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MS-CapsNet: A Novel Multi-Scale Capsule Network

Canqun Xiang, Lu Zhang, Yi Tang, Wenbin Zou, Chen Xu

Abstract—Capsule network is a novel architecture to encode
the properties and spatial relationships of the feature in the
images, which shows encouraging results on image classifica-
tion. However, the original capsule network is not suitable for
some classification tasks that the detected object has complex
internal representations. Hence, we propose Multi-Scale Capsule
Network, a novel variation of capsule network to enhance the
computational efficiency and representation capacity of capsule
network. The proposed Multi-Scale Capsule Network consists
of two stages. In the first stage the structural and semantic
information are obtained by the multi-scale feature extraction.
The second stage, we encode the hierarchy of features to
multi-dimensional primary capsule. Moreover, we propose an
improved dropout to enhance the robustness of capsule network.
Experimental results show that our method has competitive
performance on FashionMNIST and CIFAR10 datasets.

Index Terms—Capsule networks, multi-scale, CNNs, deep
learning.

I. INTRODUCTION

C
ONVOLUTIONAL neural networks (CNNs) [1] [2] are

the state-of-the-art methods in image classification. How-

ever, CNNs have a lot of issues due to their mechanism of

routing data. Routing is the process of relaying the information

from one layer to another layer. Pooling operations are applied

in the CNNs as routing process. The pooling procedures

increase the transition invariance and discard lots of important

information such as the location and the pose of the objects

which are valuable for classification purpose.

Recently, Sabour et al. [3] explored a novel architecture,

called Capsule Network (CapsNet), to overcome CNN’s short-

comings. The basic idea is encoding the part-whole rela-

tionships (e.g., locations, scales, orientations, brightnesses)

between various entities which are objects or object parts, and

achieving translation equivariance. For example, for an image

without face but containing eyes, nose, mouth, etc. The CNN

is likely to wrongly assume that this is a face image because

it learns all the facial features. By contrast, the CapsNet learns

the relationship between these features (e.g., the eyes should

be above the nose.), and can successfully recognize that it
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is not a face. In the CNN, the low-level structure features

and high-level semantic features are extracted at bottom layers

and top layers respectively. However, in order to preserve the

spatial information, the original CapsNet only uses shallow

CNN. Due to the absence of the deep semantic information,

the CapsNet performs poorly on the classification task of

complex datasets. In order to obtain large receptive field

in the shallow convolutional structure, a number of large

convolutional kernels are used in the CapsNet. It increases the

number of trainable parameters, and makes the model easily

overfitting.

To obtain robust features and spatial relationships from the

raw images, we propose a new architecture, called Multi-

Scale Capsule Network (MS-CapsNet). In this framework, we

propose the multi-scale convolution [4] [5] and the multi-

dimensional capsule. We introduce multi-scale capsule en-

coding unit at the bottom layer of the original CapsNet [3].

Firstly, the deep convolutional structure is applied for learning

robust information. Besides, we use multilevel small convolu-

tional kernel to decrease the number of trainable parameters.

Then the semantic information of entity is encoded by high-

dimensional capsule, and the shallow feature of entity is

encoded by low-dimensional capsule. Secondly, we propose

an improved dropout algorithm on the encoded capsules to

enhance robustness of the model. Finally, we employ dy-

namic routing mechanism [3] to fuse information of multi-

dimensional capsules.

In summary, this paper has the following contributions: i)

We propose a multi-scale capsule network to fully encode hi-

erarchical features of raw images. ii) We propose an improved

dropout algorithm for the capsule layer. iii) We investigate the

performance of MS-CapsNet on FashionMNIST and CIFAR10

classification tasks. The results show that MS-CapsNets sig-

nificantly outperform CapsNets.

II. RELATED WORK

The traditional deep neural networks might not be efficient

in capturing the hierarchical structure of the entities in the

images [6] [7] [8]. In order to preserve the spatial informa-

tion, Hinton et al. [9] proposed the concept of “capsules”

in machine learning terminology. The capsule is a vector

to represent internal properties that can be used to learn

part-whole relationships. CapsNet, as a more effective image

recognition algorithm, was first implemented by Sabour et

al. [3] in 2017, and has been received a lot of attention from

researchers. Since then, some innovative works have promoted

the development of CapsNet.
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Fig. 1. MS-CapsNet Architecture: A simple MS-CapsNet with 3 layers. The first layer has 256, 9×9 convolution kernels with a stride of 1 and ReLU
activation. The second one has 10 multi-scale capsule encoding units. The final layer contains 10 16D digit capsules. The length of the activity vector of each
capsule in digit capsule layer indicates presence of an instance of each class and is used to calculate the classification loss.

Hinton describes a version of capsules in [10], where matrix

capsule is proposed to learn the relationship between the entity

and the observer (the pose). This architecture better represents

different properties of the same entity. Chen, et al. [11] embed

the routing procedure into the optimization procedure with

all other parameters in neural networks, which overcomes the

disadvantages that the optimal number of routing procedure

has to be found manually. Mohammad. [12] proposes a spec-

tral capsule network, which measures the coincidence as the

degree of alignment of the votes from capsules in lower layers

in a one-dimensional linear subspace. The proposed method

improves stability and convergence speed of capsule network.

However, all these methods only consider the spatial structure

information, which limits the performance of capsule network.

Recently, the CapsNet has also been introduced into many

fields. Jaiswal A, et al. propose the CapsuleGAN [13], a

framework that uses capsule networks to replace the standard

convolutional neural networks as discriminators. Parnian A,

et al. [14] adopt CapsNets for brain tumor classification.

James O. [15] introduces siamese capsule networks, a new

variant that can be used for pairwise learning tasks. Turab I,

et al. [16] successfully utilize capsule routing mechanis-

m for sound event detection. Rodney L, et al. [17] pro-

pose convolutional-deconvolutional capsule network, which

expands capsule networks to object segmentation and propose

the concept of deconvolutional capsules. Aryan M, et al. [18]

propose a fast CapsNet for lung cancer screening by applying

a consistent dynamic routing mechanism to speed up CapsNet.

III. MULTI-SCALE CAPSULE NETWORK

In this paper, we take into consideration the hierarchical

features, and exploit the multi-dimensional capsules to encode

the hierarchical features. As shown in Fig.1, the MS-CapsNet

is shallow with two convolutional layers and one fully connect-

ed layer. The first layer is a standard convolution layer. The

second one is multi-scale capsule encoding units. The final

layer is a digit capsule layer. There is a routing between the

multi-scale capsule encoding unit and the digit capsule layer.

The objective function for the multi-category capsule network

can be shown in Eq.(1).

LM =
J∑

j=1

Tjmax(0,m+ − ‖Vj‖)
2+

λ(1− Tj)max(0, ‖Vj‖ −m−)2

(1)

Conv(Kernel_si

ze:5 strides:2)

Conv(Kernel_si

ze:3 strides:2)

Conv(Kernel_si

ze:3 strides:1)

12

8

4

Capsule Dropout 

Stage 1：
Feature Extraction

Stage 2:

Capsule Encoding

Fig. 2. Multi-Scale Capsule Encoding Architecture: there are three branches
in each channel. Each branch has a different level of feature extraction, which
is coded into the primary capsule of different dimensions, and then converted
to the same dimension by the weight matrix.

where Tj and ‖Vj‖ represents j-th target labels and the

length of j-th digit capsule, respectively. m+ and m− denote

maximum margin and minimum margin respectively. The λ

is down-weighting factor for preventing initial learning from

shrinking the lengths of the capsule outputs in the final layer.

The total loss is simply the sum of the losses of all digit

capsules.

A. Multi-scale Capsule Encoding Unit

A capsule is defined as a group of neurons in the CapsNet.

It is a vector that has both direction and length. The direction

of capsule captures the entity’s attributes, such as orientation

and location. The length of capsule represents the probability

of entity existence.

vj =
‖sj‖

2

1 + ‖sj‖2
sj

‖sj‖
(2)

The length of capsule is compressed to [0,1] without changing

its direction by Eq.(2), so that its length can be interpreted

as the probability that a given feature being detected by the

capsule. Here vj is the output of j-th capsule and sj is its

total input.

In the CNN, the hierarchy of features are drawn from

different convolution layers. The bottom layers can extract

rich structure information, and top layers can extract semantic

information. Both of them can support to fully represent

the input data. We design a multi-scale structure to extract

hierarchy information, and then encode the information into
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primary capsule layer. After that the predictive capsules are

obtained by the transformation matrix.

As shown in Fig.2, the unit consists of two stages. In the

first stage, the structural and semantic information are obtained

by the multi-scale feature extraction. The first 2 layers of

the top branch are the high-level feature extraction process,

which extracts semantic information. The first layer of the

middle branch is used for extracting medium-level features.

The bottom branch directly employs the original features

without trainable parameter layer.

In the second stage, we encode the hierarchy of features

into multi-dimensional primary capsule. We exploit the last

layer of the three branches to encode high-level, medium-

level and low-level features, which obtains 12D, 8D and

4D capsules respectively. Through the employment of three

branches, we obtain the multi-dimensional primary capsule.

Then, the predicted vectors are computed through different

weight matrixes as follows:

û1

j|i = Wiju
1
i (3)

û2

j|i = Viju
2
i (4)

û3

j|i = Uiju
3
i (5)

û = concat(û1, û2, û3) (6)

where W,V and U are three weight matrixes between

u1, u2, u3 and û1, û2, û3 respectively. uk
i represents i-th pri-

mary capsule from k-th branch. ûk
j|i represents predict vector

between j-th parent capsule and i-th child capsule of k-

th branch. The û is the output of this multi-scale capsule

encoding structure, which concatenates the results of three

branches by function concat(). The information is encoded

by using a weight matrix between i-th child capsule and j-th

parent capsule. During the training, the part-whole relationship

for each capsule pair is learned by adjusting the transformation

matrix W , V and U .

B. Capsule Dropout

Dropout prevents common overfitting by making other

hidden units unreliable. In CapsNet, each of capsule is a

vector, the dropout has to discard a vector rather than some

elements in the vector. As shown in Fig.3, for a capsule, a

standard dropout algorithm [19] can only throw away some

of its elements. That changes the direction of the capsule,

which results in changing the properties of the entity that

the capsule represents, and leads to a false recognition. For

example, there are two capsules represent nose (1,1,1) and

eye (1,1,0) respectively. The standard dropout algorithm can

discard any elements in the nose and eye via the Bernoulli

distribution. If the third element of nose is dropped, the nose

and eye have the same direction (1,1,0). The phenomenon

leads to the difficulty in learning. Therefore, we improve

the dropout algorithm for capsule by changing the encoding

method of mask. We regard each capsule as a whole, which

ensures the direction of capsule has not changing. Then, some

capsules are randomly dropped by Bernoulli distribution. Due

to the invariance of direction, the improved dropout algorithm

is more suitable for the neurons of vector.

Standard dropout

Capsules Mask

Ours dropout

Capsules

Mask

Fig. 3. Capsule Dropout: Our dropout has different encoding of the mask.
The gray values represent the true values, the black is 0 and the white is 1.
‘×’ means element-wise multiplication,‘⊗’ means broadcast multiplication.

Fig. 4. Dynamic Routing: the routing process of the 3 iterations is shown,
and different colors represent a complete iteration.

C. Dynamic Routing

Dynamic routing is a kind of information selection mech-

anism, which ensures that the outputs of child capsules are

sent to the proper parent capsules. In the previous section, the

prediction vectors û are computed through weight matrix. The

relationship is determined between each parent capsule sj and

the prediction vector û by dynamic routing. As shown in Fig.4,

this is the three iteration routing process between a parent

capsule sj and all the prediction vectors ûj|i(i = 1, ..., n).
In the first iteration, c1i = 1

n
and s1j =

∑n

i=1
c1i ûj|i, where∑

j cj = 1 and cj ≥ 0. It means that each prediction vector

contributes the same to the parent capsule, which is an initial

state. Then we adjust the routing coefficients c1 to c2 by the

function update(), it is shown as follows:

bi+1 = bi + ûj · vj (7)

ci+1 = softmax(bi+1) (8)

where b is the coupling coefficient before normalization and

b1 = 0, vj is calculated by Eq.(2). The dynamic routing

mechanism will increase the routing coefficient to j-parent

capsule by a factor of ûj · vj . Similarly, we can get the parent

capsule u2
j by the coupling coefficient c2, and then update the

coupling coefficient by the parent capsule u2
j and prediction

capsule ûj . After three iterations, we obtain the final output

of the parent capsule.

IV. EXPERIMENTS

A. Datasets

To evaluate the performance of the proposed method, we

conduct the experiments on the FashionMNIST [20] and CI-

FAR10 [21] datasets. The FashionMNIST consists of a training
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Fig. 5. The test prediction accuracy of two models on FashionMNIST
and CIFAR10 datasets with iteration increasing. The MS-CapsNet has better
performance than the CapsNet.

set of 60,000 examples and a test set of 10,000 examples. Each

example is a 28×28 grayscale image, associated with a label

from 10 classes. The CIFAR10 consists of 32×32 colored and

labeled images coming from 10 different classes, in which

each class contains 6,000 images. In our experiments, 50,000

images are used as training data, and 10,000 images are used

as testing data.

B. System Setup

We implement the MS-CapsNet using the MxNet [22] and

employs the Adam optimizing method [23] as the gradient

descent algorithm to perform the training. The mini-batch size

is set to 128, and the weight decay factor is set to 0.00001.We

set different hyper parameters for training FashionMNIST

and CIFAR10: the initial learning rate is 0.001 and 0.0001

and the number of iteration is 25 and 50 for converging to

optimal solution quickly. The dropout rate is set to 0.4 and

0.1 respectively. The convolution kernel of the first layer of

the model is set to 13×13 for the CIFAR10 dataset.

The baseline contains three layers: two convolution and one

fully-connected. Conv1 has 256, 9×9 convolutional kernels

with stride of 1 and ReLU activation. The second layer is a

convolutional capsule layer with 30 channels of convolutional

capsules. Each primary capsule is a 8-dimensional vector

which is obtained by a convolution with 8 9×9 kernels and a

stride of 2 on the output of the previous layer. The final layer

is the digit capsule layer which has one 16D capsule per class.

C. Results

Fig.5 shows the test predict accuracy curves of the Cap-

sNet and the MS-CapsNet on FashionMNIST and CIFAR10

datasets. The FashionMNIST is a relatively simple dataset,

as it has been size-normalized and centered in a fixed-size

image, and each sample is a grayscale image. This regulariza-

tion alleviates the complexity of datasets, making it easy to

represent by neural networks. In contrast to FashionMNIST,

CIFAR10 is a more complex dataset, and there are a lot of

features and noises. The experiment results show that the MS-

CapsNet performs better than the CapsNet on two datasets and

has a greater improvement on CIFAR10 dataset. Meanwhile,

the MS-CapsNet achieves a faster convergence rate than the

CapsNet. The results reveal that the MS-CapsNet is more

expressive than the CapsNet because of its multi-scale struc-

ture, which has rich feature extraction and coding methods.

(a) Without dropout (b) With dropout (c) Original images

Fig. 6. The results of reconstruction on FashionMNIST.

TABLE I
COMPARISON OF THE BEST TEST ACCURACY, NUMBER OF TRAINABLE

PARAMETERS (M IS FOR MILLIONS).

FashionMNIST CIFAR10
accuracy #params accuracy #params

CapsNet 0.911 25.5M 0.727 26.0M
MS-CapsNet 0.922 10.8M 0.751 11.2M

MS-CapsNet+Drop 0.927 10.8M 0.757 11.2M

The MS-CapsNet has a better robustness on complex datasets,

which the detected object has complex internal representations.

As shown in Fig.6, the original images are reconstructed

by a training multi-layer perceptron following [3]. The result

shows that the proposed dropout method can extract robust

features, which reconstruct better performance than with-

out dropout fashion. Furthermore, we find that the standard

dropout [19] is non-convergence in our proposed MS-CapsNet,

which shows that our proposed capsule dropout is more robust

than the standard dropout.

Table 1 shows the comparison of the best test accuracy,

and the number of trainable parameters. The performance

of the MS-CapsNet is better than that of the CapsNet on

two datasets. The best accuracy of MS-CapsNet is higher

than that of CapsNet by 1.1% and 2.4% on FashionMNIST

and CIFAR10 datasets respectively. The difference between

training accuracy and test accuracy is decreased by using

improved dropout algorithm, and the test accuracy of the

model is further improved on two datasets. In the MS-CapsNet,

lots of small convolution kernels are utilized by means of

series instead of large convolution kernel. This way can

depress the number of parameters and promote the capacity

of the model to extract the depth features. In this paper, the

number of parameters of CapsNet is two times more than MS-

CapsNet, and the test performance of CapsNet is inferior to

MS-CapsNet. Objectively, the MS-CapsNet has a better overall

improvement.

V. CONCLUSION

In this work, we introduced the MS-CapsNet to enhance the

expression of the capsule network. The multi-scale convolution

feature extraction and multi-dimensional capsule coding is

employed to learn rich represents. Meanwhile, we improve the

dropout algorithm to enhance the robustness of the CapsNet.

The results indicate that MS-CapsNets perform better on

the tested complex dataset and fewer number of trainable

parameters are used when better test accuracy is achieved.

As our future work, we plan to explore the performance of

MS-CapsNet on more complex datasets.
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