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Abstract

We propose a modular architecture of Deep Neural Network (DNN) for multi-class classification task. The architecture 

consists of two parts, a router network and a set of expert networks. In this architecture, for a C-class classification problem, 

we have exactly C experts. The backbone network for these experts and the router are built with simple and identical DNN 

architecture. For each class, the modular network has a certain number � of expert networks specializing in that particular 

class, where � is called the redundancy rate in this study. We demonstrate that � plays a vital role in the performance of the 

network. Although these experts are light weight and weak learners alone, together they match the performance of more com-

plex DNNs. We train the network in two phase wherein, first the router is trained on the whole set of training data followed 

by training each expert network enforced by a new stochastic objective function that facilitates alternative training on a small 

subset of expert data and the whole set of data. This alternative training provides an additional form of regularization and 

avoids over-fitting the expert network on subset data. During the testing phase, the router dynamically selects a fixed num-

ber of experts for further evaluation of the input datum. The modular nature and low parameter requirement of the network 

makes it very suitable in distributed and low computational environments. Extensive empirical study and theoretical analysis 

on CIFAR-10, CIFAR-100 and F-MNIST substantiate the effectiveness and efficiency of our proposed modular network.

Keywords Modular neural networks · Deep learning · Knowledge-distillation · Multi-class classification · Image 

classification

1 Introduction

Deep Neural Networks (DNNs) in the last two decades have 

shown it’s superiority in the field of visual object recogni-

tion [26, 62, 64]; image segmentation [5, 9, 63, 76]; speech 

recognition and translation [3, 29]; natural language process-

ing [11, 68]; reinforcement learning [43, 56, 57]; bio infor-

matics [63]; educations [38, 73]; and so on. Despite their 

simple layered structures of neurons and connections, they 

have outperformed other machine learning models [74]. This 

superiority has been achieved due to its ability of complex 

non-linear mapping from input to output, automated rich and 

discriminate features learning as opposed to hand-engineered 

low-level features such as GABOR features [41], local binary 

patterns [2], SIFT [54] and so on. With the passage of time, 

we can notice that not only the performance is levitating 

dramatically, also networks are getting deeper [14, 31, 69] 

and wider [77]. As a result, these finer networks are lack-

ing few important and desirable properties such as interpret-

ability or comprehensibility, practical applicability in low 

computational devices and so on. In addition, problems 

such as catastrophic forgetting with the arrival of new data 

[28], lack of memory efficiency, have also started to arise. 

Fortunately, various novel approaches have been proposed 

to mitigate a few of these shortcomings. Recent notable 

approaches include knowledge distillation from the cumber-

some models to smaller models [33]; compression of knowl-

edge from ensemble to a single model [8]; pruning of neural 
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networks [48, 51, 58, 81, 82]; efficient Neural Architecture 

Search (NAS) [61, 82, 83]; modular neural network design 

[4, 30, 40, 42, 74]; and so on. There have been also sig-

nificant advances in efficient hardware design architectures 

for DNNs. Intel Corporation has developed a neural compu-

tation stick powered by the Vision Processing Unit (VPU) 

which can accelerate the inference phase of complex DNN 

on a low computational device. Google has also recently 

developed small edge Tensor Processing Unit (TPU) for 

high-performance machine learning inference. These small 

ASIC devices for DNN can easily execute deep Convolu-

tional Neural Networks (CNN), which make it one of the best 

alternatives for cloud-based service. Unfortunately, when it 

comes to state-of-the-art networks, these ASIC devices still 

face performance bottle-neck when executed in real-time sce-

narios. Thus, it is necessary to devote time and research on 

mitigating the above shortcomings of DNN.

In this paper, we propose a novel modular neural network 

framework for multi-class classification, which is inherently 

simple and easy to implement. The key idea is to leverage a 

fixed number of experts, each with parameters as few as pos-

sible during the inference phase, while maintaining accuracy 

comparable to relatively complex and monolithic state-of-

the-art DNNs. The proposed framework has a close resem-

blance to the model of the human brain depicted by Minsky 

in [55], where he described the human brain as a collection 

of specialist agents interconnected by nerve-bundles. Quot-

ing from [55] We’re born with proto-specialists involved 

with hunger, laughter, fear and anger, sleep and sexual 

activity- and surely many other functions no one has discov-

ered yet- each based upon a somewhat different architecture 

and mode of operation. Analogous to this brain model, our 

framework consists of a countable set of expert agents and a 

router agent. In this literature, we term the expert agents as 

the expert networks and router agent as the router network. 

Each of these expert networks is expert on a specific subtask 

and their computation take place independently. Although 

they are not superior individually for a whole set of tasks, 

they outperform each individual network when they execute 

collectively. The router network moderates the execution of 

these expert networks. The concept of the modular neural 

network itself is not new. The key concept of modular con-

nectionist goes back to the mid-1980s in [40]. A number of 

contributions such as [30, 40, 50, 72] have approached the 

task of speech recognition using the modular connectionist 

theory. A majority of the proposed modular architectures 

are equipped with a gating network (analogous to our router 

network) and a set of expert networks. Despite the popu-

larity of modular connectionist models during the 80s, the 

modular approach in recent DNNs (such as CNN, Recurrent 

Neural Network(RNN) and so on) era is relatively sparse, 

until recently Hinton and Vinyals have introduced the novel 

concept of knowledge distillation in neural network [33]. 

Our proposed modular neural network framework which we 

termed as the MS-Net has a close resemblance to [4, 24, 33, 

60] literature in the following key points: i) We divide the 

dataset into a number of subsets/subtasks/concepts. After-

ward, we train a fixed number of expert neural networks on 

each of these subsets ii) The router module navigates us to 

those expert networks for further re-evaluation.

However, in addition to the above points and our previous 

work [39]1, the novelty of our contributions to this research 

can be summarized as follows: 

1. We propose a simple data partitioning technique for 

the modular neural network based on the Round Robin 

method. This technique enables decomposition of the 

dataset into C subsets of class indices, where C is the 

total number of classes available in the dataset.

2. We provide a detailed theoretical and empirical study on 

effect of redundancy variable � on the complexity and 

performance of MS-Net.

3. We theoretically demonstrate that the proposed MS-Net 

requires no more than C expert networks to effectively 

specialize on the corresponding C subsets of classes.

4. We propose a new stochastic objective function to train 

the expert networks. The proposed objective function is 

composed of two terms, wherein the first one facilitates 

optimizing the expert networks on data from its corre-

sponding subset classes, and the second term optimizes 

networks on data from the whole set of classes.

2  Outline

We arrange the paper in the following order. 

 1. Sect. 3: Related works on modular neural networks 

and machine learning models, ensemble learning and 

so on.

 2. Sect. 4: An overview of the MS-Net architecture.

 3. Sect. 5: Detailed discussion on Round-Robin based 

dataset partition.

 4. Sect. 6: Training procedure of expert networks, includ-

ing algorithm.

 5. Sect. 7: Inference phase on MS-Net, including algo-

rithm.

 6. Sect. 8: Detailed discussion about the datasets and 

experiment settings.

 7. Sect. 9: Empirical analysis.

1 Part of contributions in this paper have also appeared in previous 

literature [39] titled Selective Modular Neural Network, where (i) � 

and n were limited to only 2 (ii) simple cross-entropy loss function 

was used to train the experts (iii) preliminary results of few public 

datasets.
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 8. Sect. 10: Guidance for optimal hyper-parameters selec-

tion for the network.

 9. Sect.11 Effects of knowledge-distillation on MS-Net.

 10. Sect.12 Discussion on results and comparison to state-

of-the-art DNNs.

 11. Sect. 13: Conclusion and possible future works.

3  Related work

Modular architectures have been famous in neural networks 

or connectionist models for a long time. In addition to that, 

modularity has also been widely implemented in other tra-

ditional machine learning models. This approach has not 

only boosted the performance of these learning models, but 

also introduced virtues such as interpret-ability, training effi-

ciency, distributed computation, reduction of parameters and 

so on [4]. In this section, we provide an overview on the 

neural networks and other machine learning models which 

exhibit modular behaviour.

Class binarization (CB) is one of the most well-known 

method in the modular framework. It can be considered as a 

special case of ensemble learning, where each binary mod-

ule is assigned to learn or distinguish a single concept or 

class from the rest. Among different CB techniques, ONE 

VS ALL (un-ordered binarization) is the most commonly 

practiced technique in neural network [4], support vector 

machine [12], due to its computational efficiency and per-

formance boost. The technique first appeared in the literature 

[10]. The method constructs C binary classifiers in total, 

where C is the total number of classes. Despite its simplicity, 

the method suffers from class imbalance, since the number 

of positive instances is smaller compared to the negative 

instances for each binary classifier. In addition, an ordered 

variant of the mentioned CB technique requires only C − 1 

classifiers. However, the class imbalance short-coming was 

later resolved by the method ONE VS ONE which appeared 

in the literature Separate-and-Conquer Rule Learning [21]. 

A more systematic method for generating binary classifiers 

which is known as the Round Robin learning was introduced 

by the same author in the literature [22–24]. Due to its sys-

tematic method of creating binary classifier, it carries more 

interpret-ability. The method has demonstrated that a total 

of C (C − 1)∕2 classifiers are constructed using the Round-

Robin method. Each of these classifiers is a pair-wise-clas-

sifier, expert on two specific classes or concepts. Thus, the 

issue of class imbalance no longer prevails. In addition to 

that, authors have shown that this approach requires rela-

tively fewer amount of data during training as oppose to 

ONE VS ALL method. However, during the inference phase 

all C (C − 1)∕2 classifiers require evaluation. With a view to 

resolving this computational issue, a relatively recent litera-

ture [60] proposed an efficient prediction algorithm for these 

ensembles, where pair-wise classifiers can be dynamically 

chosen without any drop in accuracy.

Knowledge distillation (KD) is a recent and very popular 

method for compression of complex and cumbersome DNNs. 

The method was first proposed by Hinton et al. [33]. This 

method is now widely implemented in deep learning research 

and industrial applications. Studies such as, [20, 78] have 

shown that, KD not only allows compression but also enables 

a relatively smaller student model to outperform its teacher 

model. The key idea is to train a student network to mimic 

the output features or the class probability distributions of the 

teacher network. The literature’s [33] contribution was not 

only limited to KD, the authors have also proposed a modu-

lar network framework that has a very close resemblance to 

our proposed framework. The model consists of two main 

parts, a generalist network and a set of independent expert 

networks. Each of these expert networks is a simple CNN, 

which is trained on data that are often confused and misclas-

sified by the generalist network. Thus, each individual expert 

is classifier of type CONFUSABLE SUBSET VS ALL, where 

one part is the CONFUSABLE set of task and the rest ends 

up with single DUSTBIN class. This notion implies that the 

generalist model needs to be evaluated first to obtain those 

CONFUSABLE set of classes. In-order to (i) retain knowl-

edge about the non-expert classes (ii) avoid over-fitting and 

(iii) solve the class imbalance problem the author initialized 

the expert networks with the weights of generalist network. 

The literature has shown that, as the number of expert net-

works increases, the accuracy increases proportionally. How-

ever, there have been no concrete indication and estimation 

on the number of experts covering those CONFUSABLE 

set of classes. In addition, the literature states that there can 

be situation where there are no expert networks covering a 

certain set of classes (since the generalist network is already 

confident on its prediction for those certain set of classes).

Recent research [80] titled Deep Mutual Learning (DML) 

which consists of cohort of student models resembles modu-

lar behavior. The DML enables a number of student models 

to mutually learn from one another by minimizing the Kull-

back Leibler (KL) Divergence between their predictions, 

which is a special case of KD [33]. The experiments have 

shown that the number of student networks in cohort dur-

ing training can be extended to more than two. Moreover, 

empirical results show that, multiple student neural networks 

trained by the mutual learning out-perform single model net-

work trained independently. This learning process has also 

shown to outperform the KD method.

Other notable recent research contribution on modular 

neural network includes the famous Generative Adversarial 

Network (GAN)[27], where two networks, discriminator 

and the generator network co-operate and compete against 

each other. There are also different variants of GAN which 

comprise of more than two networks [45]. Research [16] 
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proposed modular like architecture that is build upon the 

existing state-of-the-art neural networks. In the literature, 

they re-configure the model parameters into several par-

allel branches where each branch is a stand-alone neural 

network. They have demonstrated that, the average of the 

log-probabilities of multiple parallel branches give better 

representation as opposed to the single independent branch.

In this paper, our modular neural network framework has 

a very close similarity to the literature [4, 24, 33], such as 

presence of gating network and expert networks. But in con-

trast to ONE VS ONE and ONE VS ALL, our expert networks 

are not limited to binary classifiers. We introduce a simple 

Round-Robin based systematic data partition technique which 

enables us to train each expert on subset of multiple classes. A 

contrast to note that, unlike ensemble learning method such as 

well known AdaBoost [18],Bagging [6], Random Forest [7], 

Gradient boosting [19] and so on which requires the collec-

tive wisdom of all available classifiers, our network does not 

require to run all the neural network models during inference. 

The novelty in our proposed framework is that, the router of 

the MS-Net extensively reduces the number of expert network 

evaluation during the inference phase. Since the partition of 

dataset is systematic, i) it gives us prior knowledge on which 

experts are specialist on which subsets, which also facilitates 

us to dynamically chose specific number of expert networks 

during inference. ii) it guarantees presence of multiple expert 

networks for a single concept or class, thus we have a certain 

degree of fault tolerance in case other experts or the router 

network fail to correctly classify the data.

4  Proposed network architecture

The network has two main modules, a router network, and 

a pool of expert networks. In the expert network pool there 

are C expert networks, where C is the total number of classes 

available in a given dataset. A simplified image of our modu-

lar framework is shown in Fig. 1. The expert networks and 

router network have the same network architecture. A very 

important issue is the size of the network. In our experi-

ment, a cumbersome and computationally expensive net-

work is not desirable. On the contrary, we also do not want 

the network to face performance bottle-neck due to simple 

architecture. There are many remarkable literature relating 

to the compact, efficient and accurate Neural Architecture 

Search (NAS) [17, 83] in recent times, but this topic is out of 

scope for this paper. However, the choice of architectures of 

any network are dependent on the complexity of the dataset. 

Considering the computational issue and memory efficiency, 

we chose ResNet-20 [31] as the initial backbone network, 

which is of one the most minimalist and light weight net-

work to our knowledge. We leverage the Resnet-20 as the 

backbone of MS-Net to find the optimal hyper-parameters 

such as, the value for � , top-n and so on. After we obtain 

the optimal hyper-parameters through extensive empirical 

study with ResNet-20 we train other complex DNNs which 

are, GoogleNet [69] and MobileNet [35] as the backbone 

network of MS-Net. 

5  Round robin based data‑set partition 
with sliding window

In this research, the redundancy rate plays a vital role in the 

performance of the framework. We denote the redundancy 

rate as � . The variable � has two main interpretations. First, 

� is the size of each subset of class indices. Second, each 

class index appears exactly in � subsets of class indices. In 

any sense, when � is larger more expert networks will get 

the chance to see the training data from any particular class. 

This is the reason why we called � redundancy rate.

In order to prove the above two points let us introduce 

several notations. First, we use D = {d
i
|i = 1, .., N} to 

denote the whole training data set, where N is the total 

number of training data; and T = {t
i
|i = 1, .., N} to denote 

the set of teacher signals, where t
i
 is associated with d

i
 

for i = 1, 2, ..., N  . To partition the subsets for training the 

expert networks, we leverage a sliding window of length 

k and stride s. Refer to Fig. 2 for a graphical overview of 

dataset partition. In this figure, we arrange the indices of 

all classes in a ring-shaped manner. The sliding window 

length k is a positive integer less than C, which is the total 

number of classes Table 1. The redundancy rate � depends 

directly on k. Each time when we shift the sliding window 

with a stride s over the ring in a Round-Robin fashion 

(clockwise), we obtain a subset sub
i
 which contains k class 

indices. We use S = {sub1, sub2, ...} to denote the set of 

all class index sets so far obtained. We can prove that, 

for any value of k and with stride s = 1 , the cardinality of 

S is always equal to the total number of classes C. Since 

Fig. 1  Test Phase version of MS-Net. FE and FC depict Feature 

Extractor and Fully Connected layer of neural network respectively. 

E is the set of all experts dynamically selected by the router network 

R. The first block represents the router network which dynamically 

selects the expert networks based on its softmax (SM) confidence. 

The second part is the pool of expert networks further re-evaluating 

the router’s top-n most likely predictions. Finally, the network aggre-

gates the soft-max scores of router and selected experts
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we have C target classes, and if we can prove |S| = C , we 

can conclude that our framework requires no more than 

C experts.

Lemma 1 With stride s = 1 and for any value of k, the cardi-

nality of S is always equivalent to the total number of class 

C available in the data-set.

Proof If k is the length of sliding window of any length, by 

the convolution arithmetic [15] we can state that the number 

of class index sets in S as:

Since we are using the Round Robin rotation, the later term k 

is added instead of 1. As, s = 1 , Eq. (1) can be re-written as:

(1)|S| =
(C − k)

s
+ k

Thus, with stride 1, the total number of class index sets or 

the number of expert networks is always equal to the number 

of classes.   ◻

Lemma 2 If the length of sliding window is k and stride 

s = 1 , the index for each class occurs exactly in k class index 

sets or in other words, we have exactly k experts related to 

each class.

This implies that the redundancy rate � is determined by 

the sliding window size k. This phenomenon also suggests 

that, k determines the fault tolerance of the proposed MS-

Net. As the value of k increases, we have more experts for 

each particular class (Note that, the total number of experts 

remains constant i.e. C). On the contrary, as we decrease k, 

the redundancy rate or the number of experts specializing 

on that particular class decreases.

Proof Let us assume that the sliding window length is k, 

where k < C . After the n − th ( n = 0, 1, ..., C − 1 ) sliding 

operation, we obtain the following class index sets.

(2)
|S| = C − k + k

= C

sub
n+1 = {n mod C + 1, ..., (n + k − 1) mod C + 1}.

Fig. 2  Round Robin partition of the dataset. The left image depicts 

the sliding of the window over the classes. In each sliding operation, 

we have a subset. The sliding operation continues for C times. The 

right image illustrates the effect of size of the sliding window on the 

redundancy variable � . In the image we fix sliding window size to 4, 

hence we have each class occurring in exactly four subsets

Table 1  Backbone networks

Network # of parameters (M) MACs (G)

ResNet-20 [32] 0.269 0.041

MobileNet [35] 2.36 0.33

GoogleNet [69] 6.20 16.04
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According to the definitions of the sliding window and 

the class index sets, |sub
n+1

| = k . Since we are performing 

Round Robin rotation, we use the modulus operator for indi-

ces of each class.   ◻

Without loss of generality, we show that the index 

(n + k − 1) mod C + 1 exists in exactly k class index sets. Dur-

ing the Round-Robin partition, we shift each element of sub
n+1

 

to the left of the sliding window with stride s = 1 as depicted 

in Figs. 3 and 4. Thus, in each sliding operation we introduce 

a new class index to the right of the sliding window, which in 

the case of sub
n+1

 is (n + k − 1) mod C + 1 . In the same way, 

for the next sliding operation, we have,

As we can observe in sub
n+2

 , the class index n mod C + 1 

ceases to exist and a new index (n + k) mod C + 1 

arrives in the right most position. In addition, the index 

(n + k − 1) mod C + 1 shifts one position to the left. After 

the n + k − 1-th sliding operation, we have,

sub
n+2 = {(n + 1) mod C + 1, ...,

(n + k) mod C + 1}.

sub
n+k

= {(n + k − 1) mod C + 1, ...,

(n + 2k − 2) mod C + 1}.

The index (n + k − 1) mod C + 1 is now at the left 

most position. After the n + k − th sliding operation, 

(n + k − 1) mod C + 1 will no longer exist in the subset 

sub
n+k+1

 because

I t  i s  c l e a r  f r o m  a b o v e  e q u a t i o n , 

(n + k − 1) mod C + 1 ∉ sub
n+k+1

 since after the n + k − th 

sub
n+k+1 = {(n + k) mod C + 1, ...,

(n + 2k − 1) mod C + 1}.

Fig. 3  Illustration of Lemma 2. The figure depicts that, with a sliding 

window length of k, each (in this figure, the highlighted class index 

(n + k − 1) mod C + 1 is shown to occur k times.) class index occurs 

in exactly k subsets. This also suggests that for each class in the data-

set MS-Net has k expert networks

Fig. 4  Illustration of the training phase. This figure is the pictorial 

version of the Training phase section
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sliding operation, the class index (n + k − 1) mod C + 1 

slides out of the window. Thus, (n + k − 1) mod C + 1 

occurs in {sub
n+1, sub

n+2, ..., sub
n+k

} or exactly in 

(n + k) − (n + 1) + 1 = k − 1 + 1 = k  class index sets, 

which also concludes we have k experts for the class 

(n + k − 1) mod C + 1.

6  Training phase

We perform the training procedure in two steps. First, we 

train the router network on whole dataset. Second, we train C 

experts on the subsets which can be constructed based on the 

class index sets obtained in Round-Robin fashion depicted in 

Sect. 5. We denote the router network as y = R(.) ∶ D �→ T  , 

where D and T  are the dataset and the corresponding label 

set, respectively. The output of the router network is the soft-

max defined in Eq. (3), where we obtain the probabilities 

q1, ..., qC for all C classes. Here, z1, ..., zC are the logit scores 

for the corresponding classes.

For our modular network framework, the top-1 score 

does not require to be strictly accurate. Since it is obvi-

ous that, the likeliness of the correct answer to be in top-n 

(as n increases) is higher than top-1, we take into consid-

eration the top-n most probable answers. The role of the 

expert networks comes into play in this situation, where 

a set of experts further re-evaluate the router’s top-n pre-

dictions. Thus, the accuracy of the experts have a signifi-

cant effect on the MS-Net performance. Let us assume, we 

have a set of expert neural networks E = {e(.)1, ..., e(.)
C
} . 

In order to ensure these experts effectively specialize on 

the subsets, we formulate a stochastic objective function 

which we depict in the Eq. (4). The objective function 

optimizes each of the expert network on its correspond-

ing subset data {D
sub

i
, T

sub
i
} using cross entropy loss func-

tion, where Dsubi
= {dj ∈ D|tj ∈ subi ∧ 1 ≤ j ≤ N} and 

Tsubi
= {tj ∈ T|tj ∈ subi ∧ 1 ≤ j ≤ N} and on the whole set 

of data {D, T} using KD function, alternatively.

The knowledge is distilled from the router network. Thus 

the router is the teacher model. The alteration between two 

the loss terms in Eq. 4 is controlled by the Bernoulli random 

variable X  with the probability

The stochastic nature of the objective function for a cer-

tain range of � provides (i) balanced training of networks 

and (ii) better regularization. Again, the cardinality of each 

class index set sub
i
 is determined by the redundancy variable 

� . In our experiment we demonstrate the effectiveness and 

(3)qi =
exp(zi)

∑

j
exp(zj)

.

Prob(X = 1) = �.

performance of the framework for � = 2, 3 and 4. We stress 

that, during the inference phase, as we increase � the num-

ber of expert network evaluation increases linearly. Due to 

the stochastic training of expert networks on whole dataset 

using KD (the second part of Eq. (4)), these networks are no 

longer limited to its corresponding subset data. Rather, each 

of the network is an expert on their own subset classes, in 

the meantime has certain generalization ability on the data 

of other classes.

In Eq. (4), the first term optimizes the expert network e
i
() 

on the classes defined by sub
i
 , weighted by Bernoulli random 

variable X  which takes a value of 1 based on the probability � . 

The later term of Eq. (4) optimizes the network on the whole 

dataset weighted by 1 − X based on probability 1 − � . Thus, 

� controls the trade-off between two loss terms in Eq. (4).

where,

and

In the above equations, �(t, k) is the Kronecker delta func-

tion defined by

The hyper-parameter � controls the trade-off between the KD 

and cross-entropy loss, where 0 < � < 1 . The value of � dur-

ing training depends on the performance of the teacher net-

work. A high � value puts more weight on the distilled 

knowledge of teacher network and vice-versa. In our experi-

ment, we aim to retain as much knowledge as possible from 

the router network (here the router network is the teacher 

network for experts) to the expert networks. In this way, we 

ensure that, the expert networks are at-least as good as the 

router network and if not, better. Thus in this literature, we 

fix the � value to 0.8. However, to learn more about the fine 

tuning of KD parameters we suggest to refer to the literature 

[33]. The purpose of leveraging KD in the loss function 

Loss
kd

e
i

 is to simply retain all the knowledge of the router 

network in the experts. To illustrate the contrast, we con-

struct another objective function depicted in Eq. (7) which 

is a variant of objective function in Eq. (4), but without 

(4)Loss
kd

e
i

= X l
sub

i
+ (1 − X) KD

all

(5)l
sub

i
= −

N
∑

l,t∈(D
subi

,T
subi

)

∑

m∈sub
i

�(t, m) log(Pm

ei

(l))

(6)

KDall = −�

N
∑

j=1

C
∑

k=1

Pei
(dj) log

Pei
(dj)

PR(dj)

−(1 − �)

N
∑

j=1

C
∑

k=1

�(tj, k) log(Pk
ei
(dj))

�(t, k) =

{

1, t = k,

0, t ≠ k
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knowledge distillation (wokd) term. We retrain all the 

experts using the loss function Losswokd

ei

 and illustrate perfor-

mance gain by KD in the result discussion section.

where,

Algorithm 1 illustrates the step by step training procedure 

of the MS-Net. In the Algorithm 1, line 1 through 4 per-

forms the initialization of variable containers. In line 4 we 

obtain the subset class indices using the method discussed 

in Sect. 4. Line 6 and 7 load the subset of training data cor-

responding to the class index sets. In the Line 9 we randomly 

sample training data which consist of all classes. Thus we 

have two set of training data available, one with classes 

exclusively from the class index sets and the other with all 

available classes. Line 10 and 11 perform the forward pass 

of the expert network e
i
(.) for the data from all classes and 

class index set respectively. However, the objective function 

defined in line 12 optimizes either of the term based on the 

state of the random variable X. Finally we perform the back-

propagation of the loss term followed by parameter update 

for expert network. We carry out this procedure for rest of 

class index sets and expert networks. 

(7)Loss
wokd

ei

= X l
subi

+ (1 − X) l
all

(8)lall = −

N
∑

j=1

C
∑

k=1

�(tj, k) log(Pk(dj))

7  Inference phase

During the inference phase of MS-Net, the cost or the model 

complexity is dependent on two key parameters, namely, 

n for top-n evaluation; and the redundancy rate � . In the 

testing phase, the input is first fed to the router. From the 

router, we obtain the probability scores for each class. 

Since the router is relatively small it is less likely that most 

of time the top-1 will be correct. But needless to say, the 

probability of obtaining a correct answer increases as the 

value of n increases. Thus, we select the top-n most likely 

classes or predictions P = {p1, .., p
n
} from the sorted soft-

max scores q1, .., q
n
 of the router. Next, for each predicted 

class pi the router chooses � experts from the expert pool, 

where i = {1, .., n} . Thus, as � increases the number of expert 

evaluation for a particular class increases proportionally. For 

each element or prediction in P , we select a set of experts 

using the following equation:

where, E is the set of all experts whose cardinality |E| = C 

(refer to Lemma 1), and Ē is a subset of experts available for 

a certain set of predictions P for a single input datum. In 

the proposed MS-NET we will always have C expert neural 

networks. This is shown by Lemma 1 and Lemma 2. How-

ever, during inference we do not leverage all C expert neural 

networks. Rather, the expert neural networks are selected 

based on � and n. For each input datum, the router selects n 

most likely classes for re-checking. For each class, we use 

� expert neural networks to provide information for making 

the final decision. Thus, MS-Net leverages at-most (� ∗ n) 

and at-least (� + (n − 1)) expert networks during the infer-

ence phase. The value of (� ∗ n) and (� + (n − 1)) are always 

smaller than C. In this paper the maximum value for � and 

n are only 4 and 3 respectively. The prediction we obtain 

from the aggregated softmax of the set of selected experts 

Ē for input x is presented in Eq. (10). For single input x, the 

softmax returns {q1, .., qC} , where each of the element qi is 

the probability of x belonging to the class i.

where, sm
r
 and sm

e
 are the softmax scores by the router and 

experts, respectively. Finally, we take the most likely output 

label or the predicted class using Eq. (11)

(9)
Ē =

⋃

p∈P

{e(.)p ∈ E|∃sub ∈ S ∧ p ∈ sub}

(10)
O = sm

r
+
∑

e∈Ē

sm
e
(x)

(11)prediction = arg-maxj(O|qj ∈ O, 1 ≤ j ≤ C)
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Algorithm 2 represents the testing phase of the MS-

Net. Line 1 through 6 initialize the variables and all the 

networks (router and expert networks). Initially, we pass 

the input to the router network in line 8. We select the 

top-n most probable predictions from the router whose 

further re-evaluation start from line 9. Based on the pre-

diction of router we select a fixed number of expert net-

works. As discussed in the earlier section, the number of 

expert networks for inference is governed by the variable 

� and top-n. In the worst case scenario we will have to 

evaluate at-most ( � ∗ n ) expert networks and in best case 

( � + (n − 1 ) expert networks. We aggregate the softmax of 

all the expert networks in line 13 and increment the count 

(so far evaluated expert networks). After all the expert 

networks are evaluated we take the corrected or re-eval-

uated output based on the highest softmax value in line 

20. The final output is the accuracy of MS-Net. In Line 

4 and 15 of the Algorithm 2 the Boolean dictionary list 

visited[sub
1
∶ sub

C
] ensures that we are not evaluating an 

expert for particular subset more than once. This optimiza-

tion comes into play during situation where the index of 

two or more predictions of router are consecutive numbers.

8  Experiments

8.1  Datasets

To evaluate and validate the effectiveness of the network we 

leverage three public datasets, which are CIFAR-10 or C-10 

(Canadian Institute For Advanced Research)[1], CIFAR-100 

or C-100[1], and F-MNIST (Fashion-Modified National 

Institute of Standards and Technology database). The 

CIFAR-10 dataset consists of 60,000 32X32 color images 

with 10 classes. Each class has 6,000 images. The dataset 

is divided into two parts with 50,000 images for training 

purposes and 10,000 images for testing[1]. The CIFAR-

100 is just like CIFAR-10 but with 100 classes containing 

600 images for each class. Among these 600 images for 

each class, 500 are for training and the rest 100 for testing. 

Moreover, the 100 classes are grouped into 20 super-classes. 

The F-MNIST database is a large database of fashion acces-

sories. The database contains 60,000 training images and 

10,000 testing images with 10 classes, where each image is 

28X28 gray-scale image.

8.2  Experiment settings

We implement MS-Net in the PyTorch framework [44], 

and perform all the experiments on single NVIDIA RTX 

2080 GPU. The setting of hyper-parameters during train-

ing slightly vary across different datasets. However, for all 

datasets, we use Stochastic Gradient Descent(SGD) with 

momentum. We set the initial learning rate for all routers and 

experts to lr = 0.1 and momentum to 0.9. Hyper-parameters 

such as batch size, iterations and learning rate decay sched-

uler (�) differ across routers, experts and datasets which are 

shown in the Table 2.

9  Result discussion

For the CIFAR-10 and CIFAR-100 dataset, we perform 

a detailed empirical study on the effect of variable � (of 

objective function Eq. (4)) on expert networks during the 

training phase. We also perform analysis on effect of � and 

n during the test phase. In addition, beside ResNet-20 we 

also provide performance of MS-Net with two well-known 

DNNs as backbone. However, in this paper we perform all 

the empirical analysis and hyper-parameters search with 
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the backbone ResNet-20. Tables 3 and 4 represent the 

performance of MS-Net (with ResNet-20 backbone) for 

CIFAR-10 and CIFAR-100, respectively Table 5.

In Table 6 we demonstrate the performance of indi-

vidual expert network on subset class indices for dataset 

CIFAR-10 and F-MNIST. CIFAR-100 has 100 classes 

which make it difficult to interpret the performance of all 

100 expert networks in a table. The table illustrates several 

key points about the MS-Net. Firstly, we observe that each 

of the expert network performs with remarkable score on 

its corresponding subset. That is, the performance of e
i
 on 

its corresponding subset sub
i
 , where i = {1, ..., C} , is very 

good (highlighted on Table 6). The performance of any 

expert networks on the whole set or on subsets assigned 

to other expert networks is relatively lower. Secondly, the 

performance of the Router R on each individual subset is 

significantly lower than that of the expert networks. How-

ever, when we execute the router and the expert networks 

together, they perform very well.

The empirical results for CIFAR-10 and CIFAR-100 

suggest that, during training phase, fixing � to value 0.9 

in the objective function tends to give relatively higher 

scores. To avoid redundant experiments, we perform rest 

of the training with � fixed to 0.9. Table 5 presents the 

performance of MS-Net for F-MNIST.

It is clear that with � = 1 in Eq. (4) we simply optimize 

the expert networks on training data sampled from subset 

class indices. On the contrary, with � = 0 we optimize the 

expert networks on the dataset comprising of all the avail-

able classes, which is analogous to the naive Ensemble 

Learning (EL) of DNNs. The optimal value for � has no 

theoretical bindings , rather it is dependent on the dataset. 

Expert networks trained with � in the range 0.3 ∼ 0.9 give 

near optimal classification scores. However, fixing � to 

either 0 or 1 during training degrades the performance 

scores, which implies that we should maintain a certain 

range for � while optimizing the proposed loss function. 

The variable n tells the experts up to how many top-n most 

probable prediction of router to further re-evaluate. For 

all the experiments, we re-evaluate up-to top-3 of rout-

er’s prediction. The � depicts the total number of samples 

correctly re-classified by the experts. A positive � value 

depicts the number of samples expert networks have cor-

rectly re-classified and a negative value for � indicates the 

number of mis-classifications by the experts, or in other 

words, � is the measurement of improvement in accuracy 

by our framework relative to the router network. All the 

scores that we report in this paper (figures and tables) are 

relative to the backbone network, which in this case is the 

router network. It is worth noting that, we use the online 

inference method during the testing. Thus for MS-Net, 

we make the prediction for a single observation at each 

iteration as oppose to batch processing. Due to modular 

nature of the framework, the online inference is the sim-

plest implementation.

Table 2  Training hyper-parameters for router and experts

Network Dataset Batch size Epochs Steps

C-10 32 300 50

Router C-100 128 300 50

F-MNIST 64 200 60

C-10 32 30 8

Experts C-100 16 25 8

F-MNIST 64 30 10

Table 3  Performance on 

CIFAR-10 with variable 

probability distribution �

The backbone (ResNet-20) 

score is 92.68% , and the � score 

depicts the number of samples 

correctly re-classified by MS-

Net expert networks (relative to 

the backbone)

� � n acc. ( %) �

0.3 2 2 93.70 +102

3 93.65 +97

3 2 94.74 +206

3 94.60 +191

4 2 94.80 +212

3 94.85 +217

0.5 2 2 93.65 +97

3 93.66 +98

3 2 94.75 +207

3 94.64 +196

4 2 95.00 +228

3 95.00 +228

0.7 2 2 93.60 +92

3 93.58 +90

3 2 94.83 +215

3 94.75 +207

4 2 95.03 +235

3 95.10 +242

0.9 2 2 93.54 +86

3 93.34 +66

3 2 94.15 +147

3 94.06 +138

4 2 95.38 +270

3 95.30 +261

1.0 2 2 93.30 +52

3 93.09 +41

3 2 93.85 +117

3 93.83 +115

4 2 94.01 +133

3 93.90 +123
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9.1  Performance on CIFAR‑10

Table 3 represents the performance of MS-Net for CIFAR-

10. From our experimental results, we can deduce the fol-

lowing key observations. 

1. As we increase the value of � the accuracy increases. 

Refer to Fig. 8 (d, e) for graphical illustration of this 

phenomenon. However, for the case of CIFAR-10 

increasing top-n beyond the value 2 does not improve 

the performance further (Fig. 8 (a, b and c)).

2. We observe gradual improvement in performance for 

the expert networks trained with increasing � which can 

be confirmed by Figs. 5 (a) and 6. The score gets low-

est when we train the expert networks with � = 1 . This 

phenomenon suggests that training the expert networks 

solely on its subset classes ( � = 1 i.e. clamping X = 1 

in the objective function during the whole training pro-

cess) does not improve performance, rather degrades. 

This degradation of result occurs due to imbalanced 

logit value in the last layer since the expert networks do 

not encounter any training data from rest of the classes 

(classes apart from the subset classes) during the train-

ing phase. Training these experts on the whole set of 

data alternatively within the optimal range of probabil-

ity distribution substantially improve the performance. 

This method acts as a very effective regularization, as 

it prevents the experts from over-fitting on the dataset 

from subset classes. A graphical overview of the effect 

of the probability distribution � is presented in the bar 

chart Fig. 6.

3. In our experiment, we obtain the best score (with 

ResNet-20 backbone) for CIFAR-10 ( 95.38% ) with 

� = 4, n = 2 and � = 0.9 . The � score with the men-

tioned parameters is +270 , which means, integration 

of the expert networks with router further improves the 

performance by +2.70% . In other words, the router with 

a backbone network ResNet-20 has a top-1 accuracy of 

92.68% and by integrating the experts for further re-eval-

uation, we levitate the top-1 score by +2.70 i.e. 95.38%.

9.2  Performance on CIFAR‑100

Table 4 represents the result for CIFAR-100. For CIFAR-

100, the same hyper-parameters � = 4, n = 2 and � = 0.9 

give relatively high score of 71.68% . We can observe from 

the Table 7 that router’s top-1 performance (ResNet-20) 

for CIFAR-100 is only 69.58% , and with the integration 

of the experts the performance increases by 2.48% . This 

phenomenon suggests that as we increase � and n we are 

more likely to get higher accuracy. The scores in Table 7 

Table 4  Performance on 

CIFAR-100 with variable 

probability distribution of �

The backbone (ResNet-20) 

score is 69.58% , and the � score 

depicts the number of samples 

correctly re-classified by MS-

Net expert networks (relative to 

the backbone)

� � n acc. ( %) �

0.3 2 2 71.00 +132

3 70.80 +127

3 2 71.27 +170

3 71.09 +152

4 2 71.06 +150

3 71.06 +150

0.5 2 2 71.07 +148

3 71.05 +142

3 2 71.10 +152

3 71.28 +170

4 2 71.05 +142

3 71.25 +167

0.7 2 2 71.00 +136

3 71.01 +142

3 2 71.03 +144

3 71.11 +152

4 2 71.52 +193

3 71.25 +167

0.9 2 2 70.68 +110

3 71.00 +141

3 2 70.85 +127

3 71.09 +151

4 2 71.61 +203

3 71.28 +170

1.0 2 2 69.73 +15

3 69.72 +14

3 2 69.74 +16

3 69.52 − 5

4 2 70.16 +58

3 69.75 +17

Table 5  Performance on 

F-MNIST with � = 0.9

The backbone (ResNet-20) 

score for F-MNIST is 95.22% , 

and the � score depicts the num-

ber of samples correctly re-clas-

sified by MS-Net’s expert net-

works (relative to the backbone)

Dataset � n acc. ( %) �

FMNIST 2 2 95.80 +60

3 95.96 +74

3 2 95.80 +60

3 96.77 +156

4 2 96.02 +80

3 96.77 +156
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depict that MS-Net has relatively lower score on CIFAR-100 

compared to CIFAR-10 and F-MNIST. This phenomenon 

is also observable for other state-of-the-art DNN (refer to 

Table 8). The probable reason for such low performance is 

mostly due to fewer amount of data per class in CIFAR-100. 

While CIFAR-10 has 6000 samples per class, CIFAR-100 

has only 600 samples. This problem has been mitigated to 

a certain extent recently by leveraging large scale Transfer 

Learning (ImageNet pre-trained)[46], learning data augmen-

tation policy or Auto-Augment (AA) [13], task-specific NAS 

with Transfer Learning (TL) [59, 71], Neural Architecture 

through hybrid online TL with multi-objective evolutionary 

search procedure [75] and so on. The MS-Net proposed in 

this study also has a significant improvement in performance 

compared to the backbone networks. We may expect fur-

ther improvement if we introduce TL and other techniques 

described above.

9.3  Performance on F‑MNIST

Table  5 represents the result of MS-Net on F-MNIST. 

In order to avoid redundant experiment the same 

hyper-parameters that give optimal score for CIFAR-10 

and CIFAR-100 are set during the training. The network 

achieves score of 96.77% on F-MNIST test set. The delta 

score is +156, which is relatively higher. To our knowledge, 

the best score for F-MNIST was 96.30% , reported by Wide-

ResNet-28-10 with Random Erasing data-augmentation[79]. 

Thus, MS-Net achieves a state-of-the-art score for this par-

ticular dataset.

10  Optimal value for � , top‑n evaluation 
and ˇ

A very common intuition is that as we increase the n of the 

router we can score (at best) as good as the router’s top-

n prediction score. In practice, increasing n beyond the 

value 2 does not substantially improve the performance, 

however, increasing the value of � gradually improves 

the accuracy of the network. For numerical comparison 

please refer to the Tables 3 and 4. In addition, Figs. 6 

and 7 represent the effect of � and n for CIFAR-10 and 

CIFAR-100 respectively. An interesting observation from 

Table 6  Performance of 

individual expert network on 

all the subsets. The highlighted 

parts depict the score of each 

expert on its corresponding 

subset class index obtained 

through the Round Robin 

partition

The last column S depicts the performance of experts on whole set of data. The row with R represents the 

performance of router network on individual subset. In this table, all the experts and the router network 

have ResNet-20 backbone. The � is 4 which also depicts the cardinality of each subset. We train all experts 

with � = 0.9

Dataset net sub S

sub
0

sub
1

sub
2

sub
3

sub
4

sub
5

sub
6

sub
7

sub
8

sub
9

C-10 e
0

97.55 95.125 89.6 63.325 58.07 60.15 69.15 75.87 83.27 91.17 75.13

e
1

87.52 98.22 80.22 71.6 62.27 57.57 66 62.32 72.23 76.38 72.65

e
2

80.05 92 99.17 83.52 65.55 55.32 45.97 47.85 58.92 70.2 70.54

e
3

76.8 82.2 83.77 97.55 90.2 87 84.47 79.07 81 74.7 83.05

e
4

70.87 74.25 74.75 83 97.05 95.42 92.82 89.5 88 81 84.5

e
5

62.52 62.65 68.7 76.62 92.57 98.7 92 86.2 79.2 71.47 78.88

e
6

61.27 62.42 62.37 71.27 84.7 91.25 98.9 91.25 82.35 73.5 77.77

e
7

73.57 71.27 71.87 77.27 87.65 92.62 96.52 98.27 91.72 82.7 83.43

e
8

81 77.92 73.25 78.17 84.45 87.4 92.47 96.27 98.47 91.23 85.33

e
9

87.97 78.62 72.47 65.57 73.12 75.05 81.6 91.23 92.47 98.8 81.73

R 90.07 90.02 87.87 89.97 92.85 93.1 94.87 94.15 94.62 93.15 92.68

FMNIST e
0

98.67 85.05 80.30 60.57 60.77 77.35 77.85 97.87 97.27 96.17 82.32

e
1

90.52 97.10 95.35 75.92 76.40 76.45 77.27 86.40 86.62 87.52 84.48

e
2

91.52 96.90 98.50 80.80 80.25 80.27 81.82 92.15 91.40 92.20 87.90

e
3

60.90 80.52 80.70 98.72 97.35 93.97 93.05 74.80 74.55 60.52 80.11

e
4

40.12 62.60 62.55 82.25 97.37 94.60 90.90 70.05 70.10 51.55 72.61

e
5

65.67 70.70 71.60 83.22 88.52 98.32 96.65 82.55 81.05 68.70 80.50

e
6

74.95 70.95 70.50 76.90 80.47 96.65 98.75 86.42 86.87 78.15 81.81

e
7

81.97 77.47 74.30 67.45 77.97 81.55 84.77 98.55 98.12 92.12 83.23

e
8

75.22 71.95 60.27 51.45 45.60 45.01 57.67 74.74 99.67 91.35 84.66

e
9

90.10 85.35 83.95 80.20 87.87 91.20 92.60 96.22 98.32 99.87 90.57

R 90.07 90.02 87.87 89.97 92.85 93.1 94.87 94.15 94.62 93.15 95.22
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the Fig. 8 is that, as we increase � the performance levi-

tates dramatically, on the contrary, increasing n does not 

increase accuracy with a big margin. This is also the case 

for the CIFAR-100 dataset. The graphs in Fig. 9 indicate 

that, for a fixed value of � , increasing n further increases 

the accuracy, but not with a substantial margin. Although 

in this literature, our experiment is limited to � ≤ 4 , we 

can anticipate that for CIFAR-100 further increasing � 

will increase the accuracy. The reason is that CIFAR-

100 is relatively difficult dataset with a large number of 

classes. Thus, from the above observations we can con-

clude with following guidelines for optimal parameters 

selection. 

1. Evaluating till top-2 probable predictions of the router 

will suffice. This statement is true at-least for all the 

dataset we have explored so far.

2. Setting the redundancy rate variable � to 3 provides with 

a comparable classification score for all cases. We know 

that increasing � implies that we have more expert net-

works for each class. Thus, in situation where we have 

enough resource budgets, we can increase the variable � 

beyond 3 for more redundant expert networks and accu-

racy.

3. During the training phase the variable � of objective 

function (Eq. (4)) plays a crucial role in performance. 

Although there are no fixed value or theoretical bind-

ings for � , we recommend to avoid fixing � to two 

extreme values i.e. 0 and 1. Optimizing the expert net-

works keeping � in range of 0.3–0.9 tend to give opti-

mal score. 

Thus, to keep the experiments simple, the training of MS-

Net (implementation with different backbone networks) in 

the rest of the paper will confine to the above mentioned 

hyper-parameters.

Fig. 5  The objective function of MS-Net optimized with differ-

ent probability distribution � . The y-axis depicts the � scores (no. of 

samples correctly re-classified by experts). The x-axis represents the 

index of each data-points. Each point in the graph depicts the num-

ber of samples correctly re-classified (of the ResNet-20 router) by the 

experts till that particular data-index

Fig. 6  Performance ( % ) of MS-Net (with Resnet-20 backbone) on 

CIFAR-10 with variable distribution for � . It is evident that optimiz-

ing the objective function with two extreme values � = 0 or 1 does 

not provide with an optimal performance. Probability distribution 

ranging from 0.3 to 0.9 tends to give the near optimal performance
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11  Training expert networks 
without knowledge distillation

KD plays a vital role in training the expert networks. Ear-

lier in the section 6 we proposed a slight variant of objec-

tive function (Eq. (4)) where we replace the KD term with 

simple cross entropy loss term (Eq. (7)). We train MS-Net 

on CIFAR-10, CIFAR-100 and F-MNIST leveraging the 

loss Losswokd depicted in Eq. (7). The hyper-parameters are 

exactly identical to the experiments done with KD loss. The 

results show that, expert networks of MS-Net optimized 

without KD loss drops in accuracy with a substantial mar-

gin. In Fig. 10 we show the contrast for the classification 

accuracy. Figure  11 depict the contrast between the � of 

MS-Net trained with and without the KD loss for CIFAR-10, 

CIFAR-100 and F-MNIST respectively. Using distillation 

in the loss term assists the expert networks in retaining 

the existing knowledge of the router. This also ensures the 

experts are at-least as good as the router network in the worst 

case scenario. In other words, the expert networks are less 

prone to mis-classify samples that are already correctly clas-

sified by the router networks.

12  Comparison to state‑of‑the‑art results

In this section we provide a brief comparison of MS-Net 

to the performance of existing state-of-the-art DNNs on 

CIFAR-10, CIFAR-100 and F-MNIST dataset. For com-

parison we provide two tables, Tables 7 and 8, wherein, 

Table 7  Performance of 

MS-Net for CIFAR-10 (C-10), 

CIFAR-100 (C-100) and 

F-MNIST

The first section depicts the score of backbone networks itself, which also indicates the performance of 

routers. The second section represents the performance of our proposed framework (MS-Net) equipped 

with different backbone networks. We train MS-Net with different backbone networks with exact same 

hyper-parameters

Type Methods C-10 C-100 F-MMNIST # Param. (M)

Backbone ResNet-20 [32] 92.68 69.58 95.22 0.269

GoogleNet [69] 92.93 78.03 93.70 6.2

MobileNet [35] 94.43 68.08 95.00 2.36

MS-Net framework MS-Net (ResNet-20) 95.38 71.61 96.77 2.95

MS-Net (GoogleNet) 97.01 85.05 96.80 55.80

MS-Net (MobileNet) 96.01 78.03 96.80 21.24

Table 8  Performance of state-

of-the-art networks for CIFAR-

10 (C-10), CIFAR-100 (C-100) 

and F-MNIST

The first section reports the score for relatively larger DNN, which we term as Type-I. The second section 

i.e. the Type-II are the networks that share relatively same computational capacity and parameters as MS-

Net. Type-II section also includes automated learned architectures (without human intervention) through 

evolutionary search, reinforcement learning and so on. The table is divided for ease of comparison and 

contrast

Type Methods C-10 C-100 F-MMNIST # Param. (M)

Type-I GPIPE + TL [37] 99.00 91.30 – 556

Shared WRN [65] 97.47 82.57 – 118

SGDR WRN-28-10 3 runs × 3 snapshots [53] 96.75 83.36 – 329

SGDR WRN-28-10 16 runs × 3 snapshots [53] 96.75 83.36 – 1752

Type-II Res2net-29 [25] - 83.44 – 36.9

PyramidNet+ShakeDrop+ Fast AA [52] 98.3 88.3 – -

Wide GatedResNet [66] (4,10) + Dropout 96.35 81.73 – 36.5

DenseNet [36] 96.54 82.62 95.40 20

Inception [70] - 77.19 – 22.3

VGG16-BN [67] 92.64 72.93 93.50 34.0

ResNet-101 [32] 93.75 77.78 94.9 42.7

ResNet-152 [32] 95.38 77.61 – 58.3

FractalNet [47] 95.4 76.27 – 38.6

NAS V3 [83] 96.35 - – 37.4

NASNet-A (7 @ 2304) [84] 97.03 - – 27.6

EfficientNet-B7 + NAS + TL [71] 98.9 - – 64
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first table depicts the performance of backbone networks 

(routers) and MS-Net frameworks (with different backbone 

networks), and second table represents the performance 

of state-of-the-art DNNs. For the ease of comparison and 

illustration, we divide the benchmark Table 8 into two 

types, where Type-I represents the network with large 

number of parameters, Type-II with parameters and com-

putational resource almost similar to our proposed frame-

work. The Type-II networks also include several architec-

tures learned by using computationally expensive methods 

(e.g. evolutionary search and reinforcement learning) 

equipped with transfer learning (TL). For bench-marking, 

we refer to the site [79].

We can observe from the Table 7 that, MS-Net frame-

work elevates the classification accuracy with a significant 

margin relative to the backbone router. Comparing MS-

Net framework with Type-I networks from Table 8, the 

network actually performs with a neck-and-neck scores. 

However, compared to Type-II networks (approximately 

similar parameter counts) MS-Net performs with high 

score relative to most of the networks. The highest score 

that we obtain so far is with the backbone network Goog-

leNet, leveraging at most 55.80M parameters (Table 7). 

This high score and setup undeniably come with a trade-

off of more computational resources and parameter budget.

Fig. 7  Performance ( % ) of MS-Net on CIFAR-100 (ResNet-20 back-

bone) with different distribution for � . The optimal score for distribu-

tion 0.3 to 0.9 holds for CIFAR-100 too

Fig. 8  The effect of variable n and � on CIFAR-10 during test phase: 

The first row (a,b and c) depicts the variation of � score by keeping � 

fixed and changing variable n, i.e. it demonstrates how the network 

performs when we tweak the variable n. The second row (d and e) 

depicts performance of network keeping the n fixed while nudging 

variable � . The last Figure (f) summarizes all the � score Figures (a, 

b, c, d and e) in a single graph for comparison
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Most recently, researchers have been trying to find the 

best structure using evolutionary algorithms, reinforce-

ment learning algorithms, and so on, and some very 

interesting results have been obtained [75, 82–84]. For 

example, for the database CIFAR-10, the best perfor-

mance obtained so far is 98.9% (refer to Type-II section 

Fig. 9  The effect of variable n and � on CIFAR-100 during test phase: 

The first row (a,b and c) depicts the variation of � score while keep-

ing � fixed and changing variable n, i.e. it demonstrates how the net-

work performs when we tweak the variable n. The first two figures of 

second row depict the performance of network keeping n fixed while 

nudging variable � . The last Fig. (f) combine all the Fig. (a, b, c, d 

and e) for depicting the contrast clearly

Fig. 10  Performance of the MS-Net trained with and without KD loss
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of Table 8) and the model’s training parameter number is 

64M [71]. However, based on the ‘no free lunch theorem’ 

[34], an optimal model is usually fine-tuned for some spe-

cific database, and the model may not be useful for solv-

ing other problems. Even for the same problem with more 

observed data, to preserve the best performance, we have 

to use a very expensive process to re-design the model. 

On the other hand, the MS-NET structure proposed in this 

study is very simple, and can leverage the performance 

of any existing state-of-the-art models by increasing the 

inference cost slightly. In this sense, MS-NET can be a 

good starting point for solving various problems.

13  Conclusion

In this paper, we have proposed a modular neural network 

architecture termed as the MS-Net (Modular Redundant 

Network). For a C-class classification problem, the net-

work consisted of a router network and C expert networks. 

In summary, the key idea of the research have been to 

further re-evaluate the top-n most probable predictions of 

the router by leveraging these expert networks. To effec-

tively train these expert networks we have proposed a sto-

chastic objective function equipped with the knowledge 

distillation technique that facilitates alternative training 

on a subset of expert data and whole set of data. This 

alternative training have been regulated by clamping a 

Bernoulli random variable to each of loss function term. 

We have constructed the subsets of data systematically by 

Round-Robin fashion. As a result, it has provided us with 

a mean to control the redundancy of each class in the set of 

subsets, which have also allowed us to know which expert 

network is a specialist on which subset (thus we have more 

interpret-ability). We have shown that, with a very limited 

parameter budget and simple DNN as backbone, our net-

work has achieved performance comparable or sometimes 

equivalent to more complex DNNs.

An interesting research direction would be to apply 

Neural Architecture Search (NAS) strategy in MS-Net. 

We can anticipate that implementing such approach can 

further cut down redundant parameters of expert networks. 

In this way, each expert network can be reshaped and 

designed based on its assigned expert data. Fortunately, 

the modular nature of MS-Net have allowed each of the 

individual expert network to be independent and local, i.e. 

they are not dependent on each other during the training 

and inference phase. This suggests that, the experts can be 

trained and tested in parallel, which give us an opportunity 

to utilize powerful parallel computing systems. Further 

optimization of this network can be obtained by reducing 

the number of expert networks evaluation. As we have 

known from our experiments, during the inference phase 

the router network chooses fixed number of experts for 

further evaluation. The final prediction can been obtained 

only after all the selected experts have been completely 

evaluated. This can be time-consuming and redundant for 

easy data or patterns. To mitigate the unnecessary evalu-

ation of experts the concept of Progressive inference 

introduced in the literature[49] can be leveraged in our 

modular network. The main idea is to stop evaluation of 

expert networks once we reach a certain softmax confi-

dence or threshold (the threshold can be obtained through 

trial and error). In this way the parameter usage can be 

further reduced without comprising the network accuracy. 

So far, in this paper we have leveraged the router network 

as the teacher model for knowledge distillation. We can 

anticipate that using more accurate and powerful DNN as 

the teacher model can assist the expert networks in gener-

alizing better. In our future work, we anticipate to deploy 

the proposed modular neural network in real world sce-

nario. In order to test the network, we will build a test bed 

equipped with multiple neural computational sticks (pow-

ered by vision processing units) and run several experts in 

parallel for faster and efficient inference.

Fig. 11  Contrast of  scores: The figure represents the � score difference for MS-Net trained with and without the KD loss
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