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MS-GFþ makes progress towards a universal
database search tool for proteomics
Sangtae Kim1,w & Pavel A. Pevzner1

Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but

the software tools to analyse tandem mass spectra are lagging behind. We present a

database search tool MS-GFþ that is sensitive (it identifies more peptides than most other

database search tools) and universal (it works well for diverse types of spectra, different

configurations of MS instruments and different experimental protocols). We benchmark

MS-GFþ using diverse spectral data sets: (i) spectra of varying fragmentation methods;

(ii) spectra of multiple enzyme digests; (iii) spectra of phosphorylated peptides; and (iv)

spectra of peptides with unusual fragmentation propensities produced by a novel alpha-lytic

protease. For all these data sets, MS-GFþ significantly increases the number of identified

peptides compared with commonly used methods for peptide identifications. We emphasize

that although MS-GFþ is not specifically designed for any particular experimental set-up, it

improves on the performance of tools specifically designed for these applications (for

example, specialized tools for phosphoproteomics).
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M
ass spectrometry (MS) instruments and experimental
protocols have greatly advanced over the last decade.
New fragmentation technologies have emerged and

high-precision mass spectrometers like Orbitrap have become
widely available. Although trypsin remains a dominant protease
in proteomics studies, digesting proteins with diverse proteases is
becoming popular1. Empowered by these changes, MS
researchers now have diverse choices with respect to the
questions: ‘what fragmentation method to use?’, ‘how accurate
should be the measurements of the mass-to-charge (m/z) ratios?’,
‘what proteases to use?’ and ‘what post-translational modification
(PTM) to focus on (for example, phosphorylation)?’. Depending
on these choices, the resulting tandem mass (MS/MS) spectra
vary in fragmentation propensities and precision. Therefore,
unlike in the past when low-precision collision-induced
dissociation (CID) spectra of tryptic peptides dominated the
field, spectral data sets generated today are very diverse.
Unfortunately, the popular MS/MS database search tools such
as SEQUEST2 and Mascot3 have not kept pace with the increased
diversity of the data. Although several new MS/MS database
search engines were recently developed, including Andromeda4,
Morpheus5, and MS Amanda6, they have resulted in only minor
improvements as compared with SEQUEST and Mascot.

Many efforts have been invested into making existing MS/MS
search tools compatible with new types of data. For example,
several pre- or post-processing strategies have been proposed7,8,
resulting in small improvement in the performance of database
search tools. To further boost the performance, MS/MS database
search tools are combined with statistical modelling tools such as
PeptideProphet9, Percolator10 and IDPicker11. These tools do not
find new peptide–spectrum matches (PSMs), but rather re-score
PSMs reported by a database search tool using more complex
scoring and output high-scoring PSMs. Although they often
improve the performance of a database search tool, their
performance is negatively affected when the database search
tool fails to find correct PSMs12. Another downside of the pre- or
post-processing strategies and statistical modelling tools is that, as
they are often not integrated into database search tools, using
them complicates the analysis of MS/MS spectra. Moreover, as
different laboratories employ different combinations of tools (see
Fig. 1), even for the same data, capabilities of analysing the data
vary widely and results obtained in one laboratory are often
difficult to reproduce in another laboratory13.

In a recent review, Noble and MacCoss14 pointed out that ‘the
field (of MS) is still missing a generic analysis platform that can be
adapted automatically and in a principled manner, to handle
spectra produced by any given fragmentation protocol’. Our MS-
GFþ is a step towards achieving this goal, representing a universal
database search tool that performs well for diverse types of spectral
data sets. MS-GFþ works well (that is, identifies more peptides
than other MS/MS tools that we tested) for spectra generated using
diverse configurations of MS instruments and experimental
protocols. However, the main contribution of this study is not
the increase in the number of identifications for dozens of various
fragmentation methods and experimental protocols but rather the
fact that it represents the first truly universal MS/MS database
search tool. We emphasize that MS-GFþ is not customized for
specific spectral data sets but rather uses a robust probabilistic
model that works well across all data sets.

MS-GFþ is universal because it automatically derives scoring
parameters from thousands of PSMs without prior knowledge of
the type of the spectra12. We represent various types of spectra as
a graph where paths represent spectral types (Fig. 1). For each
spectral type, MS-GFþ learns scoring parameters separately and
scores a PSM using a different set of scoring parameters
depending on the spectral type. MS-GFþ can train scoring

parameters for any spectral type (including spectral types not
specified in Fig. 1) or use pre-trained scoring parameters. It takes
over the authority to train scoring parameters to the users and
makes the training easy.

The key advantage of MS-GFþ over existing approaches is its
ability to compute rigorous E-values (using the generating
function approach15) and thus to boost the number of peptide
identifications. Although the generating function approach from
ref. 15 worked well in a variety of studies16–19, the question of
applying it to modified peptides and to high-precision MS/MS
spectra remains open. In this study we address these issues, thus
making the generating function approach applicable to all types
of spectra.

We demonstrate the performance of MS-GFþ using various
previously studied data sets1,20–23: spectra of tryptic peptides
generated using CID, higher-energy collisional dissociation
(HCD) and electron transfer dissociation (ETD) in combination
with either linear ion trap or Orbitrap readout, spectra of multiple
enzyme digests, spectra of phosphopeptides and spectra or a
novel protease alpha-lytic protease (aLP). For all these data sets,
we show that MS-GFþ outperforms popular tools for peptide
identification such as MascotþPercolator.
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Figure 1 | Various spectral types. Spectral types are represented as paths

in the graph representing possible choices of the fragment method

(Fragmentation), the instrument measuring product ion m/z (Instrument),

the protocol used to prepare a sample (Protocol) and the enzyme used to

digest proteins (Enzyme). ‘Low’ in Instrument indicates low-resolution

instruments (for example, linear ion trap), ‘High’ indicates high-resolution

instruments (for example, Orbitrap) and ‘TOF’ indicates time-of-flight

instruments. ‘Phosphorylation’ and ‘Ubiquitination’ in Protocol indicate that

spectra are generated from phosphopeptides and ubiquitinated peptides,

respectively. A path in the graph represents a spectral type. For example,

the green path (CID, Low, Phosphorylation, Trypsin) represents low-

precision CID spectra of trypsin digests generated from a sample enriched

for phosphopeptides. The blue, red, green and magenta paths represent

spectral types of the data sets used in recent studies by Frese et al.20,

Swaney et al.1, Huttlin et al.21 and Starita et al.22, respectively. Different

combinations of analysis tools were used for different studies. Frese et al.

used an in-house tool for peak filtering, de-isotoping, and charge

deconvolution, Mascot for database search, Percolator for re-scoring, and

RockerBox58 for peptide-level FDR control. Swaney et al.1 used an in-house

tool for peak filtering, OMSSA27 for database search and an in-house tool

for both peptide- and protein-level FDR control. Huttlin et al.21 used an in-

house tool for re-calibrating peak masses, SEQUEST for database search, an

in-house tool for re-scoring and peptide- and protein-level FDR control.

Starita et al.22 used the Trans-Proteomics Pipeline45 along with SEQUEST

for database search. The same data sets were analysed by MS-GFþ
without using any additional tool with scoring parameters trained

separately for different spectral types.
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Results
MS-GFþ scoring. Database search tools use a scoring function
Score(P, S) to evaluate a PSM of a peptide P and a spectrum S,
and further compute statistical significance of the resulting PSMs.
In this study, we use E-values to evaluate statistical significance of
individual PSMs (referred as spectral E-values) and the target-
decoy approach to estimate false discovery rates (FDRs). See
Gupta et al.24 for the details of our probabilistic framework.

Let PS be a peptide that generated S. A scoring function is
adequate for S (with respect to a protein database ProteinDB) if
the correct peptide attains the maximal score in the database, that
is, maxPAProteinDB Score(P, S)¼ Score(PS, S). A ‘good’ scoring
function should satisfy the following three conditions. First, it
should be adequate for the great majority of spectra. Second, the
algorithm for PSM scoring should be fast. Third, the algorithm
for computing statistical significance (for example, E-values) of
PSMs should be fast and accurate.

MS-GFþ uses a very simple dot-product scoring Score(P,
S)¼ P* � S* after converting peptide P and spectrum S into
peptide vector P* and spectral vector S* (the spectral vector was
called the prefix-residue-mass spectrum in the previous publica-
tions12,25). Conversion of a spectrum S into a spectral vector S*
uses a probabilistic model that ensures that the resulting dot-
product scoring is adequate26 (first condition). At the same time,
it makes scoring and computing accurate E-values fast15 (second
and third condition). This simple ‘dot-product’ scoring model
contrasts with many other database search2,4,27,28 and re-
scoring9,10 tools, using sophisticated scoring functions that
often make it difficult to satisfy the third condition.

MS-GFþ workflow. MS-GFþ takes a spectral data set Spectra
and a protein database ProteinDB as an input and outputs a set of
scored PSMs along with E-value estimates. It uses open source
application programming interfaces jmzML29, jmzReader30 and
jmzIdentML31, and supports the HUPO Proteomics Standard
Initiative standard file formats—mzML32 and mzIdentML33.
Owing to these developments, MS-GFþ has been already
adopted in many proteomics pipelines and post-processing tools.

The workflow of MS-GFþ comprises the following four steps:
generating spectral vectors, searching a protein database,
computing E-values of PSMs and estimating FDRs. Below, we
describe each step as well as how MS-GFþ takes advantage of
high precision spectra.

Generating spectral vectors. A (non-modified) peptide is defined
as a string over the alphabet A of 20 standard amino acids. Let
Aþ be an extended amino acid set containing both unmodified
and modified amino acids. For an (unmodified) amino acid aAA,
let Mod(a)CAþ be the set that contains a and all its modified
amino acids. For example, if T (Thr) and T* (phosphorylated Thr)
are in Aþ , Mod(T)¼ {T, T*}. Given a peptide P¼ a1yak, define
PV¼ pu1ypuk as a variant of P if pui AMod(ai) for all i (1rirk).

MS-GFþ converts spectra into spectral vectors12,25. A spectral
vector of a spectrum S is an M-dimensional vector with integer
values, where M¼PrecursorMass(S) is the nominal precursor
mass of S. Here we consider nominal precursor masses,
representing that the sum of nominal masses of amino acids of
the peptide generated the spectrum. As in many cases, the precise
nominal precursor mass is unknown (for example, MS
instruments often choose second or third isotope peak instead
of mono-isotope peak from MS1 spectrum), multiple spectral
vectors are generated separately for each possible nominal
precursor mass and the score of a peptide of mass M is
computed from the spectral vector of precursor mass M.

The conversion from an experimental spectrum to a spectral
vector proceeds as follows. A spectrum S¼ {(mz1, rank1),y,(mzl,
rankl)} is represented as a set of ranked peaks where the ith
highest intensity peak gets rank i (mzj and rankj represent m/z
and rank of jth peak, respectively). An ion type is represented as a
triplet of integers charge, offset and sign, where sign represents
whether the ion type is a prefix ion (sign¼ 1) or a suffix ion
(sign¼ � 1). For example, singly charged b-ions and y-ions
correspond to ion types (1, 1, 1) and (1, 19, � 1), respectively.
Neutral losses and hydrogen transfers are also considered as ion
types, for example, singly charged z � ions corresponds to (1, 3,
� 1). Given an ion type ion¼ (charge, offset, sign), one can turn a
spectrum S into Sion¼ {(mass1, rs1),y, (massl, rsl)} using the
following transformation:

massj ¼
½mzj � charge � 0:9995� � offset if sign ¼ 1
PrecursorMassðSÞ� ð½mzj � charge � 0:9995� � offsetÞ if sign ¼ � 1

�

rsj ¼ RankScoreðion; rankjÞ;

where [x] represents the closest integer to x and RankScore(ion,
rank) is a pre-computed function that takes an ion type ion and
an integer rank, and returns a probabilistic log-likelihood score
defined in refs 12,26. It is noteworthy that 0.9995 is a rescaling
constant for minimizing rounding errors (see Supplementary
Table 1). In practice, RankScore(ion, rank) also accounts for the
location of the observed peak and the precursor charge and mass
of the spectrum, which are omitted here for simplification. Ion
types contributing to scoring are selected from the training set as
described in Kim et al.12 Assume that I is a set of ion types that
are selected. The spectral vector of S (denoted by S¼ (s1,y,sM))
is computed as follows:

si ¼
X
ion2I

maxðfrs j ðmass; rsÞ 2 Sion andmass

¼ ig[RankScoreðion;1ÞÞ;

where RankScore(ion, N) represents the score given when ion is
missing.

We also define a peptide vector of a variant as follows. Let
Mass(a) be the nominal mass of a (possibly modified) amino acid
a. For example, Mass(T)¼ 101 and the mass of phosphorylated
Thr is Mass(T*)¼ 181. Given a variant PV¼ pu1ypuk, define the
mass of PV as MassðPVÞ ¼

Pk
i¼1 MassðpuiÞ. Given a variant

PV¼ pu1ypuk of mass M, we define its peptide vector (denoted
by PV) as a 0–1 vector (m1,y,mM) with (n� 1) 1 s, such that
mi¼ 1 if i equals to Mass(pu1)þyþMass(puj)(1rjrk).

The MS-GFþ score of a PSM (PV, S) is defined as
MSGFScoreðPV ; SÞ ¼ PV � S ¼

Pk
i¼1 pui � si if Mass(PV)¼

PrecursorMass(S) and �N otherwise. The MS-GFþ score
represents the log likelihood ratio described in ref. 26.

Searching a protein database. We define ProteinDBþ as the set
of all variants (with respect to an extended amino acid set Aþ )
derived from ProteinDB. The goal of MS-GFþ database search is
to solve the following problem: given a spectral data set Spectra
and a protein database ProteinDB, for each spectrum S A Spectra
find a variant PVS,ProteinDB such that

PVS;ProteinDB ¼ argmax
PV2ProteinDBþ

MSGFScoreðPV ; SÞ:

In contrast to a traditional spectrum-based MS/MS database
search approach that compares each spectrum against all pep-
tides, MS-GFþ uses an alternative peptide-based approach that
computes the suffix array to compare each peptide against all
spectra with the same precursor mass. See Supplementary Note 1
for the details of MS-GFþ approach to the database search.
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Computing E-values of PSMs. The scores of PSMs reported by
existing MS/MS database search tools are often poorly correlated
with their E-values34. It is important to rank PSMs based on their
E-values, because such ranking (rather than ranking based on
‘raw scores’) often dramatically increases the number of identified
spectra under a given FDR15,35. Many database search tools
estimate an E-value of a PSM based on an approximation of a tail
of the score distribution specific to the spectrum using peptides in
the database27,28. As this approach is known to result in biased
estimates of E-values15, MS-GFþ adopted the generating
function approach to rigorously compute E-values of PSMs
using the score distribution of all peptides15. Our scoring model is
essential here, because the generating function approach is easily
applicable to the scoring functions that can be represented as a
dot-product of vectors24. Adopting the generating function
approach improves the accuracy of E-value estimates and
increases the number of identified peptides as was recently
confirmed by an independent work on applying it to the XCorr
score in SEQUEST35.

Given a spectrum S, a score threshold t, an extended set of
amino acidsAþ and a database size N, we define E-value (S,Aþ ,
t,N) as the expected number of variants PV (as defined by Aþ )
with MSGFScore(PV,S)Zt in a random protein database of size
N. To compute E-value(S, Aþ , t, N), we first compute spectral
E-value E-value(S, Aþ , t), the expected number of variants PV
with MSGFScore(PV, S)Zt given a single random peptide. A
single random peptide models a random peptide starting at a
fixed position in a random protein database.

We consider a set of all possible (unmodified) peptides of
length k (where k is a large number) and select a random peptide
uniformly from this set (that is, the probability of selecting a
peptide is 1

20k). In practice, to reflect different frequencies of amino
acids in a database (for example, Leu is usually more common
than Trp), we define the probability of a peptide P¼ a1yak asQk

i¼1 ProbðaiÞ, where Prob(a) is the frequency of amino acid a in
a protein database. Note that this does not change the algorithm
to compute the spectral E-values. We say that a peptide P
produces a variant PV if PV is a variant of a prefix of P. For
example, PEPT* and PEPTI are produced by PEPTIDE. Given a
spectrum S, let PV(t) be the set of all variants PV with
MSGFScore(PV, S)Zt. For every variant PV, there are 20k� |PV|

peptides of length k producing a variant PV (|PV| stands for the
number of amino acids in PV). Therefore, expected number of
variants per random peptide with a score equal or better than t is

E� valueðS;Aþ ; tÞ ¼
X

PV2PVðtÞ

20k� j PV j

20k
¼

X
PV2PVðtÞ

20� j PV j :

As a variant is a string over the alphabet Aþ , this expression can
be computed using the generating function approach15. Given a
spectrum S with S¼ s1ysM, consider a directed acyclic graph
called an amino acid graph G(V, E, Aþ ) with V¼ {0, y, M} and
E¼ {(i, j)|j� i A Mass(a) for a A Aþ }, where the score of a
vertex i is defined as si, the probability of an edge is defined as 1

20,
the score of a path is defined as the sum of scores of its vertices
and the probability of a path is defined as the product of
probabilities of its edges. A path in an amino acid graph
represents a variant. Therefore, E-value(S, Aþ , t) equals to the
sum of probabilities of all paths from 0 to M with scores equal or
better than t, and can be computed using parametric dynamic
programming15,26,36.

Although spectral E-values are useful for evaluating statistical
significance of individual PSMs (independently of the database),
they need to be transformed into E-value(S, Aþ , t, N) to take into
account the fact that the database search represents ‘multiple
testing’ where multiple variants (arising from different database

peptides) are scored against a spectrum37. E-values can be
approximated as follows:

E-valueðS;Aþ ; t;NÞ � E-valueðS;Aþ ; tÞ � N;

where N is the size of the database. It is noteworthy that as
protein databases contain many repeated peptides, it is important
to reflect the effective size of the database that is estimated as the
number of unique peptides of certain length.

Estimating FDRs. MS-GFþ estimates FDRs using the target
decoy approach38,39. See Supplementary Note 2 for details.

From low-precision to high-precision MS/MS spectra. Mass
spectrometers are usually divided into high-precision (denoted by
H) and low-precision (denoted by L) instruments. Depending on
whether the precursor and product ions are measured with low or
high precision, the spectra are divided into LL, LH, HL and HH
spectra (LH spectra are hardly ever used in proteomics studies).
Although it may appear that extending the generating function
approach from LL (as defined in ref. 15) to HL and HH spectra is
a simple matter of tuning parameters that control the error
tolerance, the situation is more complex. Here we explain how
MS-GFþ takes advantage of high-precision product ion peaks.

Let RMass(a) be the real mass of an amino acid a. For a variant
PV¼ pu1ypuk, let RMassðPVÞ ¼

Pk
i¼1 RMassðpuiÞ and RPre-

cursorMass(S) be the real precursor mass of a spectrum S. We
previously assumed that Mass(PV) and PrecursorMass(S) are
integers and defined MSGFScore(PV,S)¼PV � S if Mass(PV)¼
PrecursorMass(S) and �N otherwise. It is noteworthy that this
condition, although appropriate for LL spectra, is weak for HL
and HH spectra, because it may be satisfied even when the real
mass RMass(PV) significantly deviates (for example, up to 0.5Da)
from RPrecursorMass(S). Let a¼D b represent the condition
|a� b|oD. To take advantage of accurate precursor masses in
HL and HH spectra, the condition Mass(PV)¼ PrecursorMass(S)
has to be redefined to RMassðPVÞ¼D RPrecursorMassðSÞ, where D
is the precursor mass tolerance. The database search problem
with this modified definition of MSGFScore is now described by
the following equation:

SPV ;Spectra ¼ argmax
S2Spectra

MSGFScoreðPV ; SÞ

¼ argmax
S2SpectraRMassðPVÞ

MSGFScoreðPV ; SÞ; ð1Þ

where SpectraRMass(PV) represents the set of spectra S A Spectra
satisfying RPrecursorMassðPVÞ¼D RMassðSÞ.

The key part of the generating function approach is the
assumption that amino acids have integer masses (otherwise the
parametric dynamic programming is difficult to implement).
However, rounding amino acid masses to integers introduces
errors. These rounding errors reduce after rescaling by 0.9995,
making them appropriate for LL and HL spectra. However, for
HH spectra the rounding errors remain too large even after
rescaling, prohibiting MS-GFþ from benefiting from precise
product ion peaks. A larger rescaling constant could better
accommodate the mass accuracy, for example, the rescaling
constant 274.335215 allows one to model spectra with 2.5 p.p.m.
accuracy40. However, as the time complexity of the generating
function algorithm is proportional to the rescaling constant, this
rescaling makes computing E-values prohibitively slow.

Here we present a new scoring algorithm taking advantage of
the accurate product ion masses while not substantially increasing
the running time of MS-GFþ . In ref. 26, we introduced an
abstract model (seemingly unrelated to MS) that described a
probabilistic process of transforming a Boolean string (peptide
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vector) into another Boolean string (spectral vector). This model,
although adequate for low-precision spectra, needs to be modified
for high-precision spectra. Here we model a peptide as a Boolean
string (as before) but model a spectrum as a directed acyclic
graph (DAG) and further apply a transformation of a Boolean
string into a DAG for scoring real PSMs (see Methods for details).

Our new idea behind the DAG modelling is as follows.
Consider peaks at masses 100.01 and 157.4 that will be
transformed into integer bins 100 and 157 in the Boolean string
representation of the spectrum. After this transformation, we lose
information about the exact difference between these two masses.
However, in our new spectral DAG model this information is
retained in edges of the spectral DAG and used in the scoring.

Data sets. Overall, we used 19 data sets (E2.83 million spectra
from human, yeast, mouse and Schizosaccharomyces pombe)
reflecting the diversity of MS data, corresponding to 17 distinct
spectral types shown in Fig. 1 (see Methods for details on the data
sets). For all these data sets, we benchmarked MS-GFþ against
popular tools for peptide identification such as
MascotþPercolator.

Comparison of MS-GFþ with MascotþPercolator. We com-
pared the numbers of identified PSMs at 1% FDR for MS-GFþ
and MascotþPercolator (that is, PSMs reported by Mascot and re-
scored by Percolator). Mascotþ Percolator (Mascot version 2.3.02
integrating Percolator) was used for the comparison, because it
represents a popular choice for peptide identification. We also
tested several other tools such as SEQUEST, InsPecT25 and
OMSSA but do not report their results because they identified
significantly fewer PSMs as compared with MascotþPercolator.
See Supplementary Table S2 for database search parameters.

For all the 19 data sets, MS-GFþ identified significantly more
PSMs compared with MascotþPercolator (Fig. 2). Figure 3a
shows the benchmarking results for the five human data sets
generated with varying fragmentations and instruments20.

Percolator greatly increased the number of identifications as
compared with Mascot, but for all these data sets MS-GFþ
identified significantly more PSMs (17–38%) than
Mascotþ Percolator (see Supplementary Fig. S1 for Venn
diagrams of MS-GFþ and Mascotþ Percolator identifications).
We also compared the number of identifications reported by the
original study20, which also used Mascotþ Percolator along with
in-house pre- and post-processing tools. In this comparison, MS-
GFþ also showed an improved performance (identifying 16–
55% more PSMs).

To figure out how each tool benefits from high-precision
product ion peaks, for the three out of five human data sets
representing HH spectra, we ran MS-GFþ , Mascotþ Percolator
and Mascot using the parameters for HL spectra, that is, using
0.6 Da fragment mass tolerance for Mascot and Mascotþ
Percolator, and using the scoring model for low-precision spectra
for MS-GFþ . For every tool, the number of identifications was
higher when the parameters for HH spectra were used, but the
difference varied depending on the data set (Fig. 3b), and was
negligible for ETD spectra.

Figure 3c shows the comparison for the ten yeast data sets
generated with varying fragmentations (CID or ETD) and
enzymes (Trypsin, LysC, ArgC, GluC or AspN)1. Again, for all
these data sets, MS-GFþ identified significantly more PSMs (34–
168%) than MascotþPercolator (Fig. 3c). In ref. 1, using OMSSA
(and in-house tools for pre- and post-processing), the authors
reported the number of identified peptides at 1% peptide-level
FDR that are matched to proteins identified at 1% protein-level
FDR. We compared these numbers with the numbers of identified
peptides at 1% peptide-level FDR using MS-GFþ (Fig. 3d). Note
that this comparison is unfair because peptide identifications by
MS-GFþ were not filtered out according to the protein that they
are matched to. However, even after considering that, the results
show that for most of the data sets MS-GFþ identified many
more peptides than the original report.

To see whether our scoring model can capture the fragmenta-
tion propensities specific to phosphopeptides, we generated a
scoring parameter set for (CID, Low, Phosphorylation, Trypsin).
For the mouse data set corresponding to (CID, Low, Phosphor-
ylation, Trypsin), we compared the numbers of identified PSMs
for MS-GFþ with and without using the phosphorylation-
specific parameter set, MascotþPercolator and InsPecT
equipped with a dedicated scoring model for (CID, Low,
Phosphorylation, Trypsin)41 (Supplementary Fig. S2a).
Interestingly, without phosphorylation-specific scoring
parameters, MS-GFþ outperformed both tools, identifying 37%
and 44% more PSMs than MascotþPercolator and InsPecT,
respectively. With phosphorylation-specific parameters, MS-
GFþ identified 9% more PSMs (and 12% more PSMs of
phosphopeptides), confirming that our scoring model successfully
captures phosphorylation-specific fragmentation propensities.

A similar result was obtained for a (CID, Low, Ubiquitination,
Trypsin) data set (Supplementary Fig. S3). We emphasize that
MS-GFþ does not ‘know’ anything about the peculiarities of the
phosphorylation or ubiquitination, and simply trains the scoring
parameters in exactly the same way it does for other spectral
types. This ability to easily train modification-specific scoring
parameters for any modification will greatly benefit MS
researchers studying PTMs.

MS-GFþ for identifying peptides produced by a new protease.
aLP is a new protease with cleavage specificities somewhat
‘orthogonal’ to trypsin23. MS-GFþ was applied to the study of
aLP using two S. pombe data sets corresponding to (CID, Low,
Standard, aLP) and (ETD, Low, Standard, aLP). We
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Figure 2 | Benchmarking MS-GFþ against MascotþPercolator. Per cent

increases in the number of identified PSMs for MS-GFþ compared with

Mascotþ Percolator for all 19 data sets. Each bar represents a spectral data

set of a specified spectral type. For (CID, Low, Standard, Trypsin) and

(ETD, Low, Standard, Trypsin), there are two corresponding data sets, one

from human and the other from yeast. We distinguish them by adding ‘*’ to

the yeast data sets. For the (CID, Low, Phosphorylation, Trypsin) and

(CID, Low, Ubiquitination, Trypsin) data sets, the number of phosphorylated

and ubiquitinated PSMs were counted instead of the number of all identified

PSMs. For the (ETD, Low, Standard, aLP) data set, Mascotþ Percolator

identified no PSM.
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ran Mascotþ Percolator, OMSSA and MS-GFþ by
specifying ‘None’ as an enzyme. As aLP produces peptides with
different fragmentation propensities than tryptic peptides,
MascotþPercolator and OMSSA performed very poorly for
this novel spectral type. In contrast, MS-GFþ identified 3,535
and 2,829 PSMs from the (CID, Low, Standard, aLP) and (ETD,
Low, Standard, aLP) dataset using the scoring parameters for
(CID, Low, Standard, Trypsin) and (ETD, Low, Standard,
Trypsin), respectively (Supplementary Fig. S2b). The superior
performance of MS-GFþ over MascotþPercolator and OMSSA
is because its scoring function is adequate for aLP peptides
(correct peptide attains the maximal score) for a large portion of
the spectra even when the search space is large (that is, no
enzyme is specified). In fact, for the human data set
corresponding to (ETD, Low, Standard, Trypsin), when no

enzyme was specified and precursor mass tolerance 2.5Da was
used, MS-GFþ identified 10,937 PSMs, only 34% less as
compared with the fully tryptic search with 7 p.p.m. precursor
mass tolerance.

Using the identified PSMs by MS-GFþ , we trained
scoring parameters for (CID, Low, Standard, aLP) and (ETD,
Low, Standard, aLP). When these aLP-specific scoring para-
meters were used, the number of identified PSMs further
increased to 4,788 (þ 35%) and 3,313 (þ 17%) for (CID, Low,
Standard, aLP) and (ETD, Low, Standard, aLP), respectively,
showing the usefulness of MS-GFþ for studies of new proteases.

Thus, aLP represents a new alternative to trypsin, greatly
increasing the PTM and protein sequence coverages, but
generating spectra with unusual fragmentation propensities. We
emphasize that the capabilities of aLP are not obvious when
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Figure 3 | Comparison of MS-GFþ and other tools for diverse spectral types. The numbers of identified PSMs (a–c) or peptides (d) at 1% FDR are

shown. Numbers above bars represent the percentages of increase in the number of identifications for MS-GFþ compared with other tools. (a) Results for

the human data sets with varying fragmentations and instruments. MS-GFþ , Mascotþ Percolator and Mascot results are shown along with the results in

ref. 20. Percolator greatly increased the number of identifications as compared with Mascot, but MS-GFþ outperformed Mascotþ Percolator for all the

data sets. (b) Increase in the number of identifications due to the availability of high-precision product ion peaks. For the three human data sets

representing HH spectra, MS-GFþ , Mascotþ Percolator and Mascot were run using search parameters for HL spectra. The results of these searches

(denoted by HL) are compared with the numbers of identifications for the regular searches (denoted by HH). HH searches identified more PSMs than HL

searches for every tool and every data set. The difference was larger for CID and HCD than ETD spectra. (c) Results for the yeast data sets with varying

fragmentations and enzymes. MS-GFþ and Mascotþ Percolator results are shown. MS-GFþ outperformed Mascotþ Percolator for all these data sets.

(d) Comparison of MS-GFþ and the results in ref. 1 that used OMSSA along with in-house post-processing tools for the yeast data sets. The numbers of

(unique) peptides at the peptide-level 1% are shown. In ref. 1, only the number of identified peptides matched to proteins identified at 1% protein-level FDR

was counted, while for MS-GFþ the number of identified peptides was counted regardless of their matched proteins.
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MascotþPercolator or another tool is used, because it fails to
identify aLP peptides. The details on aLP protease have been
discussed in a separate paper23.

Running time of MS-GFþ . We measured the running time of
MS-GFþ and MascotþPercolator for LL, HL and HH spectra
for various spectral types. For all the searches, MS-GFþ and
MascotþPercolator showed similar running times
(Supplementary Fig. S2c,d).

Discussion
Our analysis and recent independent studies35,42–44 showed that
for diverse types of spectral data sets, MS-GFþ identifies more
PSMs as compared with existing database search tools such as
Mascot, X!Tandem, OMSSA, Crux, Comet and InsPecT, and
statistical modelling tools such as Percolator. We emphasize that
the generating function approach for accurately computing E-
values significantly contributes to the improved performance of
MS-GFþ . For example, when E-values instead of MS-GF scores
were used to cut off the results, the number of identified PSMs
increased approximately by 70%, 50% and 20% for LL, HL and
HH spectra, respectively.

Although we focused on demonstrating MS-GFþ as a stand-
alone tool, we emphasize that MS-GFþ can be combined with
various other proteomics analysis tools. As we have decided to
release MS-GFþ in 2012 well before this paper was prepared for
a journal submission, MS-GFþ has already been integrated into
the following pipelines and statistical modelling tools: Trans-
Proteomics Pipeline45, Galaxy-P46, ProteoSuite47, IDPicker11,
SearchGUI48, Scaffold48, ProteoSAFe, Skyline49 and
Percolator10,50. Peptide identification tools that combine the
results of multiple database search tools such as MSblender51,
Peptide-Shaker52 and PepArML53 also currently support MS-
GFþ . MS-GFþ is freely available at http://proteomics.ucsd.edu.

Methods
Spectral DAG model. Given an extended alphabet Aþ , we first explain how to
convert a spectrum S into a labelled DAG G. G¼ (V,E) has a vertex set V¼ {0, y,
M¼ PrecursorMass(S)} and an edge set E¼ {(i, j)|j� i A Mass(a) for a A Aþ }.
For simplicity, suppose that the set of ion types I ¼ {(1, 0, 1)} (that is, only singly
charged prefix ions with an offset zero contribute to the scoring). Given a constant
d called a fragment mass tolerance, two peaks of S with m/z x and y form a duo if
y� x is approximately equal to a mass of an amino acid, that is, RMassðaÞ¼d y� x
for a A Aþ . The vertex label si and the edge label si,j of G are defined as follows:
si¼ 1 if there exists a peak of mass x satisfying [0.9995 � x]¼ i and si¼ 0 otherwise;
si,j¼ 1, if there exists a duo of peaks with masses x and y such that [0.9995 � x]¼ i
and [0.9995 � y]¼ j, and si,j¼ 0 otherwise (see Fig. 4 for an example).

Let P¼ p1ypM be a Boolean string representing a peptide. Similar to the
studies by Kim et al.26 where a peptide string generates a spectrum string, we now

assume that a peptide string generates a DAG. The probability of a peptide P
generating a DAG G is defined as follows:

ProbðG j PÞ ¼
Y
i2V

Probðsi j piÞ �
Y
ði;jÞ2E

Probðsi;j j pi; pjÞ;

where Prob(x|y) is a 2� 2 matrix representing the probability of a peptide
character y (0 or 1) generating a vertex label x and Prob(x|y, z) is a 2� 4 matrix
representing the probability of a pair of peptide characters y and z generating an
edge label x (Table 1). In practice, b1Eb2Eb3 (see Table 1b).

When applying this model for scoring a peptide P and a DAG G, we consider a
test comparing two hypotheses: one assuming G is generated by P and the other
assuming G is generated by an ‘empty’ string consisting of all zeros (denoted by O).
The log-likelihood score of (P,G) (denoted Score(P,G)) is defined as follows (see
Fig. 5 for an example):

Score P;Gð Þ ¼ log
Prob G Pjð Þ
Prob G Ojð Þ

¼ log

Q
i2V Prob si pijð Þ �

Q
i;jð Þ2E Prob si;j pi; pj

��� �
Q

i2V Prob si 0jð Þ �
Q

i;jð Þ2E Prob si;j 0; 0j
� �

¼
X
i2V

log
Prob si pijð Þ
Prob si 0jð Þ þ

X
i;jð Þ2E

log
Prob si;j pi; pj

��� �
Prob si;j 0; 0j

� �

�
X

i2 i i2Vj ;pi¼1f g
log

Prob si 1jð Þ
Prob si 0jð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

VertexScore ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vertex scoring

þ
X

i;jð Þ2 i;jð Þ i;jð Þ2E;pi¼1;pj¼1jf g
log

Prob si;j 1; 1j
� �

Prob si;j 0; 0j
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
EdgeScore i;jð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

edge scoring

Note that the last equation assumes that only the edges (i, j) with pi¼ pj¼ 1
contribute to the edge scoring because b1Eb2Eb3.

In practice, we generate multiple DAGs for a single spectrum, one for each ion
A I . To generate an ion DAG for ion¼ (charge, offset, sign) with a real offset r
offset, (for example, real offset of the singly charged b-ion is 1.008), we first convert
S¼ {(mz1, rank1), y, (mzl, rankl)} into S0 ¼ {(mass1, rank1), y, (massl, rankl)}
using the following transformation:

massj ¼
mzj � charge� roffset if sign ¼ 1
RPrecursorMassðSÞ� ðmzj � charge� roffsetÞ if sign ¼ � 1

�

Each peak of S representing ion corresponds to a peak of this converted spectrum
S0 representing an ion type (1, 0, 1). Therefore, the vertex and edge labels of the ion
DAG for ion are defined as outlined before, but using S0 instead of S (Fig. 4).

In reality, vertex and edge labels in the ion DAGs are integers rather than
Boolean values. Given a converted spectrum S0 , we first remove all peaks (x, rank) if
there exists another peak (x0, rank0) where [0.9995 � x]¼ [0.9995 � x0] and rank 4
rank0 . The vertex label si is defined as follows: si¼ rank if there exists a peak (x,
rank) satisfying [0.9995 � x]¼ i and si¼ 0 otherwise. For an integer m, let
AminoAcid(m) be the set of amino acids a A Aþ satisfying Mass(a)¼m (for
example, AminoAcid(128)¼ {Gln, Lys}). The edge label si,j is defined as follows:
si,j¼ [100 �minaAAminoAcid(j� i)(y� x�RMass(a))] if there exists a duo of peaks
with masses x and y such that [0.9995 � x]¼ i and [0.9995 � y]¼ j, and si,j¼N

otherwise. The constant 100 is multiplied to discretize the real-valued errors into
bins of size 0.01Da.

In this ion DAG representation, vertex labels encode the information on the
intensities of individual peaks and the edge labels encode the information on the
mass errors of pairs of peaks assuming they represent consecutive peaks of the
same ion type. Note that edge labels take into account the spacing between peaks
but do not take into account the peak intensities.

0 1 1 1 1 0 1 0 11DAG G

Vertex 1 2 3 4 5 6 7 8 90

1.976 2.997 5.010 7.021 9.034

2.984 4.005 6.018 8.029 10.042

Spectrum S

Converted
spectrum S' 

3.989

4.997

Figure 4 | Constructing a DAG in the case of two ‘amino acids’ with real masses 2.012 and 2.996. Assume that only singly charged b-ion with a real

offset 1.008 contributes to the scoring. The spectrum S is converted into S0 by shifting each peak by 1.008 to the left. Each arrowed line in S0 represents a

pair of peaks separated approximately by 2Da (blue) or 3Da (red) that form a duo (solid) or does not form a duo (dashed) for a fragment mass tolerance

0.01Da. A DAG G is constructed from S0. The number in the vertex represents its label. The colour of the edge represents its label (0 for dashed grey and 1

for solid black).
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Supplementary Note 3 describes how to integrate information from various ion
DAGs into a single spectral DAG.

Human data sets with varying fragmentations and instruments. Five human
data sets corresponding to the spectral types (CID, Low, Standard, Trypsin), (CID,
High, Standard, Trypsin), (ETD, Low, Standard, Trypsin), (ETD, High,Standard,
Trypsin) and (HCD, High, Standard, Trypsin) contain 38,401, 33,586, 30,451,
25,734 and 37,810 spectra, respectively. These data sets are generated in the Heck
Laboratory (Utrecht University). HEK293 whole-cell lysates were digested by
trypsin and analysed by LTQ-Orbitrap Velos (Thermo Fisher Scientific, Bremen),
using combinations of one of the three fragmentation modes CID, ETD and HCD,
and either ion trap or Orbitrap readout for product ion m/z. The detailed
experimental procedures are described in ref. 20.

Yeast data sets with varying enzymes. Ten yeast data sets corresponding to the
spectral types (CID, Low, Standard, Trypsin), (CID, Low, Standard, LysC), (CID,
Low, Standard, ArgC), (CID, Low, Standard, GluC), (CID, Low, Standard, AspN),
(ETD, Low, Standard, Trypsin), (ETD, Low, Standard, LysC), (ETD, Low, Stan-
dard, ArgC), (ETD, Low, Standard, GluC) and (ETD, Low, Standard, AspN)
contain 333,203, 278,336, 114,351, 81,669, 251,974, 72,463, 246,428, 204,860,
88,403 and 262,635 spectra, respectively. These data sets were generated in the
Coon Laboratory (University of Wisconsin Madison). Yeast whole-cell lysates were
digested separately, with either trypsin, LysC, ArgC, GluC or AspN, separated into
12 fractions via strong cation exchange chromatography and analysed in triplicate
with an ETD-enabled LTQ-Orbitrap mass spectrometer, where peptide fragmen-
tation was accomplished either with CID or ETD using the decision-tree acquisi-
tion mode54. We downloaded 180 (5 enzymes� 12 fractions� 3 replicates)
spectrum files (Thermo RAW format) and converted each raw file into two mgf
files, one containing CID and the other containing ETD spectra using ‘msconvert’
in ProteoWizard55 with ‘no filtering’ option. The conversion was unsuccessful for
6 out of 180 files (5 from Arg-C and 1 from Glu-C digests). These six files were
removed in the further analyses. The detailed experimental procedures are
described in ref. 1.

Mouse data set of phosphopeptides. A mouse data set corresponding to the
spectral type (CID, Low, Phosphorylation, Trypsin) contains 181,093 spectra. This
data set was generated from the Gygi Laboratory (Harvard Medical School). Nine
mouse organ proteins were digested with trypsin and the resulting peptides were
fractionated via strong cation exchange. Phosphopeptides were enriched via
immobilized metal affinity chromatography and analysed in duplicates via LC-MS/
MS on an LTQ-Orbitrap mass spectrometer. Out of nine organ tissues analysed, we
used the spectra generated from the brain tissue. The detailed experimental pro-
cedures are described in ref. 21.

S. Pombe data sets with aLP digest. Two data sets corresponding to the spectral
type (CID, Low, Standard, aLP) and (ETD, Low, Standard, aLP) contain 49,167
spectra each. These data sets were generated in the Komives Laboratory (University
of California, San Diego). The detailed experimental procedures to generate these
data sets are as follows. Wild-type S. pombe cells were lysed in 50mM Tris–HCl pH
8.0, 150mM NaCl, 5mM EDTA, 10% glycerol, 50mM NaF, 0.1mM Na3VO4, 0.2%
NP40 and stored at � 80 �C. The debris was pelleted and then the supernatant was
collected. The pellet was extracted according to ref. 56. Briefly, the pellet was
resuspended in 200ml of 0.1M NaOH, 0.05M ETDA, 2% SDS and 2% b-
mercaptoethanol and incubated at 90 �C for 10min. Acetic acid was added to 0.1M
and vortexed, followed by an additional incubation at 90 �C for 10min before
clarification by centrifugation and methanol/chloroform extraction. The pellet was
resuspended in 100mM Tris containing 0.1% sodium deoxycholate with TCEP at
5mM. Free thiols were capped with N-ethylmaleimide. Excess reagent was removed
by ultrafiltration with amicon-4 10 kDa centrifugal devices. The protein was then
quantified and exchanged into 6M guanidine for digestion overnight by aLP. The
digests were quenched by the addition of formic acid to 1%, followed by desalting by
sep-pak (Waters, Milford, MA). Peptides were then fractionated with electrostatic
repulsion-hydrophilic interaction chromatography57. Fractions were assayed for
protein concentration using a BCA assay and pooled into 18 fractions of equal
protein concentration, evaporated to dryness and resuspended in 100ml of 0.2%
formic acid. Nano LC-MS/MS was performed with a LTQ XL mass spectrometer
equipped with ETD. Ten microlitres of each fraction (E1mg) was injected onto a

Table 1 | Probability table for generating directed acyclic graphs

x
y

0 1

0 � 1 − �
1 1 − � �

(a)

x
y, z

0,0 0,1 1,0 1,1

0 �1 �2 �3 1 − �
1 1 − �1 1 − �2 1 − �3 �

(b)

(a) Probability Prob(x|y) of a peptide character y generating a vertex lavel x. (b) Probability Prob(x|y, z) of peptide characters y and z generating an edge label x.
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12 cm� 75mm I.D.C18 column prepared in house and eluted in 0.2% FA with a
gradient of 5 to 40% Acetonitrile over 60min followed by wash and re-equilibration
totalling 90min of MS data per run. The flow was split about 1:500 to a flow rate of
about 250 nlmin� 1. A survey scan was followed by data-dependent fragmentation
of the four most abundant ions with both CID and ETD, with supplemental
activation. The maximum MS/MS ion accumulation time was set to 100ms.
Fragmented precursors were dynamically excluded for 45 s with one repeat allowed.

Training scoring parameters. At the beginning of this study, we had five scoring
parameter sets used in ref. 12 for the following five spectral types: (CID, Low,
Standard, Trypsin), (CID, Low, Standard, LysN), (ETD, Low, Standard, Trypsin),
(ETD, Low, Standard, LysN) and (ETD, Low, Standard, LysC). For this study, we
constructed 20 new parameter sets using these 5 parameter sets as a starting point,
using a newly developed programme called ScoringParamGen within the MS-
GFþ package. To train scoring parameters for a new spectral type, MS-GFþ was
run with an existing parameter set to identify PSMs at 1% FDR threshold, and
using the identified PSMs as a training set a new parameter set was constructed.
Supplementary Fig. S4 shows the scoring parameter sets contained in MS-GFþ
and how they were constructed. We also tried to construct another generation of
parameter sets using the existing parameter sets for the same spectral types, but this
‘iterative training’ hardly changed the number of identified PSMs.

For some data sets, the same data set was used for both training and testing of
the performance, raising concerns about overfitting. However, as shown in ref. 12,
MS-GFþ scoring parameter set characterizes a particular spectral type and is
rather stable with respect to specific data sets. For example, for the human (CID,
Low, Standard, Trypsin) data set, when the scoring parameter set trained from the
same data set was used instead of the data set used in ref. 12, the number of
identified PSMs hardly changed.
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