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ABSTRACT The purpose of this study is to investigate feasibility of estimating the specific absorption rate 

(SAR) in MRI in real time. To this goal, SAR maps are predicted from 3T- and 7T-simulated magnetic 

resonance (MR) images in 10 realistic human body models via a convolutional neural network. Two-

dimensional (2-D) U-Net architectures with varying contraction layers and different convolutional filters 

were designed to estimate the SAR distribution in realistic body models. Sim4Life (ZMT, Switzerland) was 

used to create simulated anatomical images and SAR maps at 3T and 7T imaging frequencies for Duke, 

Ella, Charlie, and Pregnant Women (at 3, 7, and 9 month gestational stages) body models. Mean squared 

error (MSE) was used as the cost function and the structural similarity index (SSIM) was reported. A 2-D 

U-Net with 4 contracting (and 4 expanding) layers and 64 convolutional filters at the initial stage showed 

the best compromise to estimate SAR distributions. Adam optimizer outperformed stochastic gradient 

descent (SGD) for all cases with an average SSIM of 90.5∓3.6 % and an average MSE of 0.7∓0.6% for 

head images at 7T, and an SSIM of >85.1∓6.2 % and an MSE of 0.4∓0.4% for 3T body imaging. 

Algorithms estimated the SAR maps for 224x224 slices under 30 ms. The proposed methodology shows 

promise to predict real-time SAR in clinical imaging settings without using extra mapping techniques or 

patient-specific calibrations. 

INDEX TERMS Image processing, Magnetic resonance imaging, Machine learning, Specific absorption 

rate, Supervised learning 

I. INTRODUCTION 

Modern neuroscience relies on understanding the brain in 

health and disease. Thus, the availability of technology that 

can significantly increase the spatial resolution and 

sensitivity achievable with magnetic resonance (MR) 

neuroimaging at the current used field strength of 3T and 

emerging ultra-high field (UHF) strengths of 7T and higher, 

consistent with safety, would offer the potential to advance 

our understanding of brain structure and function by enabling 

investigations with greater specificity and granularity [1]. 

A key limitation to the high potential of UHF magnetic 

resonance imaging (MRI) in neuroscience research and 

clinical or diagnostic applications [2, 3] is the safety concern 

related to the nonuniform deposition of radiofrequency (RF) 

power in the body [4], quantified by the specific absorption 

rate (SAR), which can lead to dangerous tissue heating and 

damage [5]. Not only does the average SAR possess a 

quadratic dependence on the static magnetic field strength 

(B0) [6], increasing 4-fold from 3T to 7T, but due to the 

higher Larmor frequency and thus shortened in-tissue 

wavelength, it also exhibits a spatial variation that can lead to 

“local SAR” patterns or “hotspots” of focused high RF power 

deposition and localized tissue heating [7-13]. This results in 

significant SAR nonuniformity at anatomical dimensions 

similar to the brain at 7T (wavelength ~11 cm in tissue) as 

well as the body at 3T (wavelength ~26 cm in tissue) [14]. 
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Moreover, parallel transmit (pTx) technology with 

multiple independent transmit RF channels [15-17] is now 

common in UHF applications and can lead to even stronger 

hotspots because of potential constructive interference of the 

electric fields [18, 19]. 

While a small portion of UHF MRI has received Food and 

Drug Administration (FDA) approval [20, 21], most clinical 

imaging has been performed at 3T to date. This is because 

substantial safety and technological hurdles still need to be 

surmounted before the potential benefits of higher sensitivity 

and spatial resolution can be fully realized. Specifically, there 

is a lack of technology that can measure local SAR due to 

anatomical and positional variations between patients, and 

between transmit coils. Current technology is not equipped to 

measure spatially varying local SAR; the only quantity that 

can be determined in vivo is the overall average, or global, 

SAR, delivered to the entire anatomy under investigation.  

Local SAR variation is highly difficult to predict due to 

anatomical and positional variations between patients, as well 

as variations in transmit coils. Many institutions use a 

conservative estimate of the peak local SAR via its ratio to 

the measurable global SAR; typically, ~20:1 [19], thereby 

severely limiting the applied transmit power and thus the 

imaging performance achievable by UHF MRI, in particular 

resolution and/or scan time. This critical barrier is one of the 

main reasons 7T has not yet reached the patient in its full 

capacity and holds back its success as an extremely powerful 

imaging modality with unprecedented ability to decipher fine 

structures. 

MR thermometry as an alternative approach suffers from a 

coarse temperature resolution [22]. The advent of artificial 

intelligence (AI) and machine learning in MRI [23-36] has 

opened up new avenues for the prediction of various imaging 

characteristics, among them the recent prediction of local 

SAR in prostate imaging [37-40], as well as the prediction of 

temperature rise in the brain for 33 different tissue types [41]. 

In this paper, we expand these pioneering techniques by 

use of a comprehensive training set of anatomical models and 

predict local SAR both at the 3T and 7T field strengths, for a 

large variety of landmarks and thus imaging anatomies. We 

propose MRSaiFE [42-44], which is eventually expected to 

become an AI-based, exam-integrated, MRI safety prediction 

software facilitating the safe generation of 3T and 7T images. 

In this work, we demonstrate proof of concept and feasibility 

for MRSaiFE using a database of 10 human body models.. . 

The algorithm is trained and evaluated for use at (1) 3T body 

dimensions and (2) 7T brain dimensions – significant SAR 

non-uniformity can occur at both field strengths and provides 

good basis to train the network on a variety of scenarios. Our 

results suggest SAR-monitoring with >90% structural 

similarity index (SSIM) [45] and <1% mean squared error 

(MSE) for high resolution imaging at UHF. 

 
II. METHODS 

A.  DATA GENERATION 

The input data for this study were acquired from Sim4Life 

simulations (ZMT, Zurich, Switzerland) using Virtual 

Population (IT’IS, Zurich, Switzerland) body models (Figure 

1). Figure 2 shows an illustration of the proposed neural 

network. An anatomical image is used as the input to a neural 

network and predicts a SAR map in image form at the output.  

The anatomical input image that would come from an MRI 

scanner in a real experiment was approximated by using 

black/white images of the body models. Image data sets were 

synthesized for 1 mm anatomical resolution and down 

sampled to 224 x 224 x 224 pixels for a field of view (FoV) 

of 30 cm x 30 cm x 30 cm for head imaging (1.3 mm 

isotropic resolution) and for a FoV of 60 cm x 60 cm x 60 cm 

for body imaging (2.7 mm isotropic resolution). In order to 

encode landmark information as part of a neural network 

with a single input and output image, these anatomical 

images were weighted by the normalized B1
+ field of the 

unloaded RF coils [43]. 

For 3T body MRI SAR prediction, a 16-rung body coil 

model (65 cm diameter, 67 cm length) made for a standard 

bore size of 60 cm was used in conjunction with the body 

models Ella (26y, body mass index (BMI) 21.6 kg/m2), Duke 

(34y, BMI 22.4 kg/m2), and pregnant women at gestational 

stages of 3, 7, and 9 months (26y, BMI not available). Duke 

was positioned at 225 different imaging landmarks spanning ∓40 mm, ∓60 mm, and +60/-100 mm along the x-, y-, and z- 

axes (axial: xy-plane, coronal: yz-plane, sagittal: xz-plane). 

Similarly, Ella and the pregnant women were positioned at 

125 different imaging landmarks varying between ∓40 mm 

in x- and y-axes, and ∓200 mm in z-axis. The 1-gram 

averaged peak local SAR outputs were evaluated for 1 W of 

simulated input power and coronal SAR slices were 

extracted. Here, the iterations where the body models 

intersected with the coil, and slices containing no 

information, were discarded from the dataset. This resulted in 

 
Figure 1 Data were generated with Sim4Life (ZMT, Zurich, 

Switzerland). (A) Body coil is used for 3T body imaging. Since 

there is no body coil available at 7T, a head coil (D) is used for 7T 

imaging. Positions of the realistic body models were translated in 

(B) x direction, (C) y direction, and (E) z direction. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3118290, IEEE Access

 

VOLUME XX, 2017 9 

a set of 67,861 input anatomical and 67,861 output SAR 

images at 3T. 

For 7T head MRI SAR prediction, a 16-rung birdcage 

head coil model (30 cm diameter, 25 cm length) was used 

with the body models Ella (26y female, BMI 21.6 kg/m2), 

Charlie (8w female, weight 4.3 kg, BMI not available), and 

pregnant women at different gestational stages (3, 7, and 9 

months, 26y, BMI not available). All models were positioned 

at the same imaging landmarks within the coil ranging from ∓20 mm in x- and y-axes, and ∓60 mm in z-axis. Input 

anatomical image and output SAR image generation 

followed the same steps as for the 3T analysis, resulting in in 

a set of 52,806 input anatomical and 52,806 output SAR 

images at 7T. 

The data were split into three categories for each body 

model separately with an approximate ratio of 80, 10, and 

10% for training, validation, and testing, respectively. A 

summary of the dataset is provided in Table I. Algorithms 

were trained and tested for each body model separately. 

B.  NEURAL NETWORK ARCHITECTURE 

A 2D U-Net architecture [46] estimated SAR maps (y) of a 

given MRI image (x) by learning a transformation, y=f(x), 

between the two. Here, y is the simulated SAR map of a 

given slice, which was also used as the ground truth (GT). 

We implemented a set of U-Net architectures using a 

cascade of 2D convolutional filters (Figure 2). Convolutional 

layers were paired with nonlinear rectified linear unit (reLU) 

activation functions [47], batch normalization [48], and He 

initialization [49]. The input image size was set to 224 x 224 

pixels, zero padding was used for convolutions, and the 

output was cropped to the size of the input image. In order to 

analyze the effect of different hyperparameters on the 

network performance, we designed 3 U-Nets with varying 

number of contraction (encoder) and expansion (decoder) 

layers, using different filter feature map lengths (n) and 

learning rates (LR). The first, second, and third architectures 

used 2, 4, and 6 encoder and decoder stages, respectively 

(Figure 2. A, B, and C). Each stage contained 2 cascaded 

convolutional filters [36] with the first layer feature map 

lengths varied from 32 to 256 and orders of 2 (i.e., n= 32, 64, 

128, and 256). These filter lengths decreased to 16 and 32 for 

the 6-stage network due to limited memory. The feature 

maps of the first layers were incremented by a factor of 2 for 

the subsequent encoding stages and decremented by a factor 

of 2 for the consequent decoding stages. All networks used 

3x3 convolution filters, a 1x1 stride length, 2x2 max pooling, 

and up-convolutions. The final layer of each architecture 

included 1x1 convolutional filters with a sigmoid activation 

function. 

 

Table I. Dataset generated in this study. 
Field 

Strength 

Body 

Model 

Total # 

Images 
Training Validation Testing 

3T 

Ella 10,340 8272 1034 1034 

Duke 16,766 13332 1616 1818 

Preg3M 11,070 8820 1080 1170 

Preg7M 14,605 11684 1397 1524 

Preg9M 15,080 12035 1450 1595 

7T 

Ella 12,600 10080 1296 1224 

Charlie 12,075 9660 1242 1173 

Preg3M 12,702 10147 1241 1314 

Preg7M 7,548 6052 748 748 

Preg9M 7,881 6319 781 781 

 TOTAL 120,667 88,129 10,851 11,347 

C.  TRAINING AND VALIDATION 

We used a 3T body imaging data set generated by using 

Ella with the 3 different U-Net configurations to determine 

the best performing architecture and optimized the 

hyperparameters using SSIM, MSE, and training time per 

image as performance metrics.  

 
Figure 2. 2-D U-Net architectures used in this study. 

(A) 2 stages, (B) 4 stages, and (C) 6 stages of encoder 

layers were implemented. Length of feature vectors 

was defined by n and varied between 32 to 256 as 

powers of 2. Increasing n improved the network 

capacity, with costs of increased memory 
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Many deep learning image processing algorithms use MSE 

and SSIM as a basis of comparison between the ground truth 

and predicted images. The most traditional comparison uses 

the MSE and represents the cumulative mean squared error 

between ground truth and predicted images. The SSIM is 

often used in addition to measure the perceived change in 

structural information from ground truth to prediction. Given 

our need to predict anatomical outlines and SAR hotspots, 

this metric is a good indicator of general structural 

correctness of the predicted image.  

Training was performed using adaptive moment 

estimation (Adam) [50] and stochastic gradient descent 

(SGD) [51] optimizers with constant exponential decay rates 

and momentum values (i.e., β1=0.90, β2=0.99, and ε=10-7 for 

Adam, as well as a momentum=0.9 for SGD). To optimize 

the hyperparameters, the MSE between the simulated and 

predicted SAR maps was minimized on the validation dataset 

by using (1). 

 

(1) 

Here N is the total number of pixels in the images. A 

dynamic learning rate (LR) approach was used with initial 

LRs of 10-3, 10-4, 10-5, and 10-6, and these rates were 

decreased to 80% at every 5th epoch. The maximum number 

of epochs was set to 200, and the best model was determined 

and saved using the Keras and Tensorflow backends 

(Google, Mountain View, CA). All training algorithms were 

run twice for validation purposes, and the batch size for 

training, validation, and test datasets was set to 1.  All 

algorithms were run on an NVIDIA Titan RTX (NVIDIA, 

Santa Clara, CA) Graphics Processing Unit (GPU). 

D.  TESTING 

Testing was performed on the testing datasets prepared for 

each body model. Quantitative image comparisons were 

performed between the GT images (simulated SAR) and the 

 
Figure 3. Performance comparison of three U-Nets due to different hyperparameters and time budget. All 

structures were trained and tested on the same realistic body model (Ella) for 3T body imaging. SSIM of (A) 2-

stage, (B) 4-stage, and (C) 6-stage U-Nets are depicted. (D) Time to train each image showed exponential increase 

among different U-Nets. Increasing the length of feature maps showed linear increase on training time for the same 

network up to n=128. 
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predicted SAR maps using MSE. In addition, SSIM was 

evaluated to provide a perceptual image quality comparison. 

We also introduced a hotspot analysis by masking the 

images only using the pixels that fell within a percentage of 

highest local SAR values. We evaluated the similarity in 

location between ground truth and prediction by use of SSIM 

between ground truth and predicted hotspots. We also 

evaluated the maximum SAR values for all hotspots and 

calculated the relative error between prediction and ground 

truth. 

 
III. RESULTS 

A.  HYPERPARAMETER ANALYSIS 

SSIM results and the training time of the 3 U-Nets for 

different hyperparameters are given in Figure 3 (Adam) for 

3T body MRI. Increasing the learning rate of the 2-stage 

network (Figure 3A) from 10-6 to a higher level (eg, 10-3) 

increased the average SSIM from 68.9∓17.6% to 

81.1∓4.8%. LRs chosen over a range from 10-3 to 10-5 

resulted in similar SSIM. Additionally, increasing the feature 

map length from 32 to 64 improved the SSIM from 

77.3∓1.2% to SSIM of 81.7∓1.0%. The use of 128-layer 

feature maps led to the highest variation in SSIM (ie, ∓23.2%) among all LRs and feature map sizes for all body 

models. Increasing the feature map length from 16 to 256 

increased the time required to train each slice from 8 to 80 

ms with limited improvement in SSIM.  

The architecture containing 4 stages exhibited more 

variation for different LRs and feature map lengths (Figure 

3B). The use of 32 convolution filter layers at the initial stage 

generated the lowest SSIM (ie, 65.4∓3.5%), which clearly 

demonstrates the importance of the length of the feature map 

at the initial layer. The best average SSIM, ie 83.0∓9.4%, 

was reached when the LR was 10-5. Although changing the 

initial layer feature map length from 64 to 256 increased the 

 
Figure 4. Inter-subject performance analysis of the 4-stage U-Net with 64 convolutional filters at the initial 

layer. Adam optimizer worked better than SGD in terms of SSIM for all scenarios. (Top Row) For 3T Body 

SAR prediction, an average SSIM of 85.1∓6.2% and an average MSE of 0.4∓0.4% was observed (Adam), 

as opposed to a SSIM of 69.3∓4.5%  and an MSE of 0.5∓0.4%  (SGD). (Bottom Row) In the 7T brain SAR 

prediction, we observed an average SSIM of 90.5∓3.6% and an average MSE of 0.7∓0.6% (Adam), 

compared to a SSIM of 81.4∓2.6% and an MSE of 0.5∓0.5% (SGD). The higher spatial resolution of the 7T 

data (ie, isotropic pixel size of ~1.33 mm compared to 2.67 mm at 3T) resulted in improved SSIM and MSE. 
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capacity of the network, it improved the average SSIM only 

slightly (ie, 79.9∓10.2% to 85.4∓5.1%) but decreased the 

dependence on hyperparameter variations significantly (ie, 

the variation of SSIM decreased from 10.2% to 5.1%). 

Additionally, the training time for the 256-layer feature map 

was increased by a factor >2 compared to 128 layers. Thus, 

among the investigated 4-stage U-Net architectures, the use 

of either 64 or 128 feature maps at the initial stage produced 

the best trade-off for all LRs. 

The results for the 6-stage U-Net architecture are reported 

in Figure 3C. Using 32 feature map layers at the initial stage 

improved the average SSIM to 70.3∓2.0% compared to the 

case with 16 layers (ie, 51.0∓4.0%), again highlighting the 

importance of the initial layer size. This result was also 

slightly improved compared to the 4-stage U-Net (ie, 

65.4∓3.5%), emphasizing the merely incremental 

contribution of higher number of stages for this problem. 

Similarly, although the number of layers and networks 

capacity is much higher than in the 2-stage architecture, the 

6-stage network with 32 feature maps (SSIM = 70.3∓2.0%) 

was not able to outperform the 2-stage architecture with 64 

feature maps (SSIM = 81.7∓4.6%).  

 
Figure 5. A selection of slices for Ella, Duke, and Pregnant Women of different gestational stages at 3T body 

imaging. Despite very high variation of SAR maps and input images, the proposed 4-stage U-Net architecture 

successfully recovered the distribution with better than 80% average SSIM and less than 0.5% average MSE for 

all body models. 
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In summary, the initial layer feature map length was a key 

factor contributing to model performance and led us to the 

selection of a 4-stage U-Net architecture with 64 initial layer 

convolutional filters, using a LR of 10-5. 

B.  PERFORMANCE EVALUATION OF DIFFERENT 

BODY MODELS AND OPTIMIZERS 

 

We used the optimized 4-stage U-Net architecture to 

analyze performance metrics for different body models and 

different field strengths (Figure 4). 

Adam outperformed SGD for all body models and all field 

strengths according to SSIM metrics (Figure 4). For 3T body 

SAR prediction (top row), an average SSIM of 85.1∓6.2% 

and an average MSE of 0.4∓0.4% was observed (Adam), as 

opposed to a SSIM of 69.3∓4.5% and an MSE of 0.5∓0.4% 

(SGD). Specifically, for Ella, we observed a SSIM of 

87.9∓8.0% and an MSE of 0.2∓0.2%. At the same field 

strength for Duke, we observed a 91.0∓3.7% SSIM and a 

0.3∓0.2% MSE. Similarly, SSIM results of 81.9∓4.9%, 

81.9∓7.8%, and 82.7∓6.6% were obtained for the 3-, 7-, and 

9-month pregnant women, respectively. An average MSE of 

 
Figure 6. A selection of slices for different body models at 7T. 4-stage U-Net architecture successfully recovers the 

SAR distribution for all body models (SSIM >91%, MSE<0.5%). It is seen that the spatial information provided by 

the input images also carried to estimation results without any memorization. 
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0.5% with a standard deviation of <0.5% was observed for 

the pregnant women. 

In the 7T brain SAR prediction (Figure 4, bottom row), we 

observed similar performance for all body models, with an 

average SSIM of 90.5∓3.6% and an average MSE of 

0.7∓0.6% (Adam), compared to a SSIM of 81.4∓2.6% and 

an MSE of 0.5∓0.5% (SGD). The higher spatial resolution of 

the 7T data (ie, isotropic pixel size of ~1.33 mm compared to 

2.67 mm at 3T) resulted in improved SSIM and MSE. For 

the baby body model Charlie, an SSIM of 92.2∓1.7% and an 

MSE of 0.8∓0.5% was achieved. Similarly, SSIM results of 

91.3∓3.6%, 84.1∓5.8%, 92.5∓3.6%, and 92.6∓3.4% were 

obtained for Ella as well as the 3-, 7-, and 9-month pregnant 

women, respectively. 

 

B.  HOTSPOT ANALYSIS 

Visual representation showed good agreement of ground 

truth and predicted hotspots in 10 subjects (Figure 5 and 6, 

hotspot columns). Using the top 15% of local SAR values, 

we obtained a mean SSIM of 97.3%±2.5% denoting good 

agreement on hotspot locations, as well as a relative mean 

error of 1.5%±1.1% of maximum SAR values when the SAR 

map was normalized to the mean of the ground truth. This 

corresponds to normalizing the predicted SAR map to the, 

measurable, global SAR at the time of the patient exam. 

Mean errors without normalization were found to be 11%, 

still reasonable given the small training dataset. An added 

underestimation constraint that will be part of the full 

MRSaiFE algorithm is proposed in the discussion and is 

expected to help with hotspot prediction accuracy. 

C. PERCEPTUAL IMAGE QUALITY ANALYSIS 

Representative 3T body imaging slices randomly selected 

from each body model are depicted in Figure 5. 

Qualitatively, the 4-stage U-Net designed in this work 

successfully estimated the SAR distributions for the given 

slices. 

Similarly, a selection of slices and performance metrics for 

7T head imaging are depicted in Figure 6. A representative 

anatomical input image for Ella with very fine detail is 

shown and yielded a predicted SAR with low spatial detail as 

expected from the GT SAR simulation (top row). The 

proposed U-Net successfully (ie, with 93.7% SSIM and with 

0.6% MSE) estimated this distribution. Similarly, a slice 

taken from Charlie simulations with low anatomical detail 

(second row) was used. The U-Net architecture successfully 

estimated its SAR distribution with a SSIM of 91.0% and an 

MSE of 0.1%. For the high-resolution head imaging 

simulations conducted on the 3 pregnant body models (rows 

3, 4, and 5), the proposed U-Net yielded an SSIM of ≥93%. 

Regardless of the spatial information encoded in the 

anatomical input slices, the 4-stage U-Net architecture 

successfully recovered the SAR maps of the corresponding 

slices. 

 

III. DISCUSSION 

The U-Net architecture is assumed to be one of the 

workhorses of biomedical image segmentation and 

classification. In its optimization for the purposes of our 

application, we found that the number of convolutional filters 

at the input layer is tremendously important for overall 

network performance. From the MRI perspective, the spatial 

and intensity information encoded in the MR image is limited 

compared to electrooptical images used in daily life. This is 

mainly due to lower spatial resolution (ie, ~1 mm) and lower 

image sizes (eg, 256x256 pixels) in MRI. As a result, the 

overall network complexity of the U-Net has to be adapted to 

estimate SAR maps without overfitting or underfitting. In 

this work, we found that using a 4-stage U-Net structure with 

64 or 128 convolutional filters at the initial stage results in 

optimal performance and reasonable training time. 

Additional stages without a concurrent increase in the 

number of filters at the first layer did not improve 

performance due to the information loss incurred at the first 

layer. 

It was also seen in Figure 4 that the prediction using 

whole-body anatomies yielded higher inter-subject standard 

deviations compared to head sized imaging. This could be 

attributed to the higher variation of anatomical image detail 

at the input level. 

The relatively small database used in this proof-of-concept 

study in conjunction with the excellent agreement between 

predicted SAR and simulated SAR suggested that a large-

scale SAR database along with experimental verification 

would lead to small SAR errors for a future real-time 

implementation of MRSaiFE.  

One of the limitations in this work is the use of MRI-like 

anatomical input images. The final algorithm when used at 

the console will use an acquired MR image. In order to 

estimate whether the algorithm performs similarly we will 

develop our algorithm further using simulated MR images 

from the MRI scanner simulator platform (SYSSIM) [52] 

offered by Sim4Life. 

Future work beyond this proof-of-concept stage will 

include the use of experimental in vivo and in vitro 

thermometry data. For patient safety reasons, we will use an 

underestimation bound of no greater than 5% as our metric to 

ensure that the actual SAR never significantly exceeds 

predicted SAR. To this goal, we will add a weighted L1-

norm term that introduces a slight overestimation, weighting 

the difference between ground truth and generator output. 

In this application, a 3D convolutional neural network 

could prove useful and will be tested as part of future work 

because heating from neighboring slices could prove 

important for training performance. We will therefore 

analyze the performance of both 3D networks and choose the 

network that provides the best training performance. 

Overall, MRSaiFE could eventually provide UHF MRI 

with consistent tissue heating monitoring for use as a safe, 

practical, and non-invasive mainstream tool for clinical 
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understanding, diagnostics, monitoring, and treatment 

guidance at sub-mm resolution. In practice, the existing 

conservative SAR margins of 20:1 could become 

exchangeable with optimized, patient-specific margins, and 

will free up valuable transmit power that can be used towards 

better sensitivity, resolution, or scan time. 

This work could also significantly impact the safety of 

scanning patients with medical implants. Implants present a 

great cause for tissue heating concerns [29, 53, 54]. The 

tissue heating incurred from implants can be introduced by 

modifying the predicted SAR map via the implant trajectory 

and transfer function [55]. This ultimately would result in 

such patients being able to undergo MRI exams more 

routinely, and not only in critical situations or not at all.  

The expansion of the technique to parallel transmission is 

straightforward: the SAR map from each channel can be 

predicted separately and superimposes linearly to form the 

total SAR. These maps can then be used in real-time SAR 

monitoring directly, or as an input metric in SAR-aware pTx 

pulse design.  

The advent of even higher field strengths such as 9.4T and 

10.5T, for human MRI has brought about even greater 

scrutiny, and valid concerns about patient safety [30, 56]. 

The spatial SAR variations and average global SAR are 

increased compared to 7T, and MRSaiFE can be of great use 

in bringing these technologies to clinical practice.  

The effects of B0 inhomogeneities on SAR are negligible 

due to their very small magnitude compared to the B1 

inhomogeneities (variations on the order of 10-6 for B0 vs 101 

for B1) and are thus not included in this tool. 

In hyperthermia, tissue heating is directed at specific tissue 

regions with the goal of ablation. UHF MRI, with its intrinsic 

short wavelength and state-of-the-art parallel transmit 

capability, can be used to tailor these heating hotspots by 

tailoring local SAR. MRSaiFE offers the potential to enable 

targeted treatment planning in MR hyperthermia for cancer 

and other diseases in the long term. 

 
IV. CONCLUSION 

We developed a proof of concept for MRSaiFE, which is 

an AI-based, exam-integrated, real-time MRI safety 

prediction software tool that facilitates the safe generation of 

UHF MRI images by means of accurate local SAR-

monitoring at sub-W/kg levels with less than 1% MSE error. 

We trained the software, with a small database of images, to 

perform a feasibility study and have achieved successful 

proof of concept for both the 3T and 7T field strengths. SAR 

maps were predicted with a residual MSE of <1% for both 

7T head imaging and 3T body imaging. A SSIM of >90% for 

7T head imaging and >80% for 3T body imaging was also 

achieved. 
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