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ABSTRACT 

 

The development of genetically modified crops has had a great impact on the agriculture and 

food industries. However, the development of any genetically modified organism (GMO) 

requires the application of analytical procedures to confirm the equivalence of the GMO 

compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and 

agriculture faces numerous criticisms from consumers and ecological organizations that have 

led some countries to regulate their production, growth, and commercialization. These 

regulations have brought about the need of new and more powerful analytical methods to face 

the complexity of this topic. In this regard, MS-based technologies are increasingly used for 

GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, 

proteins). This review focuses on the MS-based analytical methodologies used to characterize 

genetically modified crops (also called transgenic crops). First, an overview on genetically 

modified crops development is provided, together with the main difficulties of their analysis. 

Next, the different MS-based analytical approaches applied to characterize GM crops are 

critically discussed, and include ―-omics‖ approaches and target-based approaches. These 

methodologies allow the study of intended and unintended effects that result from the genetic 

transformation. This information is considered to be essential to corroborate (or not) the 

equivalence of the GM crop with its isogenic non-transgenic counterpart.  
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I. INTRODUCTION. 

 

A. DNA recombinant technology. 

Since its introduction in the 70s, recombinant DNA technology (or genetic engineering) has 

become one of the foremost technological advances in modern biotechnology. Genetic 

engineering allows selected individual genes to be transferred from an organism into another 

and also between non-related species. The organisms derived from recombinant DNA 

technology are termed genetically modified organisms (GMOs), and are defined as those 

organisms in which the genetic material has been altered in a way that does not occur 

naturally by mating or natural recombination (WHO, 2002). Apart from recombinant DNA 

technology, other techniques that fall under the GMO definition include methods for the 

direct introduction of DNA and cell or protoplast fusion techniques, whereas in-vitro 

fertilization, natural transformation and polyploidy induction are excluded from the definition 

(Kok et al., 2008). 

In plant biology, recombinant DNA technology has become an indispensable tool for 

the experimental investigation of many aspects of plant physiology and biochemistry that 

cannot be addressed easily with any other experimental means (Wisniewski et al., 2002). 

Thus, recombinant DNA technology offers an unprecedented opportunity to study the 

molecular basis of important processes, such as development, plant-microbe interactions, 

response to abiotic and biotic stress, and signal transduction pathways, by the analysis of gene 

function and regulation in transgenic plants (Twyman, Christou & Stöger, 2002).  

The adoption of DNA recombinant technology has been considered the fastest growing 

trend in the history of agriculture, and, over recent years, the full potential of this modern 

biotechnology has been exploited for its application in modern plant breeding. For centuries, 
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conventional plant-breeding programs have produced crops with new traits and improved 

quality and yields. Classical plant breeding has been based on improving plant varieties by 

using different strategies that include techniques such as simple plant crossing and selection, 

cell tissue culture techniques, mutagenesis based on irradiation, chemical mutagenesis, or the 

use of transposons. DNA recombinant technology is, however, in marked contrast to 

traditional breeding, where undefined genes are routinely transferred among breeding lines, 

species, and even genera. In the context of genetic engineering, the nature of the DNA 

intended for transfer might be controlled in a very precise manner and limited to the exact 

minimal DNA sequence that can confer the desired trait. Thus, recombinant DNA technology 

is used to create genetically modified (GM) plants, which are used to grow GM crops. The 

rapid progress of this technology has opened new prospects in the development of plants for 

the production of food, feed, fiber, forest, and other products (Petit et al., 2007). 

Typically, GM plants contain an expression cassette or insert that consists of a promoter 

that controls the expression of the transgene, the encoding region that defines the sequence of 

amino acids of a particular gene that confers the novel trait, and an expression terminator that 

functions as a stop signal to terminate the reading of the gene during protein production 

(Robinson, 2001). The introduction of more than one trait is often achieved by crossing 

individual single-gene GM lines to produce so-called stacked gene varieties. 

B. Genetically modified crops. 

The development of GM crops might pursue a variety of purposes that include benefits in 

industrial processing and for consumer as well as agronomic productivity (Namuth & Jenkins, 

2005). Industrial-processing benefits include modifications in grain- or plant-chemical 

profiles (for example, with respect to oils, starch, fiber, protein), but also includes plants that 

might produce specific chemicals, natural polymers, pharmaceuticals, decontamination 
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agents, or fuels (http://www.isaaa.org). ). On the other hand, traits to improve productivity 

aim at better soil-management practices that lead to higher returns and increased profit. 

Among the modifications, tolerance to herbicide (De Block et al., 1987) and resistance to 

insects and disease (Hails, 2000) are predominant in current commercialized GM crops, 

whereas resistance to harsh environmental conditions is still under development.  

Since the first commercialization of GM tomato in 1994, over one hundred GMOs have 

been approved by regulatory agencies in different countries (http://www.agbios.com). In the 

past decade, the total accumulated land areas cultivated with transgenic crops have increased 

dramatically. The global area of approved GM crops in 2008 was 125 million hectares in 25 

countries compared with 114.3 million hectares in 2007, with an increase of 10.7 million 

hectares equivalent to an annual growth rate of 9.4% in 2008 (James, 2008). Today, it is 

possible to introduce and express DNA stably in nearly 150 different plant species (Twyman, 

Christou & Stöger, 2002), including many important crops such as soybean, maize, wheat, 

rice, cotton, potato, canola, and tobacco. Furthermore, several GM sugar beet, rice, and potato 

plants, which are undergoing field trials worldwide, are expected to enter the world markets in 

the next few years. An expected second generation of GMOs with nutritionally enhanced 

traits, such as, for instance, plants enriched in β-carotene (Ye et al., 2000), vitamin E (Cahoon 

et al., 2003), or omega-3 fatty acids (Kinney, 2006)] could likely enter the market in the near 

future (Robinson, 2001; Schubert, 2008). 

C. Controversial safety issues on GMOs. 

1. Environment and health concerns. 

In spite of its important economic potential, recombinant-DNA technology has become highly 

controversial, not only within the scientific community but also in the public sector since its 
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beginning more than three decades ago (Berg et al., 1975). Although GM plants have been 

farmed and marketed for over a decade, a great deal of controversy still persists about the 

introduction of GMOs in crops, food, and feed. As with any new technology, concerns have 

been raised about potential effects that might not be immediately apparent (Roller, 2001). The 

main controversial issues concentrate on four areas: environmental concerns [(Hails, 2000); 

(Wolfenbarger & Phifer, 2000); (Thomson, 2003)], concerns about potential harm to human 

health [(Garza, 2003); (Domingo, 2007); (Craig et al., 2008)], ethical concerns interferences 

with nature and individual choice (Frewer et al., 2004), and a combination of ethical and 

socio-economic concerns related to patent issues [(Vergragt & Brown, 2008); (Herring, 

2008)].  

2. Unintended effects in GM crops. 

Regardless of the presumed accuracy of recombinant DNA technology for genetic 

modification, possible unintended effects that derive from the genetic transformation might 

occur. Unintended effects are those effects that go beyond the primary expected effects of the 

genetic modification, and that represent statistically significant differences in a phenotype 

compared with an appropriate phenotype control (Cellini et al., 2004). Unintended effects 

might be potentially linked to secondary and pleiotropic effects of gene expression, and, in 

some cases, they could be somehow predicted or explained from our current knowledge of 

plant biology and metabolic pathway integration and interconnectivities, or from the function 

of a transgene or the site of genomic integration [(Kuiper et al., 2001); (Ali et al., 2008)]. 

However, some other unintended effects might be associated with different alterations that 

occur during the transformation and tissue-culture stages of GMO development (Latham, 

Wilson & Steinbrecher, 2006). In this regard, unexpected transformation-induced mutations 

as the result of deletions, insertions, rearrangements (including duplications), inversions, and 
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translocations in and outside the genome insertion-site of GM plants have been widely 

reported in the literature (Latham, Wilson & Steinbrecher, 2006). For instance, genome 

rearrangements and the presence of foreign-DNA sequences have been detected in 

commercially approved GM cultivars that were selected for single insertion events [(Fitch et 

al., 1992); (Windels et al., 2001); (Hernandez et al., 2003); (Rosati et al., 2008)]. These types 

of mutations produce loss, acquisition, and altered or aberrant expression of important traits, 

and consequently, could affect the phenotype of the GM plant. The unintended effects derived 

from this type of genomic alterations are unpredictable and difficult to explain without the 

thorough characterization of the plant at the molecular level. In other cases, unintended 

genetic effects will only be observed if they result in a distinct phenotype, including 

compositional alterations that could be undetectable with the analytical approaches used in 

conventional risk assessments. From the safety perspective, these unintended effects represent 

a significant source of unpredictability that might have an impact on human health and, the 

environment (Ioset et al., 2007).  

D. Legislation and safety assessment of GM crops. 

 

Because of the complex composition of foods, safety assessment for GM-crop-derived foods 

is not a straightforward task as discussed in the literature (Kuiper & Kleter, 2003). As a 

consequence, important efforts have been made in order to establish globally agreed 

guidelines for the safety assessment of food and food ingredients derived from GM crops. A 

general leading strategy has been based on the assumption that traditional crop-plant varieties 

currently on the market that have been consumed for decades have gained a history of safe 

use (Kok & Kuiper, 2003), and, therefore, they can be used as comparators for the safety 

assessment of new GM crop varieties derived from established plant lines. This concept, 

referred to as ―substantial equivalence‖ (OECD, 1993) or ―comparative safety assessment‖, 



9 

 

constitutes the basis for the current safety assessment of GM foods in many countries. 

Application of this concept requires the comparison of the GM crop and an appropriate ‗safe‘ 

comparator according to the agronomical and morphological characteristics, and the chemical 

composition, including macro- and micro-nutrients, key toxins, and key anti-nutrients (König 

et al., 2004). However, the application of the substantial ―equivalence concept‖ cannot be 

considered as a safety assessment per se, but rather enables the identification of potential 

differences between the existing food and the GM crop-derived food; those differences should 

be further investigated with respect to their toxicological impact (Kuiper et al., 2002).  

 

E. Analytical strategies for the study of GM-crop composition. 

 

In general terms, two conceptually and methodologically different analytical approaches have 

been used to study GM crops: targeted analysis and profiling approaches. Targeted analysis is 

helpful to study of the primary or intended effect of the genetic modification. In some cases, 

the interest might be focused on the insertion and the expression of the new transgene; 

subsequently, the analysis is directed towards the detection of specific DNA, mRNA, or 

proteins (i.e., target analytes). Also, with the goal to study the intended effect of the genetic 

modification at the metabolite level, target analysis might also focus on the detection of a 

limited selection of metabolites that are involved in altered biochemical/physiological 

pathway in the GMO. Moreover, the application of targeted analysis to characterize a number 

of constituents, including macro- and micronutrients, antinutrients, and natural toxins in food 

crops, has also been proposed as a tool for comparative safety assessments of a GM crop with 

its traditional counterpart [(Cellini et al., 2004); (Shepherd et al., 2006)]. 

In the context of substantial equivalence, targeted analysis should cover a number of 

key nutrients such as proteins, carbohydrates, fats, vitamins, and other 
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nutritional/antinutritional compounds, which whether or not unintentionally modified, might 

affect the nutritional value and safety of the crop. In this regard, selection of the target 

compounds to be analyzed must take into consideration the species, structure, and function of 

the transgene or transgenes, as well as possible interferences in metabolic pathways. 

Nevertheless, numerous concerns have been raised about the use of such a targeted analytical 

approach to compare the composition of GM crops to their traditional counterparts. It has 

been pointed out that this approach is biased (Millstone, Brunner & Mayer, 1999), and 

presents many limitations, such as the possible occurrence of unknown toxicants and anti-

nutrients, particularly in food-plant species with no history of (safe) use (Kuiper et al., 2001). 

Moreover, although a few studies have identified unintended effects with targeted approaches 

[(Hashimoto et al., 1999); (Shewmaker et al., 1999); (Ye et al., 2000)]; this strategy might 

restrict the possibilities to detect other unpredictable unintended effects that could result 

directly or indirectly from the genetic modification. 

The aforementioned issues corroborate the need for new and more powerful analytical 

approaches to study the complexity of this problem, and to increase the chances to detect 

unintended effects. As an alternative approach, the European Food Safety Agency (EFSA) has 

recommended the development and use of profiling technologies such as genomics, 

transcriptomics, proteomics, and metabolomics, with the potential to extend the breadth of 

comparative analyses (EFSA, 2006). Profiling analysis at the gene, transcript, protein, and 

metabolite levels are methods of choice to investigate the physiology of GM plants as 

comprehensively as possible in order to increase consequently the chances to detect 

unintended effects. Furthermore, the development of more powerful analytical tools is highly 

required in order to address the forecoming second generation of GMOs, in which significant 

changes in metabolites such as polyphenols, vitamins, fatty acids, or amino acids will be 

introduced (Cellini et al., 2004). In addition, the development and application of these 
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technologies for plant-composition comparison will help to study the performance and value 

of novel GM plants. 

This review highlights the main MS-based analytical methodologies and strategies for 

the study of GM crops. It is mainly focused on published experimental approaches that are 

potentially useful to detect and understand intended, as well as unintended effects that result 

from the genetic transformation. Some prospects for the future are also discussed. 

 

II. MS-BASED “OMICS” STRATEGIES FOR GM CROP ANALYSIS. 

 

Biological systems are highly complex, regulated networks. Regulatory connections exist 

among all ―levels‖ of the biological system (DNA, RNA, protein, and metabolite), and these 

circuits can be modulated by internal and external signals (García-Cañas et al., 2009). 

Accordingly, it is now clear that a study of changes only in a limited group of target 

compounds associated with the genetic modification does not necessarily lead to an overall 

functional understanding. Likewise, as it has been discussed above, target-based analysis 

presents some limitations when applied to the investigation of possible unintended effects that 

result from the genetic transformation. 

Recent advances in the development of high-throughput analytical techniques to 

investigate the composition and functions of genome, proteome, and metabolome have led to 

a rapid proliferation of the so-called ‗-omics‘ techniques. The development of genomics, 

transcriptomics, proteomics, and metabolomics has created extraordinary opportunities to 

increase our understanding on how a particular genetic-transformation event affects gene- and 

protein-expression, and ultimately influences cellular and plant metabolism.  
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Several laboratories have explored profiling methods with different aims, including the 

investigation of the composition and performance of a GM crop, as well as the detection of 

unintended effects [(Baudo et al., 2006); (Batista et al., 2008); (Coll et al., 2008)]. Among 

these novel technologies, the gene-expression microarray is a leading analytical technology in 

several research fields; for instance, in plant biology (Galbraith, 2006), pharmacogenomics 

(Chicurel & Dalma-Weiszhausz, 2002), nutrigenomics (García-Cañas et al., 2009) and the 

recently defined field of foodomics (Cifuentes, 2009). A gene-expression microarray is based 

on specific nucleic acid hybridization, and can be used to measure simultaneously the relative 

quantities of specific mRNAs in two or more samples for thousands of genes. In this regard, 

MS-based analytical methodologies are indispensable analytical tools in plant proteome and 

metabolome studies [(Newton et al., 2004); (Villas-Boas et al., 2005); (Jorrín, Maldonado & 

Castillejo, 2007); (Baginsky, 2009)] as will be discussed below. Moreover, when comparing a 

GM crop to its non-GM isogenic variety, it is important to grow both varieties under identical 

conditions to avoid the influence of other variability factors such as soil, water, weather, etc. 

In protein- and metabolite-profiling, the extraction of analytes is a major aspect to take 

into account. The choice of a particular extraction method will be in accordance with the goal 

of the study. In this sense, it is important to bear in mind that all extraction techniques 

constitute a compromise. Unlike target analysis, where the extraction parameters for certain 

target compounds can be optimized, profiling analysis will cover a range that is as broad as 

possible of extracted compounds, at the price of potentially low extraction efficiency for some 

analytes. In opposition to genomics and transcriptomics, where the analytes share the same 

physicochemical properties, the major limitations in proteomic and metabolomic profiling  are 

associated with the heterogeneity of analytes in terms of physicochemical properties and the 

extreme differences in abundance. For example, a proteome can have a dynamic range of 7-12 

orders of magnitude, and only a few orders can be analyzed simultaneously with the current 
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proteomic platforms. Owing to this complexity, it is important to develop suitable 

methodologies of extraction, prefractionation and/or enrichment of less-abundant proteins, 

and separation procedures in order to simplify the mixtures and to allow their efficient 

separation and identification with MS-based analytical methodologies [(Righetti et al., 2005); 

(Haynes & Roberts, 2007)]. At the metabolome level, the problem can be circumvented by 

fractionated extraction and subsequent analysis of the entire polarity range (from non-polar to 

polar compounds) by MS-based analysis.  

 

A. MS-based approaches for proteomic profiling. 

  

The genetic modification might entail variations in a number of proteins, many of whose 

functions might not be known; these variations make challenging the study of the biological 

significance of such changes. In order to glean an insight into how the modification of the 

genetic content produces alterations in the plant proteins, a comparative proteomics strategy is 

mainly used. A combination of three technologies is mostly employed for this goal: two-

dimensional gel electrophoresis (2-DGE) to separate complex protein mixtures, image 

analysis to compare 2-DGE gels, and MS to determine the identity of the differentially 

expressed proteins. 2-DGE is the most commonly used analytical methodology to monitor 

changes in the expression of complex protein mixtures, and provide the highest protein-

resolution capacity with a low-instrumentation cost. However, this methodology has some 

limitations. Thus, in addition to the 2-DGE technical hitches to separate highly hydrophobic, 

extreme isoelectric point or molecular weight (MW) proteins, one of the major sources of 

error in 2DE is the gel-to-gel variation that makes difficult an exact match of spots in the 

image-analysis process. Differential in-gel electrophoresis (DIGE) avoids some of the 

reproducibility problems by loading different samples labeled with ultrahigh-sensitive 
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fluorescent dyes in the same gel (Timms & Cramer, 2008). After image analysis of the 2-DGE 

(or DIGE) gels, protein spots of interest are submitted to an in-gel digestion step with an 

endoproteinase of known specifity. Currently, in the so-called bottom-up proteomic approach 

(see Figure 1), MS (typically MALDI-TOF MS) and different variants of LC-MS are the 

established methodologies to analyze a peptide mixture from a 2-DGE separated protein 

digested with a certain protease enzyme. Databases of protein sequences are used in different 

ways for protein identification. The main limitation of the bottom-up approach is that 

information obtained is related to a fraction of the protein; information about posttranslational 

modifications (PTM) might be lost if the PTM-bearing peptide/amino acid is not detected.. 

Representative examples of the application of MS-based proteomic analysis to the study 

of substantial equivalence of GM crops are listed in Table 1. As can be seen in Table 1, most 

of the published proteomic works used the 2-DGE (or DIGE) technology, followed by the 

identification of the species with a MS-based bottom-up proteomic approach. Some 

representative examples are next discussed. 

Thus, a comparison of protein profiles of a GM tomato with a genetically added 

resistance to tomato spotted-wilt virus (TSWV) vs. the same unmodified tomato line was 

carried out; no significant differences were detected, either qualitative or quantitative 

(Corpillo et al., 2004). In another study, the expression of recombinant antibodies in two 

transgenic crops (tomato and tobacco) -as a strategy to confer self-protection against virus 

attack- did not significantly alter the leaf-proteome profile (Di Carli et al., 2009). However, 

Rocco et al. observed that a tobacco transformed with the tomato prosystemin gene affected 

the expression of a number of proteins involved in protection from pathogens and oxidative 

stress and in carbon/energy metabolism (Rocco et al., 2008). When GM maize was studied, 

unexpected differences between Bt and wild-type maize were observed [(Albo et al., 2007); 

(Zolla et al., 2008)]. The great complexity of the proteomic-data interpretation was stated by 
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Zolla et al., because a significant number of proteins were differentially regulated by 

environmental influence and as a result of the gene insertion; the environment affects protein 

expression more than gene manipulation (Zolla et al., 2008). GM wheat cereal has also been 

studied from a proteomic point of view. Two GM durum wheat cultivars (namely, Svevo 

B730 1-1 and Ofanto B688 1-2) with modified functional performance of the grain were 

investigated (Di Luccia et al., 2005). When prolamin composition of both manipulated lines 

was compared to their respective control lines, significant differences were found only in the 

GM Ofanto wheat cultivars (Di Luccia et al., 2005). In a later study, it was observed that 

several classes of proteins were differentially accumulated in the subproteome endosperm of 

wheat as a result of the overexpression of a low molecular weight glutenin subunit (LMW-

GS) in a GM bread wheat that had modified visco-elastic properties of the derived dough 

(Scossa et al., 2008). The overexpression of LMW-GS was compensated by a decrease in the 

amount of polypeptides that belong to the prolamin superfamily. According to the authors, 

most of the observed variations included predictable alterations of the seed proteome. 

Lehesranta et al. carried out a study on proteome diversity on a large selection of potato 

varieties and landraces, and showed significant quantitative and qualitative differences in 

most of the detected proteins (Lehesranta et al., 2005). However, when different GM potato 

lines were compared with their controls, statistical analysis showed no clear differences in the 

protein patterns. In a different study, it was observed that the MALDI-TOF MS profile of low 

molecular mass proteins of non-GM and GM potato (in which the expression of the G1-1 

gene was inhibited with antisense technology) did not show any significant differences when 

the complete tuber was studied (Careri et al., 2003). On the contrary, several differences were 

observed in the m/z range 3447-6700 when the proteome of apical eyes of the same potato 

tubers was studied; those data demonstrated that the G1-1 gene is mainly expressed in this 

tissue.  
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In general, there is limited information on the extent of natural variation in the proteome 

of plants caused by environmental factors. In order to avoid any mis- or over-interpretation of 

the results and any misplaced on safety concern, the variability of the protein expression in 

conventional crops grown under a range of different environmental conditions should be 

studied first. Following this idea, the model plant Arabidopsis thaliana was used by Ruebelt 

et al. to carry out a broad study, in which analytical validation of 2-DGE methodology was 

initially done (Ruebelt et al., 2006a) and applied to better understand the natural variability of 

the proteome (Ruebelt et al., 2006b). The final goal would be to carry out a comprehensive 

proteomic study to detect unintended effects (Ruebelt et al., 2006b). The seed proteomes from 

twelve A. thaliana lines were compared to those of their parental lines in the context of 

natural variability; it was observed that the genetic modification from three different genes 

and three different promoters did not cause any unintended changes (Ruebelt et al., 2006c). 

Gel-free protein (or peptide) separation methods enable the direct coupling of a 

chromatographic or electrophoretic analytical separation technique to a mass spectrometer, so 

that the separated species that elute from the column can be on-line detected and characterized 

with MS or MS/MS. Gel-free protein separation methods have higher capabilities to analyze 

highly hydrophobic and extreme isoelectric point or MW proteins. Moreover, the main 

advantages of a gel-free protein separation method coupled to MS compared with 

conventional 2-DGE and subsequent MS-based analysis of the protein (or digested protein) of 

interest are: i) the possibility of full automation; ii) the lower amount of needed starting 

material;  iii) the potential high-throughput capabilities; and iv) the better reproducibility in 

terms of qualitative (analysis time) and quantitative (peak area) analysis.  
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Liquid chromatography (LC) and capillary electrophoresis (CE) in their different modes 

are the main gel-free methodologies applicable to the separation of complex protein (and 

peptide) mixtures due to their high resolving power and their potential for full automation and 

high sampling rates [(Tang et al., 2008); (Chen et al., 2008); (Herrero, Ibañez & Cifuentes, 

2008); (Sandra et al., 2009)]. Moreover, in 2-DGE, relative abundances of proteins in the 

samples under study are compared before MS analysis, whereas in LC- or CE-MS the 

comparison of peptides (or proteins) is carried out after the MS data have been acquired. 

Multidimensional coupling of CE and LC, and subsequent on-line detection by MS, is a 

promising methodology in proteomic applications as an alternative to 2-DGE to separate of 

complex peptide (and in less extent, protein) mixtures (Shen & Smith, 2002). Recently, CE-

ESI-MS was applied for the analysis of the zein-proteins fraction from different maize 

cultivars. Two different mass analyzers were studied; i.e., TOF, and IT (Erny et al., 2008). 

Although both instruments provided good results in terms of sensitivity and repeatability, CE-

ESI-TOF MS identified a higher number of proteins. The CE-ESI-TOF MS coupling was 

applied to the study the zein fraction of three GM maize lines (Aristis Bt, Tietar Bt and 

PR33P66 Bt) and their corresponding control lines; no significant differences were found 

between the GM line and its wild counterpart (Erny et al., 2008). 

Profiling proteomic approaches that use MS-based methodologies are also essential to 

study the mechanisms involved in the response of GM plants submitted to a variety of biotic 

(pathogens, parasites, etc.) and abiotic (chemicals, drought, salinity, etc.) stresses. Thus, in 

spite of the aforementioned advantages of a gel-free protein separation method coupled to 

MS, a differential expression proteomics strategy that combines 2-DGE and MS is still the 

dominant analytical platform to investigate how the genetic modification produce alterations 

in proteins abundance, structure, or function, as well as to study the relationships between 

stress-induced proteins and up- or down-regulated proteins. In this sense, 2-DGE followed by 
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MALDI-TOF MS was used to study the effect of drought stress on the proteomic expression 

of a herbicide-resistant transgenic wheat; drought affected the expression of low MW 

proteins, in the range of 15-27 kDa with isoelectric points between 6.5 and 7.5 (Horvath-

Szanics et al., 2006). A similar expression proteomics study was performed to assess changes 

in the transgenic leaf proteome from leaves of GM tobacco with perturbed polyamine 

metabolism caused by an S-adenosylmethionine decarboxylase (AdoMetDC) overexpression 

(Franceschetti et al., 2004).  Identification of the proteins with MALDI-QTOF MS showed 

that the isoforms of chloroplast ribonucleoproteins decreased in abundance in the three 

transgenic tobacco lines that overexpressed the AdoMetDC protein. A differential protein 

expression approach was also used to study the effect of variation in alcohol dehydrogenase 

expression (ADH) in GM grapevine leaves (Tesniere et al., 2006). After observing (in a 

previous study) variations in some aspects of primary and secondary metabolism, significant 

alterations were found at the proteomic level (Sauvage et al., 2007). From the 14 selected up- 

or down-regulated spots from the 2-DGE gels, 10 proteins (from 9 spots) were identified with 

MALDI-TOF MS, and 9 proteins (from 5 spots) were identified with LC-QTOF MS; most 

identified proteins were related to chloroplasts or to primary metabolism. The effect of the 

overexpression of calcium-dependent protein kinase 13 (CDPK13) and calreticulin-interacting 

protein 1 (CRTintP1) involved in cold-stress response was studied in GM rice with non-

targeted proteomic approaches (Komatsu et al., 2007). Six 2-DGE-separated proteins related 

to cold signaling were identified with ESI-QTOF MS.  

One of the main factors that make difficult the analysis of complex proteomes is the 

presence of abundant species. The importance of low-abundance protein enrichment in a GM 

model plant was showed by Widjaja et al. (Widjaja et al., 2009). Patterns of two isogenic 

Arabidopsis lines with the same dexamethasone-inducible avrRpm transgene that differ in the 

absence or presence of the RPM1 gene were compared by a study of the microsomal 
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subproteome. In a different study, an enhanced resolution and protein coverage was obtained 

with microsomal fractionation and rubisco (with up to 50% of the soluble protein in leaves) 

depletion with differential concentration of the polyethylene glycol (PEG)-mediated protein-

fractionation technique (Kim et al., 2001). A total of 34 differentially regulated protein spots 

could be identified; most were metabolism-, signaling-, and defense-related proteins.  

Shotgun-proteomic approaches have also been used in non-targeted studies of GM 

crops. In shotgun-proteomics, protein digestion is performed without any 

prefractionation/separation of the proteome, and peptides are separated with LC followed by 

MS/MS analysis to provide a comprehensive, rapid, and automatic identification of proteins 

in complex mixtures. Currently, this approach seems to be the best choice to analyze samples 

that cannot be efficiently resolved on 2-DGE because of their physico-chemical properties. 

Shotgun-proteomics with 4-plex iTRAQ (isobaric tags for relative and absolute 

quantification) reagents identified and quantified a rice proteome for comparative expression 

profiles between transgenic and wild-type (Luo et al., 2009). The four independent isobaric 

reagents (designed to react with all primary amines of a protein hydrolyzate) reacted with four 

different protein hydrolyzates that were subsequently pooled. MS/MS analysis of four unique 

reported ions (m/z=114-117) were used to quantify the four different samples (Ross et al., 

2004). Previously, it was observed that the iTRAQ shotgun strategy provided a more 

consistent protein quantitation compared to 2-DGE (Aggarwal, Choe & Lee, 2006). Among 

the 1883 proteins identified in rice endosperm with this analytical strategy, 103 displayed 

significant changes between GM and wild-type rice (Luo et al., 2009). Today, eight different 

iTRAQ are available to enable larger scale screenings with up to eight different samples in the 

same MS analysis. 
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B. MS-based strategies for metabolomic profiling. 

 

Metabolomic studies of GM plants might indicate whether intended and/or unintended effects 

have taken place as a result of genetic modification (Shepherd et al., 2006). However, as in 

the case of proteomics, at the moment there is no simple analytical platform to acquire 

significant amounts of data in a single experimental analysis to provide a maximum coverage 

of the metabolome. Metabolites encompass a wide range of chemical species that have widely 

divergent physicochemical properties. In addition, the relative concentration of metabolites in 

a cell or tissue can range from the millimolar to the picomolar level. Consequently, high 

resolution and sensitivity are the most relevant parameters to take into account to select an 

appropriate method for comprehensive metabolomic analysis (Villas-Boas et al., 2005).  

In essence, metabolic profiling approaches can be divided into nuclear magnetic 

resonance (NMR) and MS-based methodologies. NMR approaches are out of scope of this 

review; therefore, we will only discuss MS-based procedures. The main advantages of MS are 

high resolution, high sensitivity, a wide dynamic range, coverage of a wide chemical 

diversity, robustness, and feasibility to elucidate the MW and structure of unknown 

compounds. MS is inherently more sensitive than NMR, but it is destructive and it is 

generally necessary to employ different extraction procedures and separation techniques for 

different classes of compounds (Lu et al., 2008).  

MS has wide possibilities to evaluate GM crops based on their metabolic profiling, as 

demonstrated through the large number of applications that use GC-MS, LC-MS, CE-MS, or 

MS as a stand-alone technique (Hoekenga et al., 2008). A summary of some of these MS-

based profiling approaches for the analysis of GM crops is given in Table 2; these 

applications are discussed next, and are classified according to the analytical tool employed.  
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1. Gas chromatography-mass spectrometry (GC-MS). 

GC coupled to MS has been extensively used for metabolome analysis because of its high 

separation efficiency, reproducibility, and the ease to interface GC with different MS 

analyzers (Villas-Boas et al., 2005). GC-MS can be used to analyze a wide range of volatile 

compounds, and semi- and non-volatile compounds after chemical derivatization. Recently, 

GC-MS has been established as one of the most versatile and sensitive techniques for 

metabolic profiling. The use of this technique combined with a variety of chemometric 

approaches (e.g., principal components analysis, PCA) has been proven to be suitable to 

discover differences that enable plants of distinct lines to be distinguished from each other 

(Fiehn et al., 2000).  

In a series of papers, Roessner et al. applied this profiling methodology to identify and 

quantify the level of the main metabolites in tubers of transgenic potato lines with altered 

sugar or starch metabolism (Roessner et al., 2000). The first study reported a methodology 

based on the extraction of polar metabolites from potato tubers, followed by methoximation 

and silylation to volatilize various classes of compounds (Roessner et al., 2000). After sample 

treatment, the analysis resulted in complex and reproducible GC-MS chromatograms of more 

than 150 compounds; 77 compounds of known structure were identified by comparison of the 

obtained spectra with commercially available spectra from MS libraries. GC-MS corroborated 

the scientific conclusions drawn in previous studies of the GM lines; in particular, the increase 

of glycolysis, amino acids, and organic acids observed in the GMOs. In addition, unexpected 

alterations of the levels of some disaccharides such as trehalose were identified. In further 

reports, GC-MS analysis of potato tubers that were genetically modified to contain more 

efficient sucrose catabolism revealed a massive elevation in the content of each individual 

amino acid [(Roessner, Willmitzer & Fernie, 2001a); (Roessner et al., 2001b)]. This 

unexpected feature was particularly surprising because the tuber did not possess the necessary 
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machinery for de novo synthesis of amino acids; those results suggested that pathways other 

than those targeted by the genetic modification could be affected. Additionally, the method 

was evaluated in combination with data-mining tools that included hierarchical clustering and 

PCA to discriminate plants that were genetically modified or cultivated under different 

growth conditions. In a subsequent paper, the reported methodology was adapted to 

investigate the influence of hexokinase, a key enzyme in sucrose metabolism, in developing 

transgenic tomato plants that overexpressed Arabidopsis hexokinase, with a particular focus 

on distinct phases of fruit development (Roessner-Tunali et al., 2003). As an example, the 

GC-MS electropherogram can be seen in Figure 2. Although many interesting results emerged 

from a point-by-point analysis, and from a study of the changes of specific metabolites over 

developmental time, PCA revealed that separation of the GM fruits from the controls is larger 

in the early developmental stage; those data suggested a higher influence of the recombinant 

enzyme on the metabolism at this stage. 

After these pioneering works, a number of GC-MS studies have been reported. For 

instance, by following a similar approach, metabolic profiling of a tryptophan (Trp)-enriched 

GM soybean line has recently shown significantly higher levels of fructose, myo-inositol, and 

shikimic acid among 37 total organic acids, sugars, alcohols, and phenolic compounds in the 

leaves compared to the controls (Inaba et al., 2007). Likewise, GC-MS metabolic-profiling 

analysis of a transgenic variety of Artemisia annua L., the natural source of the anti-malarial 

drug artemisinin, has recently proven to be a valuable tool to identify key enzymes in the 

biosynthesis pathway of this phytochemical (Ma et al., 2008). The genetic modification 

involved the overexpression of farnexyl diphosphate synthase, an important enzyme in 

sesquiterpenoid biosynthesis. Extracts from different plant tissues were derivatized for further 

GC-MS analysis to provide, after chromatogram alignment, 188 chromatographic peaks that 

were evaluated with PCA or PLS-DA (partial least squares discriminant analysis). The 
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experiments demonstrated different sesquiterpene contents in different developmental stages 

and strains; those data suggested the existence of a potential key step in the biosynthetic 

pathway of artemisinin (Ma et al., 2008). 

Plants have the ability to produce volatile aroma compounds, such as aldehydes and 

alcohols, which give rise to characteristic flavors and odors. Flavors are influenced by 

numerous factors, mainly, genetic makeup and external agronomical factors, such as climate 

and soil type. Volatile aromatic compounds are secondary metabolites that are generated 

through numerous pathways during the fruit-ripening process. Malowicki et al. have carried 

out a comparative GC-MS study of the volatile composition of virus-resistant transgenic and 

conventional raspberry grown in two different locations and seasons (Malowicki, Martin & 

Qian, 2008). Volatile compounds were extracted from the red raspberries with a stir-sorptive 

bar. MS quantification was carried out with selective-mass ions to avoid any interference 

between coeluted compounds. Quantification curves were constructed by plotting the 

selective-ion abundance ratio of target compounds with their respective internal standards 

against the concentration ratio. None of the 30 selected compounds, based on their previously 

reported importance to raspberry aroma as well as their representation to various chemical 

classes including alcohol, aldehyde, ketone, ester, terpene, and terpene alcohol, showed any 

difference between the transgenic lines and the wild type. In addition to raspberry, the aroma 

from transgenic cucumber lines have also been evaluated with GC-MS (Zawirska-Wojtasiak 

et al., 2009). Four lines of GM cucumber with different levels of thaumatin II gene 

overexpression were tested. Two extraction methods of volatile compounds from cucumbers 

were evaluated; namely, microdistillation (MD) and solid-phase microextraction (SPME). The 

cucumber extracts were subjected to GC-EI-Q MS and GC-EI-TOF MS analysis. SPME 

enabled the identification of a higher number of compounds (a total of 28 compounds) due to 

its capability to detect low boiling point volatiles, defined by the solvent in the case of MD. 
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Although all identified compounds were identical in the transgenic lines and in the control, 

analyses showed that, regardless the MS-based analytical technique used, significant 

differences occurred in the quantitative composition of the aroma between fruits of 

transformed and control cucumber lines. 

Among the novel developments in metabolomic profiling of GMOs, new chemometric 

approaches include modeling of two or more classes, such as the developed based on 

orthogonal PLC discriminant analysis (OPLC-DA) to compare two different transgenic poplar 

lines (Populus tremula L.) with the wild-type with GC-MS metabolomics (Wiklund et al., 

2008). The two transgenic lines were up- and down-regulated for the expression of PttPME1 

gene, respectively, with the aim to affect the degree of methyl esterification of 

homogalacturonan, the most important component of pectin in plant cell walls. Poplar 

metabolites were extracted with organic extraction from leaves, and were derivatized for GC-

EI-TOF MS separation. Data sets were processed with the hierarchical multivariate curve 

resolution MATLAB script, which is useful for spectra comparison in the National Institute of 

Standards and Technology (NIST) library. In addition, an improved visualization and 

discrimination of interesting metabolites from wild and GM lines could be demonstrated with 

OPLS (Wiklund et al., 2008).  

Recently, several laboratories directed their studies toward the investigation of 

unintended effects in GM crops. Bernal et al. developed a methodology based on supercritical 

fluid extraction (SFE) and GC-EI-Q MS for the selective extraction and subsequent profiling 

and quantification of amino acid from GM soybean and maize (Bernal et al., 2008). The 

suitability of the method to identify differences in amino acids profiles were confirmed by the 

comparison of five different transgenic lines with their corresponding isogenic lines grown 

under the same conditions. Catchpole et al. proposed a hierarchical experimental approach to 

study the compositional similarities/differences between GM and conventional crops 
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(Catchpole et al., 2005). The methodology was tested in potato crops that were genetically 

modified to contain high levels of inulin-type fructans. The approach involved an initial 

evaluation of the degree of compositional similarity between tubers of transgenic and several 

conventional potato cultivars. This first step was carried out with FIA-TOF MS (flow-

injection analysis ESI-MS) of 600 potato extracts and subsequent PCA that identified 15 top-

ranking ions for genotype separation with higher-loading scores; some ions corresponded to 

oligofructans of different polymerization degrees. Complementary GC-EI-TOF MS profiling 

of more than 2000 tuber samples provided a more-detailed global profiling of 242 individual 

metabolites (90 positively identified, 89 assigned to a specific metabolite class, and 73 

unknowns). Further chemometric analysis of data showed that, apart from targeted changes by 

the genetic modification, transgenic potatoes displayed a similar metabolite composition 

inside the range exhibited normally by conventional cultivars. In a recent paper, Zhou et al. 

reported the combined use of GC-flame ionization detection (FID) and GC-MS to investigate 

possible unintended effects in a transgenic line of rice that expressed two genes that confer 

distinct insect resistance (Zhou et al., 2009). GC-MS was exclusively used to identify certain 

important compounds after GC-FID profiling. Authors employed multivariate analyses, 

namely, PCA and PLS-DA, to visualize and analyze the metabolite data. They concluded that 

the growing conditions and the genetic transformation induced a similar influence on the 

concentrations of glycerol-3-phosphate, citric acid, oleic acid, and sucrose, whereas other 

metabolites (sucrose, mannitol, and glutamic acid) were widely affected by the genetic 

modification. 

2. Liquid chromatography-mass spectrometry (LC-MS). 

In addition to GC-MS, LC coupled to MS is a useful tool for the metabolomic analysis of GM 

crops, and provide a wide dynamic range, reproducible quantitative analysis, and the ability to 

separate and analyze extremely complex samples (Lu et al., 2008). Moreover, LC-MS is 
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considered a versatile technique for the analysis of metabolites, whose analysis with GC-MS 

is, in general, precluded, These metabolites include polar/non-volatile, large, and/or 

thermolabile compounds. In addition, LC-MS can resolve and quantify multiple components 

in crude biological extracts typically down to the nanomolar or picomolar range from as little 

as microliter volumes.  

The application of LC-MS to metabolite profiling of GM crops is relatively recent. In 

general, metabolite-profiling studies of GMOs with LC–MS have been mostly performed with 

solvent gradients and reversed-phase LC (RPLC). LC-MS is useful to provide complementary 

and interesting data in the investigation of metabolism alterations in transgenic grapevine 

(Vitis vinifera) (Tesniere et al., 2006). Grapevine plants transformed with three different 

genetic constructions (normal, sense, and antisense) to either over- or underexpress alcohol 

dehydrogenase were characterized with different molecular methods, biochemical and 

profiling techniques. More precisely, profiling of phenolic compounds was performed with 

LC-ESI-IT MS, whereas volatile compounds were profiled with GC-EI-MS. Among the 

profiles from transgenic grapevine with normal, sense, and antisense constructs, differences 

were noted in some phenolic compounds and volatile secondary metabolites that belong to the 

classes of monoterpenes, C12-norisoprenoids, and shikimates (Tesniere et al., 2006). As 

exemplified in this study, the combination of different analytical techniques allows a better 

description of the metabolome status of a GMO.  

Recently, the LC-MS profiling of polyphenols in GM crops has attracted the attention of 

several laboratories. Shin et al. used this technique to explore the flavonoids content in GM 

rice endosperm that expresses regulatory genes from maize that induce the production of 

various flavonoids (Shin et al., 2006). Ioset et al. have recently investigated changes in the 

metabolite accumulation in two transgenic lines of wheat (Triticum aestivum L.) with either 

antifungal or viral resistance (Ioset et al., 2007). Flavonoids were extracted with SPE, and 
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were analyzed by LC-IT MS with two different ionization sources, ESI and APCI. In addition, 

LC-MS/MS experiments, using the ESI in negative mode, were performed after selection and 

consecutive fragmentation of the most intense precursor ions. Based on their MS/MS 

fragmentation, this analytical procedure allowed a differentiation between C-glycoside 

flavonoids and O-glycoside analogues; that differentiation was especially advantageous to 

draw structural conclusions about the flavonoids. Hierarchical clustering of data revealed a 

closer correlation between GM/non-GM plants of the same variety than between conventional 

plants of different varieties. In a different study, Nicoletti et al. concentrated on the LC-MS 

profiling of stilbenes, a specific class of polyphenols, in transgenic tomato (Nicoletti et al., 

2007). The GM tomato overexpressed a grapevine gene that encoded the enzyme stilbene 

synthase. The plant was designed to synthesize new compounds (trans-resveratrol and trans-

piceid), and to increase total antioxidant activity. Consequently, the study was conducted to 

investigate possible perturbations on the synthesis of other metabolites along the flavonoids 

pathway. Flavonoid extracts from tomato fruits and peels were analyzed with LC-ESI-MS in 

the negative ionization mode, which resulted in higher sensitivity and lower background noise 

than in the positive mode for the detection of stilbenes and phenolic compounds. On the basis 

of the retention times and UV and MS data, the identification of resveratrol and its 

glycosilated forms was possible in one analysis. Results indicated differences in the levels of 

rutin, naringenin, and chlorogenic acid found in transgenic tomatoes in comparison to the 

control lines; those differences seem to be related to the genetic transformation (Nicoletti et 

al., 2007).  

3. Capillary electrophoresis-mass spectrometry (CE-MS). 

CE-MS can be considered as a complementary analytical technique to LC-MS and GC-MS. It 

is better suited to analyze ionic and polar thermolabile compounds that might not be separated 

with the reversed phase columns that are mostly used in LC-MS nor analyzed by GC-MS due 
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to the required high temperatures. The main advantages of CE-MS are fast separation speed 

and extremely high efficiency and resolution. Moreover, samples analyzed by CE-MS usually 

require little pretreatment. On the other hand, the sample volumes are very low and confer 

moderate sensitivity to CE-MS. Besides, the different ESI interfaces developed for CE-MS 

still have to improve their robustness.  

CE-MS has already shown its potential to analyze complex metabolomes [(Babu et al., 

2006); (Monton & Soga, 2007); (Song et al., 2008); (Ramautar, Somseng & de Jong, 2009)]. 

Thus, around 1700 different metabolites were detected (of which 150 were identified) with 

CE-MS from bacteria-cell extracts with two different methods and scanning from m/z 70 to 

1027 in intervals of 30 Th (Soga et al., 2003). Moreover, in a recent paper, single cells and 

subcellular metabolomes could also be investigated with CE-MS (Lapainis, Rubakhin & 

Sweedler, 2009). Some attempts have been made to carry out metabolome analysis in higher 

plants with CE-MS methods [(Sato et al., 2004); (Edwards et al., 2006); (Harada et al., 

2008)]. CE-MS has also been used for the non-targeted analysis of some GM crops; namely, 

rice, soybean, and maize. The metabolome of GM rice that overexpress YK1, which possesses 

dihydroflavonol-4-reductase activity and shows biotic and abiotic stress tolerance 

(enhancement of tolerance to ultraviolet irradiation, salt, submergence, hydrogen peroxide, 

and blast disease), was studied (Takahashi et al., 2006). MS analysis was carried out in the 

positive ionization mode to detect amino acids, and in the negative ionization mode to analyze 

organic acids, to quantitatively compare their levels in transgenic rice that express the YK1. 

Analytes were identified by comparison of their m/z values and migration times with standard 

metabolites. Although this study did not show significant differences in the total amount of 

free amino acids, a slight decrease in aspartate and glutamine were observed, most probably 

due to the activation of the NAD synthetic pathway induced by the overexpression of YK1, 

because these amino acids are precursors of NAD in plants (Takahashi et al., 2006). In a 
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different work, a chiral CE-ESI-TOF MS method was developed to study differences in the 

amino acid profile among six varieties of conventional and GM soybean with resistance to the 

herbicide glyphosate (Giuffrida et al., 2009). Novel modified cyclodextrins (mCDs) were 

used as chiral selectors in the separation buffer to obtain a good chiral resolution. The mCD 

concentration was so low (0.5 mM mCDs) that a direct entrance to the ESI-MS was possible 

with only a very low sensitivity decrease. Evaluation of D/L-amino acids from transgenic and 

conventional maize was carried out with this new chiral CE-ESI-TOF MS method; a very 

similar D/L-amino acid profile was obtained for wild and transgenic soya. However, an 

interesting finding was the presence of a very low amount of D-Arg in transgenic maize and 

not in the conventional one; however, it was concluded that a higher number of analyses 

should be carried out in order to discard D-Arg appearance in GM maize due, e.g., to 

environmental variations or natural variability. Other studies with CE-MS for metabolite 

profiling of GM crops used a complete analytical method of extraction, analysis, and data 

evaluation for transgenic and conventional maize and soybean [(Levandi et al., 2008); 

(Garcia-Villalba et al., 2008)]. CE-ESI-TOF MS was used to evaluate statistically significant 

differences in the metabolic profile of varieties of conventional and transgenic Bt11 maize 

(Levandi et al., 2008). The extraction procedure with ultrasound and different solvents was 

optimized in order to extract the highest number of metabolites from the maize flour. ESI-

TOF MS was used to take advantage of its great mass accuracy for metabolite identification. 

After introducing a molecular formula into different databases, such as KEGG (Kyoto 

Encyclopedia Gene and Genome) or Chemspider (Database of Chemical Structures and 

Property Predictions), 27 different metabolites were tentatively identified, as can be seen in 

Figure 3. After PCA of the CE-MS set of data, some statistically significant differences 

between conventional and transgenic maize were found; e.g., L-carnitine and stachydrine 

were overexpressed in all the studied GM maize varieties (Levandi et al., 2008). In a similar 
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study, CE-ESI-TOF MS was used to compare metabolic profiles from a transgenic soybean 

(glyphosate-resistant) and its corresponding nontransgenic parental line (García-Villalba et 

al., 2008). In that study, 45 different metabolites, among them, isoflavones, amino acids, and 

carboxylic acids, were identified. The slight differences found in the metabolic profiles of 

both lines emphasized a clear down-expression of the three amino acids, proline, histidine, 

and asparagine in the GM soybean. On the other hand, a metabolite tentatively identified as 4-

hydroxi-L-threonine disappeared in the transgenic soybean compared to its parental non-

transgenic line (García-Villalba et al., 2008).  

4. Fourier- transform ion-cyclotron resonance mass spectrometry (FT-ICR-MS). 

The use of high magnetic-field Fourier-transform ion-cyclotron MS (FT-ICR-MS) provides 

the highest achievable mass resolution and accuracy to allow, in combination with soft 

ionization technologies, high-throughput metabolic profiling among other applications 

[(Marshall, Hendrikson & Jackson, 1998); (Page, Masselon & Smith, 2004); (Römpp et al., 

2005)]. With such a high mass accuracy (sub-ppm) and ultra-high mass resolution (greater 

than 100,000) for component separation, elemental formula determination from hundreds of 

different compounds can be determined in direct infusion analyses of, e.g., crude plant 

extracts without a previous chromatographic or electrophoretic separation, and/or 

derivatization reaction. Special attention has to be paid, however, to matrix effects during 

direct infusion because matrix effects can produce poor ionization of interesting analytes. 

Moreover, FT-ICR-MS presents only moderate sensitivity and quantitative capabilities.  

FT-ICR-MS-based metabolic profiling has already been used as a powerful analytical 

platform for plant-metabolomic studies [(Brown, Kruppa & Dasseux, 2005); (Oikawa et al., 

2006); (Ohta, Shibata & Kanaya, 2007)]. Aharoni et al. published one of the first studies on 

the use of FT-ICR-MS to metabolomic profile GM crops (Aharoni et al., 2002). To obtain a 
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comprehensive metabolomic profile of the crude plant extract, ionization was performed in 

the positive and negative modes with either ESI or APCI. Interesting information was first 

obtained from the profiles of known metabolites during the transition from immature to ripe 

strawberry. The method was applied to monitor changes in the metabolic profiles of tobacco 

flowers that overexpress a strawberry MYB transcription factor and that are altered in petal 

color. From the FT-ICR-MS data set, it was observed that nine metabolites changed between 

transgenic and control plants, among which was the mass that corresponded to the main 

flower pigment, cyanidin-3-rhamnoglucoside (Aharoni et al., 2002). In a later study, 

metabolomic patterns from stress-tolerant GM rice were studied to elucidate the effects of an 

over-expression of the YK1 gene (Takahashi et al., 2005). More than 850 metabolites were 

determined with FT-ICR-MS in different tissues; the metabolomic profiles were significantly 

different among callus, leaf, and panicle. PCA also revealed slight differences in the 

metabolic profiles between control and YK1 in callus, which however, were almost identical 

those in leaf and panicle tissues (Takahashi et al., 2005). FT-ICR-MS was also used to 

examine gdhA GM tobacco (Nicotiana tabacum) with altered glutamate, amino acid, and 

carbon metabolism, which fundamentally alter plant productivity (Mungur et al., 2005). With 

the FT-ICR-MS methodology, more than 2012 reproducible ion signals could be detected; 

about 58% of the molecules were not in the interrogated databases, and 42% of ions were 

identified as known metabolites. Amino acids, organic acids, sugars, and some fatty acids 

significantly change their abundance in root and leaf due to the genetic modification. The 

altered concentration of 32 compounds with biomedical significance suggested the use of FT-

ICR-MS as a useful tool for the pharmaceutical industry to discover new, interesting plant-

derived compounds from GM crops. The authors recommended the use of the FT-ICR-MS 

data to be used as preliminary evidence to further experiments because some of the identified 

compounds were not plant metabolites; the measure of the exact masses could not 
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unequivocally identify specific compounds. CE-TOF MS and FT-ICR-MS were used to 

profile six varieties of maize, three GM lines with a new Cry-type gene to resist insect 

plagues, and their corresponding isogenic lines (León et al., 2009). Pressurized liquid 

extraction (PLE) was used for the automated sample extraction of metabolites for subsequent 

FT-ICR-MS analysis. With direct infusion FT-ICR-MS in the positive and negative ESI 

modes, a vast amount of data was generated, from which ca. 1000 signals were used to assign 

elemental compositions. The FT-ICR-MS data were uploaded into a MassTRIX server (Suhre 

& Schmitt-Kopplin, 2008) in order to display the results on maize-specific annotated 

metabolites in the KEGG database and their related pathway maps. An example of the results 

from this powerful approach is shown in Figure 4. FT-ICR-MS information; however, in 

several cases not enough data were available to undoubtedly identify certain compounds, 

because FT-ICR-MS cannot differentiate among structures between isomers, so that migration 

time, electrophoretic mobilities, and m/z values provided by CE-TOF MS were used to 

confirm the compound identification. With this methodology, metabolic profile of the 

different maize lines was evaluated. Statistically significant differences were found in some 

metabolic pathways such as tyrosine and tryptophan metabolism. Some maize-transgenic 

biomarkers like L-carnitine were also observed, corroborating the previously published results 

(Levandi et al., 2008). The comparison of these two different MS-based analytical approaches 

showed that, although mass accuracy is very useful information for metabolite elucidation and 

high resolution provided many more detected metabolites, the FT-ICR-MS data must be, in 

some cases, complemented with additional analytical information to unequivocally identify 

certain compounds. 
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III. TARGET-BASED APPROACHES FOR GM CROP ANALYSIS 

 

Two types of macromolecules, specific for a genetic modification, have been targeted in order 

to reveal the presence of GMOs (or a derivative) in foods: proteins and DNAs. Recently, a 

number of analytical procedures available for GMO detection in the food and feed chain 

involve the use of PCR because of its high sensitivity and specificity (García-Cañas, 

Cifuentes & González, 2004a). New trends in this field include: replacement of classical 

agarose gel electrophoresis with capillary electrophoresis with laser-induced fluorescence 

detection [(García-Cañas, González & Cifuentes, 2002a); (García-Cañas, González & 

Cifuentes, 2002b)]; microarray analysis for high-throughput GMO screening (Hamels et al., 

2009); development of biosensors (Karamollaoglu, Oktema & Mutlub, 2009); development of 

real-time PCR (Hernández et al., 2004) and competitive PCR methods (García-Cañas, 

Cifuentes & González, 2004a) for GMO quantification; and development of multiplex PCR-

based strategies [(García-Cañas, Cifuentes & González, 2004b); (García-Cañas & Cifuentes, 

2008); (Heide et al., 2008)]. These developments are beyond the scope of this article, and 

excellent reviews on these topics can be found elsewhere [(Elenis et al., 2008); (Michelini et 

al., 2008); (Marmiroli et al., 2008); (Morisset et al., 2008)]. In addition to those strategies, 

LC-MS has been recently demonstrated to be suitable for the multiple and simultaneous 

analysis of specific transgenic DNA sequences for the detection of Roundup Ready soybean, 

a transgenic soybean resistant to the herbicide glyphosate (Shanahan et al., 2007). The LC-

MS approach was based on a first DNA amplification step that covered specific DNA 

sequences (transgenic and endogenous gene) with PCR in DNA extracts from soybean 

samples, followed by single base-pair extension with specific oligonucleotides and 

dideoxynucleotide triphosphates. Oligonucleotides generated in this step were online purified 

prior to LC-ESI-MS analysis. In that study, a C18 stationary phase was used because of its 
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ability to retain the analytes, while also allowing the use of MS-compatible buffers. However, 

it was necessary to minimize the buffer concentration to a 0.5 mM ammonium hydrogen 

carbonate and to mantain the pH below 7 in order to preserve column life. In addition to those 

steps, the desalting step was an essential requirement to reduce the production of adducts that 

decrease the sensitivity. Although the methodology reported good sensitivity and quantitative 

potential, it is far from being considered a routine procedure for GMO detection. 

 

A. MS-based approaches to analyze target proteins.  

 

Despite the current prominent role achieved by DNA detection methods in GM crops, the 

detection of newly expressed proteins has also been important for the investigation of the 

intended effect that results from a genetic modification, for example, to monitor recombinant 

plant-produced pharmaceutical and industrial proteins (Goldstein & Thomas, 2004), or 

especially, on the detection of transgene expression in the postharvest stage (Carpentier et al., 

2008). Among the existing protein-based analytical approaches, the use of polyclonal 

antibodies for immunochemical detection has been frequently demonstrated (Grothaus et al., 

2006). Owing to the high specificity of the immunological reaction, recognition of the target 

protein has been achieved (Stave, 2002). In these immunological analyses, the presence of 

interfering compounds must be carefully monitored because they frequently give rise to 

unwanted cross-reactions.  

 

There are only few studies published on the use of MS approaches for the target 

analysis of transgenic protein in GM crops. Some limitations of the application of MS to 

protein target analysis might rely on the low expression levels of the recombinant protein in 

addition to the fact that, frequently, the new protein is not evenly distributed in the plant 
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tissues. Moreover, a significant drawback in most targeted studies for protein analysis is that 

the wide dynamic concentration range of proteins in biological fluids or tissues causes many 

detection difficulties due to a large number of proteins that are below the level of sensitivity 

of the most advanced instruments. For this reason, protein fractionation that exploits the 

different physicochemical properties of proteins and subsequent concentration of the selected 

protein is commonly needed.  

 

In a series of studies, Fernandez Ocaña et al. [(Fernandez Ocaña et al, 2007); 

(Fernandez Ocaña et al., 2009)] demonstrated the potential of two different MS-based 

approaches to detect and characterize the transgenic protein CP4 EPSPS in several crops. This 

recombinant CP4 EPSPS protein confers resistance to the herbicide glyphosate in several 

commercial GM crops; namely, soya and maize. In the first study, different fractionation and 

enrichment approaches were used to overcome the interference generated by the abundant 

seed-storage proteins on the MS detection of the low-abundance proteins (Fernandez Ocaña et 

al., 2007). Gel-filtration chromatography (GFC) followed by SDS-PAGE fractionation was 

used for CP4 EPSPS protein purification. The authors also observed that an additional anion-

exchange prefractionation step after GFC and SDS-PAGE provided a further protein 

enrichment to allow the analysis of lower levels of CP4 EPSPS protein in the different crop 

samples. The MS analytical strategy was based on the tryptic digestion of the purified CP4 

EPSPS protein of the GM and non-GM crop and subsequent analysis with either MALDI-

TOF MS or nLC-ESI-QTOF MS. The methodology permitted the detection of 0.9% GM soya 

seeds. Furthermore, as the same group demonstrated later, the use of stable-isotope-based MS 

analysis was an interesting alternative for the target analysis of the transgenic protein 

(Fernandez Ocaña et al., 2009). In that latter work (Fernandez Ocaña et al., 2009), the authors 

investigated the suitability of two different approaches, [namely, the automated quantitative 
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analysis (AQUA™) system, and the aforementioned isobaric tags for relative and absolute 

quantification (iTRAQ)] for the absolute quantification of different CP4 EPSPS protein levels 

in herbicide-tolerant GM soya seeds. The analytical procedure used also a previous 

fractionation step based on CP4 EPSPS enrichment by combining anion-exchange 

chromatography and SDS-PAGE in order to reduce the sample complexity. In the AQUA 

strategy, the heavy isotope-labeled internal standard peptide (L*)AGGEDVADLR (L*=13C), 

the same amino acid sequence to that of the peptide that originated from the enzymatic 

hydrolysis of the CP4 EPSPS protein, was introduced into the CP4 EPSPS protein-enriched 

sample; that mixture was next subjected to tryptic digestion. After nLC-ESI-QTOF MS 

analysis, quantification was accomplished by comparing signal intensities of the intact native 

and synthetic peptides, as can be seen in Figure 5. Alternatively, isobaric reagents were used 

for CP4 EPSPS quantitation. After protein purification and subsequent digestion, the peptide 

mixture submitted to iTRAQ labeling was fractionated with SCX chromatography before 

nLC-ESI-QTOF MS analysis. AQUA and iTRAQ procedures demonstrated both the potential 

for quantitative detection purposes of 0.5% GM soybean seeds. Target analysis with nLC-

ESI-QTOF MS is useful to study the expression of LHCb1-2, a pea protein, in transformed 

tobacco plants (Labate et al., 2004). The presence of the recombinant protein was investigated 

at the different plant-organization levels that ranged from the organelles to the tissue and 

organ levels. Prior to MS analysis, purification of LHCb proteins with sucrose-gradient ultra-

centrifugation and SDS-PAGE was needed. After nLC-ESI-QTOF MS analysis of the purified 

enzyme-digested proteins, the authors did not detect any major difference in the relative 

amounts of LHCb proteins in the tobacco plants (Labate et al., 2004). 
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B. MS-based approaches to analyze target metabolites.  

 

Although there is not a direct link between genes and metabolites, genetic modifications 

might be often connected to specific metabolism responses; e.g., as a result of the activity of 

given proteins or enzymes. Accordingly, target analysis of metabolites can be useful to study 

the specific effect produced in an organism by a genetic modification (Villas-Boas et al., 

2005). This goal is particularly feasible when the desired effect of a genetic modification 

involves an increase or decrease of a key enzyme within a metabolic pathway that affects the 

levels of a specific metabolite or a group of metabolites. Similarly, target-metabolite analysis 

specially applies for the study of the primary effect of the genetic modification in nutritionally 

enhanced GM crops, or in the so-called second generation GM crops (e.g., those that produce 

vitamins and other food supplements). MS analysis is helpful as, for example, in a recent 

investigation on the expression of a tobacco anthranilate-synthase gene introduced in GM 

soybeans with the aim to generate tryptophan (Trp)-enriched soybeans (Inaba et al., 2007). 

The isoforms expressed in GM soybeans are regulatory enzymes in tryptophan biosynthesis. 

However, this particular isoform was not sensitive to feedback control by the end-product 

Trp. To evaluate the effect of the insertion of the transgene driven by the constitutive CaMV 

35S promoter on the levels of amino acids in different soybean transformants, GC-MS was 

successfully used. The MS detector equipped with a classical electron ionization (EI) source 

and operated in the single-ion monitoring (SIM) mode and a m/z range between 50-300 

provided the detection of all free amino acids except for arginine; that study demonstrated that 

GM soybean contained about six-fold as much Trp as the non-modified soybean used as 

control. In a different study of rice transformed with the same genetic modification, LC-

MS/MS was used to analyze free and conjugated forms of indole-3-acetic acid (IAA), a plant 

hormone derived from the Trp biosynthetic pathway (Morino et al., 2005). The analyses 
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indicated that, in addition to high Trp levels, free IAA and its conjugates were both increased 

in the transgenic rice; those data suggested that the activity of the recombinant protein or the 

concentration of Trp (or both) is an important regulating factor of IAA biosynthesis.  

MS analysis of target metabolites has also proven to be particularly helpful to develop 

and characterize GM plants with interesting traits for human health; for instance, GM plants 

developed to accumulate a metabolite or family of metabolites with a beneficial biological 

activity. The production of lignans in wheat has attracted attention because these 

phenylpropane dimers have been associated with anti-tumor activities in animal models. 

Ayella et al. genetically transformed wheat cultivars with a pinoresinol lariciresil reductase 

gene of Forsithia fused to an ubiquitin maize promoter in order to overexpress the enzyme 

and, therefore, to enhance lignan biosynthesis (Ayella, Trick & Wang, 2007). The LC-MS 

analysis used to determine the lignan content in transgenic wheat transformants was essential 

to corroborate and evaluate the functional transformation success and, therefore, the intended 

effect of the genetic modification. HPLC separations of lignan extracts, obtained from solvent 

extraction from wheat seeds, were achieved with a C18 column with an ACN-water gradient. 

ESI-MS (positive mode; from m/z 100 to 1500) detected increased levels of 

secoisolariciresinol diglucoside in transgenic wheat lines to confirm a strong enhancement in 

lignan levels (Ayella, Trick & Wang, 2007). 

GM tomatoes with increased flavonoid glycosides levels is another example of GM 

crops developed to confer beneficial biological activity to the consumer. In this case, the 

intended modification brings about some prevention of cancer and other pathologies, because 

the antioxidant activity of the vegetable has been improved. [(Le Gall et al., 2003a); (Le Gall 

et al., 2003b)]. Transgenic tomatoes were generated for the simultaneous overexpression of 

two maize regulatory genes of flavonoid biosynthesis, leaf color and colorless [(Le Gall et al., 

2003a); (Le Gall et al., 2003b)]. A variety of analytical techniques (LC with DAD, NMR, MS 
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and MS/MS) were used to investigate flavonoid composition of transgenic and control 

tomatoes. The chromatographic analyses of a number of tomato extracts indicated the 

presence of 7 flavonoids at much higher concentration (up to 60-fold difference) in transgenic 

tomatoes than in the non-transgenic controls at different stages of maturation. LC-MS and 

LC-MS/MS data confirmed the identity of the aglycon moiety of two minor, but important, 

dihydrokaempferol hexosides. This identification was achieved by comparing the main 

fragmentations of MH
+
 ions of the unknown analytes with MH

+
 ions obtained from standards 

of flavonoid glycosides [(Le Gall et al., 2003a); (Le Gall et al., 2003b)].  

The accurate determination of a metabolite or group of metabolites in the different plant 

tissues and organs is essential in many studies of GM plants. This aspect is especially 

important in transgenic crops with bioremediation traits (i.e., transgenic crops used to return 

the natural environment altered by contaminants to its original condition). For instance, in 

phytoremediation of metals by transgenic plants, the capabilities of the GM plant to 

hyperaccumulate, transport, or transform inorganic contaminants in the different organisms 

are relevant aspects that must be studied in order to evaluate the plant potential to assist in the 

remediation of metal-contaminated soils. For efficient soil remediation, phytoextraction must 

be coupled to translocation to other plant tissues that are more readily accessed and removed. 

The translocation of metals can be studied by LC connected to inductively coupled plasma 

mass spectroscopy (LC-ICP-MS) as it is illustrated in a recent study aimed at the development 

and application of an analytical method for the accurate determination of cadmium-

phytochelatins in A. thaliana plants that are genetically modified to express the wheat 

phytochelatin synthases under the control of the constitutive CaMV 35S promoter (Sadi et al., 

2008). To facilitate the speciation of cadmium-phytochelatin complexes, the high efficiency 

and resolution capability of LC was combined with the excellent sensitivity of ICP-MS for 

cadmium-selective detection. The main advantages of LC-ICP-MS are derived from its use 
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for speciation analysis, however, prior to method development, an ICP-MS interface was 

modified in order to improve the sensitivity for the analytes that elute in high organic solvent 

mobile phase from the RP-HPLC column. These modifications included the use of solvent-

resistant materials, the use of vapor-pressure control by cooling the spray chamber to avoid 

plasma disruption, and the addition of 5% oxygen (v:v) to the Ar carrier flow to react with the 

carbon in the sample to prevent any carbon deposition on the sampling cone. Parameters that 

affect the resolution of the analytes with a C18 HPLC column, mobile phase composition and 

pH, were investigated. The method provided limits of detection (LOD)  for three different 

cadmium-phytochelatin complexes that ranged from 49 to 92 ng/L in plant extracts. Analyses, 

under optimized RP-HPLC-ICP-MS conditions, of root and shoot extracts from Arabidopsis 

plants grown in the presence of 10 M Cd
2+

 demonstrated that cadmium (as cadmium-

phytochelatin complexes) accumulation was greater in the root and the shoot tissues of the 

transgenic plant as compared to the wild type. Also, the higher amounts of cadmium 

complexes found in the shoots than in the roots suggested that phytochelatins contributed to 

cadmium accumulation in aerial parts of the plants. 

CE-MS coupling was used for the first time by Bianco et al. in 2003 for the analysis of 

target metabolites in GM crops (Bianco et al., 2003). The study was aimed to the analysis 

with a previously optimized method based on NACE-ESI-IT MS coupling (Bianco et al., 

2002) of glycoalkaloids (GAs), known antinutrient compounds, in tubers of GM virus Y-

resistant potato plants . The use of organic solvents with volatile electrolytes for the CE 

separation of GAs exhibited very good MS compatibility. The GA content was evaluated 

from methanolic extracts from three lines of modified potato plants (var. Désirée) resistant, 

intermediate, and susceptible to infection by potato virus Y (PVY) and a conventional cv. 

Désirée. IT MS/MS identified α-chaconine and α-solanine GAs. It was found that the highest 

level of total GAs was found in the peel; potato tubers from the resistant line showed a 
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slightly higher content of α-solanine in the peel and in the flesh when compared to tubers of 

control (Bianco et al., 2003).  

 

IV. FUTURE OUTLOOK 

 

Crop (and plant) proteomics is a growing discipline. The full potential of proteomics has not 

yet been exploited in plant research when compared with other proteomic technologies used 

to investigate prokaryotes, yeast, and humans. 2-DGE, together with MS-based 

methodologies, remains the most widely available approach for proteomic analysis of GM 

crops, even though there is a notorious difficulty to reproduce results between laboratories. 

An on-line combination of chromatography and/or capillary electromigration methods, 

coupled to advanced MS instruments, has already been demonstrated to be effective in the 

analysis of proteins and peptides to create new and encouraging perspectives to address the 

discovery of any proteome. 

New generation MS instrumentation provides increasingly accurate qualitative and 

quantitative data on proteomics and metabolomics. New compact mass analyzers, such as the 

Orbitrap, provide high mass accuracy with the possibility of MS/MS experiments and less 

cost than FT-ICR-MS. Also, the Orbitrap, which offers new perspectives for proteome and 

metabolome analysis [(Yates et al., 2006); (Macek et al., 2006); (Kiefer, Portais & Vorholt, 

2008)], has still not been demonstrated in the analysis of GM crops. It is also expected that 

high-resolution hybrid mass spectrometers, such as a Q-TOF MS instrument, with a proven 

suitability for metabolic profiling, will find more applications in the near future within the 

GMO research field (Goodacre et al., 2002). Also, developments such as nano-ESI MS with 

better sensitivity capabilities can be used to improve metabolomic MS analysis in plants by 
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direct infusion [(Sudjaroen et al., 2005); (Lokhov & Archakov, 2009)]; therefore, their use for 

GM plant investigations is also predictable. Improvements in coupling MS with separation or 

other analytical techniques must also be considered. Analytical platforms that combine 

conventional chromatographic/electrophoretic techniques with MS are capable of reasonable 

resolution and moderate throughput. However, higher resolution and peak-capacity 

alternatives to conventional couplings for complex protein and metabolite profiling offer good 

possibilities for GMO characterization. Among these techniques, UPLC-MS and nano-LC-

MS have already demonstrated excellent capabilities in the analysis of metabolites [(Muth et 

al, 2008); (Lohkov & Archakov, 2009)]. In this regard, the hyphenation of CE with MS will 

achieve all its huge potential once more-robust, -sensitive, and -reproducible interfaces 

become available for this coupling. Also, one of the most promising alternatives to 

conventional MS platforms for metabolomic studies of GM crops is comprehensive two-

dimensional chromatography (GCxGC and LCxLC). Thus, comprehensive two-dimensional 

GC-MS (GCxGC-MS) is ideal for the analysis of volatile compounds in complex samples. 

However, GCxGC requires very high-scan speed mass analyzers. Accordingly, the good 

scanning speed of TOF-MS detectors, as well as its high resolution and mass accuracy, makes 

them the best option for this coupling (Herrero et al, 2009). This coupling has already been 

used for analysis of compounds in plants (Pierce et al, 2006) and foods like carrots, tea, or 

berries [(Dallüge et al, 2002); (Schurek et al, 2008); (Banerjee et al, 2008)]. Comprehensive 

two-dimensional LC-MS (LCxLC-MS) is also a potential tool for metabolite analysis in 

plants and foods, as already demonstrated [(Dugo et al., 2008); (Mondello et al., 2008)]. 

As mass spectrometry evolves with more powerful and complex instruments, more data 

are generated that must be analyzed. Data processing is already a critical step to obtain a 

successful ―-omic‖ study, and represents a new challenge in the bioinformatics field. 

Accordingly, computational techniques must be developed to process, integrate, and analyze 
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MS data. A precise integration of a wide range of analytical methodologies with MS as well 

as the coordination of multiple scientific specialists (from biological sciences, separation 

sciences, mass spectrometry, and bioinformatics) is still needed to characterize entire 

proteomes and metabolomes. In this regard, the development of global data-integration 

approaches (like, e.g., systems biology) will provide a comprehensive and deep knowledge on 

the entire process taking place in any organism (i.e., from the DNA level to the final 

metabolite, passing through the generated transcript and protein). 

Data collection from different laboratories will increase proteome and metabolome 

coverage, and improve present proteome information from non-model or poorly characterized 

crops. However, the quality of the proteomic and metabolomic data, as well as the quality of 

the experimental design and proper statistical data treatment, should be improved in future 

studies. Also, more work is needed to characterize natural variability of crops to make easier 

the identification of any unintended effect or GM crop. The definition of common 

standardized experimental protocols is a major challenge in proteomics and metabolomics. 

Unifying analytical platforms and protocols will allow the comparison of experiments 

performed in laboratories worldwide. In addition, much effort is needed to integrate 

proteomics and metabolomics with genomics data. This integration will involve a vast 

quantity of collaborative work to compare and share data within the scientific community. All 

of these advances will serve to determine common proteomic and metabolomic workflows in 

order to apply these MS-based methodologies as part of the existing comparative safety 

assessment process for GM crops. 
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Table 1. Study of the substantial equivalence of GM crops with MS-based proteomic profiling methods. 

 

Crop Donor organism Protein expression Trait/phenotype Tissue 
Protein 

separation 
Protein identification Ref. 

 

Tomato 

Tomato spotted wilt virus TSWV nucleoprotein Virus resistance Seed 2-DGE MALDI-TOF MS Corpillo et al., 2004 

- ScFv (G4) Virus resistance Leaf DIGE 
MALDI-TOF MS, 

µLC-ESI-IT MS/MS 
Di Carli et al., 2009 

 

Tobacco 

- ScFv (B9) Virus resistance Leaf DIGE 
MALDI-TOF MS, 

µLC-ESI-IT MS/MS 
Di Carli et al., 2009 

Tomato prosystemin Insect resistance Leaf 2-DGE 
MALDI-TOF MS, 

µLC-ESI-IT MS/MS 
Rocco et al., 2008 

 

Maize 

B.thuringiensis CryIA(b) Insect resistance Seed 2-DGE MALDI-TOF MS Albo et al., 2007 

B.thuringiensis CryIA(b) Insect resistance Seed 2-DGE nLC-ESI-IT MS/MS Zolla et al., 2008 

 

Wheat 

Tobacco Rab1 Improved functional properies Seed 2-DGE 
MALDI-TOF MS, 

nESI-QqTOF MS/MS 
Di Luccia et al., 2005 

Wheat LMW-GS Improved functional properies Seed 2-DGE LC-ESI-QTOF MS/MS Scossa et al., 2008 

Potato 

Potato (Antisense G1-1 gene) Sprouting delay Tuber - MALDI-TOF MS Careri et al., 2003 

Aureobasidium pullulans Glucan branching enzyme Waxy phenotype Tuber 

2-DGE 
µLC-ESI-IT MS/MS, 

µLC-ESI-QqTOF MS/MS 
Lehesranta et al. 2005 Potato Glycoprotein Changes in cell wall structure Tuber 

Potato AdoMetDC Modified metabolism Tuber 
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Table 2. Applications of MS-based approaches for metabolite profiling of GM crops. 

Crop Donor organism Protein expression Trait/phenotype Tissue Technique Ref. 

Rice B.thuringiensis Bt toxin, skc protein Insect resistance Grain GC-EI-Q MS Zhou et al., 2008 

Raspberries Dwarf virus Virus movement protein Virus resistance Fruit GC-EI-Q MS 
Malowicki, Martin & 

Qian, 2008 

Soybean Petunia hybrida EPSPS enzyme Glyphosate tolerance Grain GC-EI-Q MS Bernal et al., 2007 

Maize B.thuringiensis Bt toxin Insect resistance Grain GC-EI-Q MS Bernal et al., 2007 

Cucumber 
Thaumatococcus 

daniellii 
Thaumatin-II Sweet flavour Fruit 

GC-EI-Q MS, 

GC-TOF MS 

Zawirska-Wojtasiak et 

al., 2009 

A. annua A. annua Farnesyl diphosphate synthase Artemisinin increase Leaf GC-EI-Q MS Ma et al., 2008 

Poplar Poplar PttPME enzyme 
Methylesterification  of 

homogalacturonan 
Xylem GC-TOF MS Wiklund et al., 2008 

Tomato A.thaliana Hexokinase Altered carbohydrate metabolism Leaf and fruit GC-EI-Q MS 
Roessner-Tunali et al., 

2003 

Potato 

 

Potato Modified starch & sucrose metabolism Altered starch composition Tuber GC-EI-Q MS Roessner et al., 2001a 

Aureobasidium 

pullulans 

Fructokinase, α-glucosidase, tetracycline, 

S-adenosylmethionine 

Starch biosynthesis, leaf 

morphology, ethylene production 
Tuber GC-EI-Q MS Shepherd et al., 2006 

Artichoke 1-SST,  1-FFT proteins Inulin synthesis Tuber 

GC-TOF MS, 

LC-Q MS 

Catchpole et al., 2005 

Tomato Grapevine STS enzyme Resveratrol synthesis Fruit LC-ESI-Q MS Nicoletti et al., 2007 
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Wheat Barley Β-1,3-glucanase Antifungal activity Leaf 
LC-ESI-IT 

MS/MS 
Ioset et al., 2007 

Grapevine E.coli Adehide dehydrogenase Abiotic stress Leaf LC-ESI-IT MS Tesniere et al., 2006 

Rice 

Tobacco Anthranilate synthase Nutritionally enhanced Calli 
LC-ESI-Q 

MS/MS 
Morino et al., 2005 

Maize C1 & R-S regulatory genes Flavonoid production Leave 
LC-ESI-IT 

MS/MS 
Shin et al., 2006 

Rice Maize Dihydroflavonol-4-reductase Stress tolerance Plant and calli CE-ESI-MS Takahashi et al., 2006 

Maize B.thuringiensis Bt toxin Insect resistance Grain 
CE-ESI-TOF 

MS 
Levandi et al., 2008 

Soybean 

B.thuringiensis Bt toxin Insect resistance Grain 
CE-ESI-TOF 

MS 
Giuffrida et al., 2009 

P. hybrida EPSPS enzyme Herbicide tolerance Grain 
CE-ESI-TOF 

MS 

García-Villalba et al., 

2008 

Maize B.thuringiensis Bt toxin Insect resistance Grain FT-ICR-MS Leon et al., 2009 

Rice Maize YK1 protein Stress tolerance Calli and leaf FT-ICR-MS Takahashi et al., 2005 

Tobacco 
E. coli & S. 

hygroscopicus 
NADPH-GDH enzyme Water deficit tolerance Seed FT-ICR-MS Mungur et al., 2005 
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FIGURE LEGENDS 

 

Figure 1. Schematic flow diagram of the different bottom-up strategies for protein analysis 

from complex protein extracts using MS-based analytical technologies. 

 

Figure 2. GC-MS total ion chromatogram of different tissues from conventional tomato. A, 

GC-MS from tomato leaf; B, from fruit after 30 days maturation and C, fruit after 60 days 

maturation. From Roessner-Tunali et al, 2003.  

 

Figure 3. CE-TOF-MS extracted ion electropherograms of the metabolites detected in two 

maize varieties; a transgenic one (PR33P66 Bt) and its corresponding isogenic line 

(PR33P66). Both varieties were grown in the same conditions. From Levandi et al., 2008. 

 

Figure 4. Partial least-squares discriminant analysis (PLS-DA) and Van Krevelen diagrams 

(atomic H/C versus O/C) generated from FT-ICR-MS analysis of maize extracts obtained 

with PLE and three different solvents (hexane, methanol, and water). For the three different 

groups (different solvents) the masses with the highest coefficient of regression are 

considered. These masses are represented in Van Krevelen diagram, and were submitted to 

MassTRIX reveal that the main differences between hexane and water consist in the massive 

presence of carbohydrate metabolism in the water and fatty acid in the hexane. From León et 

al., 2009. 
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Figure 5. LC-TOF MS extracted ion chromatograms from 47 kDa SDS-PAGE of anion 

exchange fractions from (A) 0.5%, (B) 0.9%, (C) 2%, and (D) 5% GM soya. [M+2H]2+ = m/z 

558.30 corresponds to CP4 EPSPS tryptic peptide LAGGEDVADLR. [M+2H]2+ = m/z 

561.30 corresponds to synthetic peptide (L*)AGGEDVADLR. From Fernandez Ocaña et al., 

2009. 

 


