-specific phospholipase D; TCA, tricarboxylic acid.
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Figure 5.

In vivo MRSI of a transgenic murine mouse model of prostate cancer showing the effect of a

compressed sensing imaging protocol. Pyruvate, lactate and alanine were detected in voxels

down to 0.034 cm3 with TR=7s. The color overlay maps generated from the accelerated

spectra show high intensity regions as brightly colored and highlight the spatial localization

of metabolites according to tissue type. Tumor and non-tumor regions showed marked

differences in metabolic profile. (a), (b) Comparison of spectra from un-accelerated (top

panel) and accelerated (bottom panel) acquisitions with similar scan time demonstrating how

increased spatial resolution can characterize metabolic heterogeneity and define tumor

boundaries. (c) Comparison of spectra from un-accelerated and accelerated acquisitions

demonstrating a 4-fold increase in spatial resolution and a 2-fold decrease in acquisition

time. Figure adapted from (146) with permission.
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