
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:763–781

https://doi.org/10.1007/s13042-020-01201-8

ORIGINAL ARTICLE

MS-NET: modular selective network

Round robin based modular neural network architecture with limited redundancy

Intisar Md Chowdhury1 · Kai Su1 · Qiangfu Zhao1

Received: 29 March 2020 / Accepted: 17 September 2020 / Published online: 30 September 2020

© The Author(s) 2020

Abstract

We propose a modular architecture of Deep Neural Network (DNN) for multi-class classification task. The architecture

consists of two parts, a router network and a set of expert networks. In this architecture, for a C-class classification problem,

we have exactly C experts. The backbone network for these experts and the router are built with simple and identical DNN

architecture. For each class, the modular network has a certain number � of expert networks specializing in that particular

class, where � is called the redundancy rate in this study. We demonstrate that � plays a vital role in the performance of the

network. Although these experts are light weight and weak learners alone, together they match the performance of more com-

plex DNNs. We train the network in two phase wherein, first the router is trained on the whole set of training data followed

by training each expert network enforced by a new stochastic objective function that facilitates alternative training on a small

subset of expert data and the whole set of data. This alternative training provides an additional form of regularization and

avoids over-fitting the expert network on subset data. During the testing phase, the router dynamically selects a fixed num-

ber of experts for further evaluation of the input datum. The modular nature and low parameter requirement of the network

makes it very suitable in distributed and low computational environments. Extensive empirical study and theoretical analysis

on CIFAR-10, CIFAR-100 and F-MNIST substantiate the effectiveness and efficiency of our proposed modular network.

Keywords Modular neural networks · Deep learning · Knowledge-distillation · Multi-class classification · Image

classification

1 Introduction

Deep Neural Networks (DNNs) in the last two decades have

shown it’s superiority in the field of visual object recogni-

tion [26, 62, 64]; image segmentation [5, 9, 63, 76]; speech

recognition and translation [3, 29]; natural language process-

ing [11, 68]; reinforcement learning [43, 56, 57]; bio infor-

matics [63]; educations [38, 73]; and so on. Despite their

simple layered structures of neurons and connections, they

have outperformed other machine learning models [74]. This

superiority has been achieved due to its ability of complex

non-linear mapping from input to output, automated rich and

discriminate features learning as opposed to hand-engineered

low-level features such as GABOR features [41], local binary

patterns [2], SIFT [54] and so on. With the passage of time,

we can notice that not only the performance is levitating

dramatically, also networks are getting deeper [14, 31, 69]

and wider [77]. As a result, these finer networks are lack-

ing few important and desirable properties such as interpret-

ability or comprehensibility, practical applicability in low

computational devices and so on. In addition, problems

such as catastrophic forgetting with the arrival of new data

[28], lack of memory efficiency, have also started to arise.

Fortunately, various novel approaches have been proposed

to mitigate a few of these shortcomings. Recent notable

approaches include knowledge distillation from the cumber-

some models to smaller models [33]; compression of knowl-

edge from ensemble to a single model [8]; pruning of neural

 * Intisar Md Chowdhury

 d8211106@u-aizu.ac.jp

 Kai Su

 m5232109@u-aizu.ac.jp

 Qiangfu Zhao

 qf-zhao@u-aizu.ac.jp

1 System Intelligence Laboratory, The University of Aizu,

Aizu-Wakamatsu 965-8580, Japan

http://orcid.org/0000-0002-2483-577X
http://orcid.org/0000-0003-2044-0671
http://orcid.org/0000-0003-3101-749X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01201-8&domain=pdf

764 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

networks [48, 51, 58, 81, 82]; efficient Neural Architecture

Search (NAS) [61, 82, 83]; modular neural network design

[4, 30, 40, 42, 74]; and so on. There have been also sig-

nificant advances in efficient hardware design architectures

for DNNs. Intel Corporation has developed a neural compu-

tation stick powered by the Vision Processing Unit (VPU)

which can accelerate the inference phase of complex DNN

on a low computational device. Google has also recently

developed small edge Tensor Processing Unit (TPU) for

high-performance machine learning inference. These small

ASIC devices for DNN can easily execute deep Convolu-

tional Neural Networks (CNN), which make it one of the best

alternatives for cloud-based service. Unfortunately, when it

comes to state-of-the-art networks, these ASIC devices still

face performance bottle-neck when executed in real-time sce-

narios. Thus, it is necessary to devote time and research on

mitigating the above shortcomings of DNN.

In this paper, we propose a novel modular neural network

framework for multi-class classification, which is inherently

simple and easy to implement. The key idea is to leverage a

fixed number of experts, each with parameters as few as pos-

sible during the inference phase, while maintaining accuracy

comparable to relatively complex and monolithic state-of-

the-art DNNs. The proposed framework has a close resem-

blance to the model of the human brain depicted by Minsky

in [55], where he described the human brain as a collection

of specialist agents interconnected by nerve-bundles. Quot-

ing from [55] We’re born with proto-specialists involved

with hunger, laughter, fear and anger, sleep and sexual

activity- and surely many other functions no one has discov-

ered yet- each based upon a somewhat different architecture

and mode of operation. Analogous to this brain model, our

framework consists of a countable set of expert agents and a

router agent. In this literature, we term the expert agents as

the expert networks and router agent as the router network.

Each of these expert networks is expert on a specific subtask

and their computation take place independently. Although

they are not superior individually for a whole set of tasks,

they outperform each individual network when they execute

collectively. The router network moderates the execution of

these expert networks. The concept of the modular neural

network itself is not new. The key concept of modular con-

nectionist goes back to the mid-1980s in [40]. A number of

contributions such as [30, 40, 50, 72] have approached the

task of speech recognition using the modular connectionist

theory. A majority of the proposed modular architectures

are equipped with a gating network (analogous to our router

network) and a set of expert networks. Despite the popu-

larity of modular connectionist models during the 80s, the

modular approach in recent DNNs (such as CNN, Recurrent

Neural Network(RNN) and so on) era is relatively sparse,

until recently Hinton and Vinyals have introduced the novel

concept of knowledge distillation in neural network [33].

Our proposed modular neural network framework which we

termed as the MS-Net has a close resemblance to [4, 24, 33,

60] literature in the following key points: i) We divide the

dataset into a number of subsets/subtasks/concepts. After-

ward, we train a fixed number of expert neural networks on

each of these subsets ii) The router module navigates us to

those expert networks for further re-evaluation.

However, in addition to the above points and our previous

work [39]1, the novelty of our contributions to this research

can be summarized as follows:

1. We propose a simple data partitioning technique for

the modular neural network based on the Round Robin

method. This technique enables decomposition of the

dataset into C subsets of class indices, where C is the

total number of classes available in the dataset.

2. We provide a detailed theoretical and empirical study on

effect of redundancy variable � on the complexity and

performance of MS-Net.

3. We theoretically demonstrate that the proposed MS-Net

requires no more than C expert networks to effectively

specialize on the corresponding C subsets of classes.

4. We propose a new stochastic objective function to train

the expert networks. The proposed objective function is

composed of two terms, wherein the first one facilitates

optimizing the expert networks on data from its corre-

sponding subset classes, and the second term optimizes

networks on data from the whole set of classes.

2 Outline

We arrange the paper in the following order.

 1. Sect. 3: Related works on modular neural networks

and machine learning models, ensemble learning and

so on.

 2. Sect. 4: An overview of the MS-Net architecture.

 3. Sect. 5: Detailed discussion on Round-Robin based

dataset partition.

 4. Sect. 6: Training procedure of expert networks, includ-

ing algorithm.

 5. Sect. 7: Inference phase on MS-Net, including algo-

rithm.

 6. Sect. 8: Detailed discussion about the datasets and

experiment settings.

 7. Sect. 9: Empirical analysis.

1 Part of contributions in this paper have also appeared in previous

literature [39] titled Selective Modular Neural Network, where (i) �

and n were limited to only 2 (ii) simple cross-entropy loss function

was used to train the experts (iii) preliminary results of few public

datasets.

765International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

 8. Sect. 10: Guidance for optimal hyper-parameters selec-

tion for the network.

 9. Sect.11 Effects of knowledge-distillation on MS-Net.

 10. Sect.12 Discussion on results and comparison to state-

of-the-art DNNs.

 11. Sect. 13: Conclusion and possible future works.

3 Related work

Modular architectures have been famous in neural networks

or connectionist models for a long time. In addition to that,

modularity has also been widely implemented in other tra-

ditional machine learning models. This approach has not

only boosted the performance of these learning models, but

also introduced virtues such as interpret-ability, training effi-

ciency, distributed computation, reduction of parameters and

so on [4]. In this section, we provide an overview on the

neural networks and other machine learning models which

exhibit modular behaviour.

Class binarization (CB) is one of the most well-known

method in the modular framework. It can be considered as a

special case of ensemble learning, where each binary mod-

ule is assigned to learn or distinguish a single concept or

class from the rest. Among different CB techniques, ONE

VS ALL (un-ordered binarization) is the most commonly

practiced technique in neural network [4], support vector

machine [12], due to its computational efficiency and per-

formance boost. The technique first appeared in the literature

[10]. The method constructs C binary classifiers in total,

where C is the total number of classes. Despite its simplicity,

the method suffers from class imbalance, since the number

of positive instances is smaller compared to the negative

instances for each binary classifier. In addition, an ordered

variant of the mentioned CB technique requires only C − 1

classifiers. However, the class imbalance short-coming was

later resolved by the method ONE VS ONE which appeared

in the literature Separate-and-Conquer Rule Learning [21].

A more systematic method for generating binary classifiers

which is known as the Round Robin learning was introduced

by the same author in the literature [22–24]. Due to its sys-

tematic method of creating binary classifier, it carries more

interpret-ability. The method has demonstrated that a total

of C (C − 1)∕2 classifiers are constructed using the Round-

Robin method. Each of these classifiers is a pair-wise-clas-

sifier, expert on two specific classes or concepts. Thus, the

issue of class imbalance no longer prevails. In addition to

that, authors have shown that this approach requires rela-

tively fewer amount of data during training as oppose to

ONE VS ALL method. However, during the inference phase

all C (C − 1)∕2 classifiers require evaluation. With a view to

resolving this computational issue, a relatively recent litera-

ture [60] proposed an efficient prediction algorithm for these

ensembles, where pair-wise classifiers can be dynamically

chosen without any drop in accuracy.

Knowledge distillation (KD) is a recent and very popular

method for compression of complex and cumbersome DNNs.

The method was first proposed by Hinton et al. [33]. This

method is now widely implemented in deep learning research

and industrial applications. Studies such as, [20, 78] have

shown that, KD not only allows compression but also enables

a relatively smaller student model to outperform its teacher

model. The key idea is to train a student network to mimic

the output features or the class probability distributions of the

teacher network. The literature’s [33] contribution was not

only limited to KD, the authors have also proposed a modu-

lar network framework that has a very close resemblance to

our proposed framework. The model consists of two main

parts, a generalist network and a set of independent expert

networks. Each of these expert networks is a simple CNN,

which is trained on data that are often confused and misclas-

sified by the generalist network. Thus, each individual expert

is classifier of type CONFUSABLE SUBSET VS ALL, where

one part is the CONFUSABLE set of task and the rest ends

up with single DUSTBIN class. This notion implies that the

generalist model needs to be evaluated first to obtain those

CONFUSABLE set of classes. In-order to (i) retain knowl-

edge about the non-expert classes (ii) avoid over-fitting and

(iii) solve the class imbalance problem the author initialized

the expert networks with the weights of generalist network.

The literature has shown that, as the number of expert net-

works increases, the accuracy increases proportionally. How-

ever, there have been no concrete indication and estimation

on the number of experts covering those CONFUSABLE

set of classes. In addition, the literature states that there can

be situation where there are no expert networks covering a

certain set of classes (since the generalist network is already

confident on its prediction for those certain set of classes).

Recent research [80] titled Deep Mutual Learning (DML)

which consists of cohort of student models resembles modu-

lar behavior. The DML enables a number of student models

to mutually learn from one another by minimizing the Kull-

back Leibler (KL) Divergence between their predictions,

which is a special case of KD [33]. The experiments have

shown that the number of student networks in cohort dur-

ing training can be extended to more than two. Moreover,

empirical results show that, multiple student neural networks

trained by the mutual learning out-perform single model net-

work trained independently. This learning process has also

shown to outperform the KD method.

Other notable recent research contribution on modular

neural network includes the famous Generative Adversarial

Network (GAN)[27], where two networks, discriminator

and the generator network co-operate and compete against

each other. There are also different variants of GAN which

comprise of more than two networks [45]. Research [16]

766 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

proposed modular like architecture that is build upon the

existing state-of-the-art neural networks. In the literature,

they re-configure the model parameters into several par-

allel branches where each branch is a stand-alone neural

network. They have demonstrated that, the average of the

log-probabilities of multiple parallel branches give better

representation as opposed to the single independent branch.

In this paper, our modular neural network framework has

a very close similarity to the literature [4, 24, 33], such as

presence of gating network and expert networks. But in con-

trast to ONE VS ONE and ONE VS ALL, our expert networks

are not limited to binary classifiers. We introduce a simple

Round-Robin based systematic data partition technique which

enables us to train each expert on subset of multiple classes. A

contrast to note that, unlike ensemble learning method such as

well known AdaBoost [18],Bagging [6], Random Forest [7],

Gradient boosting [19] and so on which requires the collec-

tive wisdom of all available classifiers, our network does not

require to run all the neural network models during inference.

The novelty in our proposed framework is that, the router of

the MS-Net extensively reduces the number of expert network

evaluation during the inference phase. Since the partition of

dataset is systematic, i) it gives us prior knowledge on which

experts are specialist on which subsets, which also facilitates

us to dynamically chose specific number of expert networks

during inference. ii) it guarantees presence of multiple expert

networks for a single concept or class, thus we have a certain

degree of fault tolerance in case other experts or the router

network fail to correctly classify the data.

4 Proposed network architecture

The network has two main modules, a router network, and

a pool of expert networks. In the expert network pool there

are C expert networks, where C is the total number of classes

available in a given dataset. A simplified image of our modu-

lar framework is shown in Fig. 1. The expert networks and

router network have the same network architecture. A very

important issue is the size of the network. In our experi-

ment, a cumbersome and computationally expensive net-

work is not desirable. On the contrary, we also do not want

the network to face performance bottle-neck due to simple

architecture. There are many remarkable literature relating

to the compact, efficient and accurate Neural Architecture

Search (NAS) [17, 83] in recent times, but this topic is out of

scope for this paper. However, the choice of architectures of

any network are dependent on the complexity of the dataset.

Considering the computational issue and memory efficiency,

we chose ResNet-20 [31] as the initial backbone network,

which is of one the most minimalist and light weight net-

work to our knowledge. We leverage the Resnet-20 as the

backbone of MS-Net to find the optimal hyper-parameters

such as, the value for � , top-n and so on. After we obtain

the optimal hyper-parameters through extensive empirical

study with ResNet-20 we train other complex DNNs which

are, GoogleNet [69] and MobileNet [35] as the backbone

network of MS-Net.

5 Round robin based data‑set partition
with sliding window

In this research, the redundancy rate plays a vital role in the

performance of the framework. We denote the redundancy

rate as � . The variable � has two main interpretations. First,

� is the size of each subset of class indices. Second, each

class index appears exactly in � subsets of class indices. In

any sense, when � is larger more expert networks will get

the chance to see the training data from any particular class.

This is the reason why we called � redundancy rate.

In order to prove the above two points let us introduce

several notations. First, we use D = {d
i
|i = 1, .., N} to

denote the whole training data set, where N is the total

number of training data; and T = {t
i
|i = 1, .., N} to denote

the set of teacher signals, where t
i
 is associated with d

i

for i = 1, 2, ..., N . To partition the subsets for training the

expert networks, we leverage a sliding window of length

k and stride s. Refer to Fig. 2 for a graphical overview of

dataset partition. In this figure, we arrange the indices of

all classes in a ring-shaped manner. The sliding window

length k is a positive integer less than C, which is the total

number of classes Table 1. The redundancy rate � depends

directly on k. Each time when we shift the sliding window

with a stride s over the ring in a Round-Robin fashion

(clockwise), we obtain a subset sub
i
 which contains k class

indices. We use S = {sub1, sub2, ...} to denote the set of

all class index sets so far obtained. We can prove that,

for any value of k and with stride s = 1 , the cardinality of

S is always equal to the total number of classes C. Since

Fig. 1 Test Phase version of MS-Net. FE and FC depict Feature

Extractor and Fully Connected layer of neural network respectively.

E is the set of all experts dynamically selected by the router network

R. The first block represents the router network which dynamically

selects the expert networks based on its softmax (SM) confidence.

The second part is the pool of expert networks further re-evaluating

the router’s top-n most likely predictions. Finally, the network aggre-

gates the soft-max scores of router and selected experts

767International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

we have C target classes, and if we can prove |S| = C , we

can conclude that our framework requires no more than

C experts.

Lemma 1 With stride s = 1 and for any value of k, the cardi-

nality of S is always equivalent to the total number of class

C available in the data-set.

Proof If k is the length of sliding window of any length, by

the convolution arithmetic [15] we can state that the number

of class index sets in S as:

Since we are using the Round Robin rotation, the later term k

is added instead of 1. As, s = 1 , Eq. (1) can be re-written as:

(1)|S| =
(C − k)

s
+ k

Thus, with stride 1, the total number of class index sets or

the number of expert networks is always equal to the number

of classes. ◻

Lemma 2 If the length of sliding window is k and stride

s = 1 , the index for each class occurs exactly in k class index

sets or in other words, we have exactly k experts related to

each class.

This implies that the redundancy rate � is determined by

the sliding window size k. This phenomenon also suggests

that, k determines the fault tolerance of the proposed MS-

Net. As the value of k increases, we have more experts for

each particular class (Note that, the total number of experts

remains constant i.e. C). On the contrary, as we decrease k,

the redundancy rate or the number of experts specializing

on that particular class decreases.

Proof Let us assume that the sliding window length is k,

where k < C . After the n − th (n = 0, 1, ..., C − 1) sliding

operation, we obtain the following class index sets.

(2)
|S| = C − k + k

= C

sub
n+1 = {n mod C + 1, ..., (n + k − 1) mod C + 1}.

Fig. 2 Round Robin partition of the dataset. The left image depicts

the sliding of the window over the classes. In each sliding operation,

we have a subset. The sliding operation continues for C times. The

right image illustrates the effect of size of the sliding window on the

redundancy variable � . In the image we fix sliding window size to 4,

hence we have each class occurring in exactly four subsets

Table 1 Backbone networks

Network # of parameters (M) MACs (G)

ResNet-20 [32] 0.269 0.041

MobileNet [35] 2.36 0.33

GoogleNet [69] 6.20 16.04

768 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

According to the definitions of the sliding window and

the class index sets, |sub
n+1

| = k . Since we are performing

Round Robin rotation, we use the modulus operator for indi-

ces of each class. ◻

Without loss of generality, we show that the index

(n + k − 1) mod C + 1 exists in exactly k class index sets. Dur-

ing the Round-Robin partition, we shift each element of sub
n+1

to the left of the sliding window with stride s = 1 as depicted

in Figs. 3 and 4. Thus, in each sliding operation we introduce

a new class index to the right of the sliding window, which in

the case of sub
n+1

 is (n + k − 1) mod C + 1 . In the same way,

for the next sliding operation, we have,

As we can observe in sub
n+2

 , the class index n mod C + 1

ceases to exist and a new index (n + k) mod C + 1

arrives in the right most position. In addition, the index

(n + k − 1) mod C + 1 shifts one position to the left. After

the n + k − 1-th sliding operation, we have,

sub
n+2 = {(n + 1) mod C + 1, ...,

(n + k) mod C + 1}.

sub
n+k

= {(n + k − 1) mod C + 1, ...,

(n + 2k − 2) mod C + 1}.

The index (n + k − 1) mod C + 1 is now at the left

most position. After the n + k − th sliding operation,

(n + k − 1) mod C + 1 will no longer exist in the subset

sub
n+k+1

 because

I t i s c l e a r f r o m a b o v e e q u a t i o n ,

(n + k − 1) mod C + 1 ∉ sub
n+k+1

 since after the n + k − th

sub
n+k+1 = {(n + k) mod C + 1, ...,

(n + 2k − 1) mod C + 1}.

Fig. 3 Illustration of Lemma 2. The figure depicts that, with a sliding

window length of k, each (in this figure, the highlighted class index

(n + k − 1) mod C + 1 is shown to occur k times.) class index occurs

in exactly k subsets. This also suggests that for each class in the data-

set MS-Net has k expert networks

Fig. 4 Illustration of the training phase. This figure is the pictorial

version of the Training phase section

769International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

sliding operation, the class index (n + k − 1) mod C + 1

slides out of the window. Thus, (n + k − 1) mod C + 1

occurs in {sub
n+1, sub

n+2, ..., sub
n+k

} or exactly in

(n + k) − (n + 1) + 1 = k − 1 + 1 = k class index sets,

which also concludes we have k experts for the class

(n + k − 1) mod C + 1.

6 Training phase

We perform the training procedure in two steps. First, we

train the router network on whole dataset. Second, we train C

experts on the subsets which can be constructed based on the

class index sets obtained in Round-Robin fashion depicted in

Sect. 5. We denote the router network as y = R(.) ∶ D �→ T ,

where D and T are the dataset and the corresponding label

set, respectively. The output of the router network is the soft-

max defined in Eq. (3), where we obtain the probabilities

q1, ..., qC for all C classes. Here, z1, ..., zC are the logit scores

for the corresponding classes.

For our modular network framework, the top-1 score

does not require to be strictly accurate. Since it is obvi-

ous that, the likeliness of the correct answer to be in top-n

(as n increases) is higher than top-1, we take into consid-

eration the top-n most probable answers. The role of the

expert networks comes into play in this situation, where

a set of experts further re-evaluate the router’s top-n pre-

dictions. Thus, the accuracy of the experts have a signifi-

cant effect on the MS-Net performance. Let us assume, we

have a set of expert neural networks E = {e(.)1, ..., e(.)
C
} .

In order to ensure these experts effectively specialize on

the subsets, we formulate a stochastic objective function

which we depict in the Eq. (4). The objective function

optimizes each of the expert network on its correspond-

ing subset data {D
sub

i
, T

sub
i
} using cross entropy loss func-

tion, where Dsubi
= {dj ∈ D|tj ∈ subi ∧ 1 ≤ j ≤ N} and

Tsubi
= {tj ∈ T|tj ∈ subi ∧ 1 ≤ j ≤ N} and on the whole set

of data {D, T} using KD function, alternatively.

The knowledge is distilled from the router network. Thus

the router is the teacher model. The alteration between two

the loss terms in Eq. 4 is controlled by the Bernoulli random

variable X with the probability

The stochastic nature of the objective function for a cer-

tain range of � provides (i) balanced training of networks

and (ii) better regularization. Again, the cardinality of each

class index set sub
i
 is determined by the redundancy variable

� . In our experiment we demonstrate the effectiveness and

(3)qi =
exp(zi)

∑

j
exp(zj)

.

Prob(X = 1) = �.

performance of the framework for � = 2, 3 and 4. We stress

that, during the inference phase, as we increase � the num-

ber of expert network evaluation increases linearly. Due to

the stochastic training of expert networks on whole dataset

using KD (the second part of Eq. (4)), these networks are no

longer limited to its corresponding subset data. Rather, each

of the network is an expert on their own subset classes, in

the meantime has certain generalization ability on the data

of other classes.

In Eq. (4), the first term optimizes the expert network e
i
()

on the classes defined by sub
i
 , weighted by Bernoulli random

variable X which takes a value of 1 based on the probability � .

The later term of Eq. (4) optimizes the network on the whole

dataset weighted by 1 − X based on probability 1 − � . Thus,

� controls the trade-off between two loss terms in Eq. (4).

where,

and

In the above equations, �(t, k) is the Kronecker delta func-

tion defined by

The hyper-parameter � controls the trade-off between the KD

and cross-entropy loss, where 0 < � < 1 . The value of � dur-

ing training depends on the performance of the teacher net-

work. A high � value puts more weight on the distilled

knowledge of teacher network and vice-versa. In our experi-

ment, we aim to retain as much knowledge as possible from

the router network (here the router network is the teacher

network for experts) to the expert networks. In this way, we

ensure that, the expert networks are at-least as good as the

router network and if not, better. Thus in this literature, we

fix the � value to 0.8. However, to learn more about the fine

tuning of KD parameters we suggest to refer to the literature

[33]. The purpose of leveraging KD in the loss function

Loss
kd

e
i

 is to simply retain all the knowledge of the router

network in the experts. To illustrate the contrast, we con-

struct another objective function depicted in Eq. (7) which

is a variant of objective function in Eq. (4), but without

(4)Loss
kd

e
i

= X l
sub

i
+ (1 − X) KD

all

(5)l
sub

i
= −

N
∑

l,t∈(D
subi

,T
subi

)

∑

m∈sub
i

�(t, m) log(Pm

ei

(l))

(6)

KDall = −�

N
∑

j=1

C
∑

k=1

Pei
(dj) log

Pei
(dj)

PR(dj)

−(1 − �)

N
∑

j=1

C
∑

k=1

�(tj, k) log(Pk
ei
(dj))

�(t, k) =

{

1, t = k,

0, t ≠ k

770 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

knowledge distillation (wokd) term. We retrain all the

experts using the loss function Losswokd

ei

 and illustrate perfor-

mance gain by KD in the result discussion section.

where,

Algorithm 1 illustrates the step by step training procedure

of the MS-Net. In the Algorithm 1, line 1 through 4 per-

forms the initialization of variable containers. In line 4 we

obtain the subset class indices using the method discussed

in Sect. 4. Line 6 and 7 load the subset of training data cor-

responding to the class index sets. In the Line 9 we randomly

sample training data which consist of all classes. Thus we

have two set of training data available, one with classes

exclusively from the class index sets and the other with all

available classes. Line 10 and 11 perform the forward pass

of the expert network e
i
(.) for the data from all classes and

class index set respectively. However, the objective function

defined in line 12 optimizes either of the term based on the

state of the random variable X. Finally we perform the back-

propagation of the loss term followed by parameter update

for expert network. We carry out this procedure for rest of

class index sets and expert networks.

(7)Loss
wokd

ei

= X l
subi

+ (1 − X) l
all

(8)lall = −

N
∑

j=1

C
∑

k=1

�(tj, k) log(Pk(dj))

7 Inference phase

During the inference phase of MS-Net, the cost or the model

complexity is dependent on two key parameters, namely,

n for top-n evaluation; and the redundancy rate � . In the

testing phase, the input is first fed to the router. From the

router, we obtain the probability scores for each class.

Since the router is relatively small it is less likely that most

of time the top-1 will be correct. But needless to say, the

probability of obtaining a correct answer increases as the

value of n increases. Thus, we select the top-n most likely

classes or predictions P = {p1, .., p
n
} from the sorted soft-

max scores q1, .., q
n
 of the router. Next, for each predicted

class pi the router chooses � experts from the expert pool,

where i = {1, .., n} . Thus, as � increases the number of expert

evaluation for a particular class increases proportionally. For

each element or prediction in P , we select a set of experts

using the following equation:

where, E is the set of all experts whose cardinality |E| = C

(refer to Lemma 1), and Ē is a subset of experts available for

a certain set of predictions P for a single input datum. In

the proposed MS-NET we will always have C expert neural

networks. This is shown by Lemma 1 and Lemma 2. How-

ever, during inference we do not leverage all C expert neural

networks. Rather, the expert neural networks are selected

based on � and n. For each input datum, the router selects n

most likely classes for re-checking. For each class, we use

� expert neural networks to provide information for making

the final decision. Thus, MS-Net leverages at-most (� ∗ n)

and at-least (� + (n − 1)) expert networks during the infer-

ence phase. The value of (� ∗ n) and (� + (n − 1)) are always

smaller than C. In this paper the maximum value for � and

n are only 4 and 3 respectively. The prediction we obtain

from the aggregated softmax of the set of selected experts

Ē for input x is presented in Eq. (10). For single input x, the

softmax returns {q1, .., qC} , where each of the element qi is

the probability of x belonging to the class i.

where, sm
r
 and sm

e
 are the softmax scores by the router and

experts, respectively. Finally, we take the most likely output

label or the predicted class using Eq. (11)

(9)
Ē =

⋃

p∈P

{e(.)p ∈ E|∃sub ∈ S ∧ p ∈ sub}

(10)
O = sm

r
+
∑

e∈Ē

sm
e
(x)

(11)prediction = arg-maxj(O|qj ∈ O, 1 ≤ j ≤ C)

771International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

Algorithm 2 represents the testing phase of the MS-

Net. Line 1 through 6 initialize the variables and all the

networks (router and expert networks). Initially, we pass

the input to the router network in line 8. We select the

top-n most probable predictions from the router whose

further re-evaluation start from line 9. Based on the pre-

diction of router we select a fixed number of expert net-

works. As discussed in the earlier section, the number of

expert networks for inference is governed by the variable

� and top-n. In the worst case scenario we will have to

evaluate at-most (� ∗ n) expert networks and in best case

(� + (n − 1) expert networks. We aggregate the softmax of

all the expert networks in line 13 and increment the count

(so far evaluated expert networks). After all the expert

networks are evaluated we take the corrected or re-eval-

uated output based on the highest softmax value in line

20. The final output is the accuracy of MS-Net. In Line

4 and 15 of the Algorithm 2 the Boolean dictionary list

visited[sub
1
∶ sub

C
] ensures that we are not evaluating an

expert for particular subset more than once. This optimiza-

tion comes into play during situation where the index of

two or more predictions of router are consecutive numbers.

8 Experiments

8.1 Datasets

To evaluate and validate the effectiveness of the network we

leverage three public datasets, which are CIFAR-10 or C-10

(Canadian Institute For Advanced Research)[1], CIFAR-100

or C-100[1], and F-MNIST (Fashion-Modified National

Institute of Standards and Technology database). The

CIFAR-10 dataset consists of 60,000 32X32 color images

with 10 classes. Each class has 6,000 images. The dataset

is divided into two parts with 50,000 images for training

purposes and 10,000 images for testing[1]. The CIFAR-

100 is just like CIFAR-10 but with 100 classes containing

600 images for each class. Among these 600 images for

each class, 500 are for training and the rest 100 for testing.

Moreover, the 100 classes are grouped into 20 super-classes.

The F-MNIST database is a large database of fashion acces-

sories. The database contains 60,000 training images and

10,000 testing images with 10 classes, where each image is

28X28 gray-scale image.

8.2 Experiment settings

We implement MS-Net in the PyTorch framework [44],

and perform all the experiments on single NVIDIA RTX

2080 GPU. The setting of hyper-parameters during train-

ing slightly vary across different datasets. However, for all

datasets, we use Stochastic Gradient Descent(SGD) with

momentum. We set the initial learning rate for all routers and

experts to lr = 0.1 and momentum to 0.9. Hyper-parameters

such as batch size, iterations and learning rate decay sched-

uler (�) differ across routers, experts and datasets which are

shown in the Table 2.

9 Result discussion

For the CIFAR-10 and CIFAR-100 dataset, we perform

a detailed empirical study on the effect of variable � (of

objective function Eq. (4)) on expert networks during the

training phase. We also perform analysis on effect of � and

n during the test phase. In addition, beside ResNet-20 we

also provide performance of MS-Net with two well-known

DNNs as backbone. However, in this paper we perform all

the empirical analysis and hyper-parameters search with

772 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

the backbone ResNet-20. Tables 3 and 4 represent the

performance of MS-Net (with ResNet-20 backbone) for

CIFAR-10 and CIFAR-100, respectively Table 5.

In Table 6 we demonstrate the performance of indi-

vidual expert network on subset class indices for dataset

CIFAR-10 and F-MNIST. CIFAR-100 has 100 classes

which make it difficult to interpret the performance of all

100 expert networks in a table. The table illustrates several

key points about the MS-Net. Firstly, we observe that each

of the expert network performs with remarkable score on

its corresponding subset. That is, the performance of e
i
 on

its corresponding subset sub
i
 , where i = {1, ..., C} , is very

good (highlighted on Table 6). The performance of any

expert networks on the whole set or on subsets assigned

to other expert networks is relatively lower. Secondly, the

performance of the Router R on each individual subset is

significantly lower than that of the expert networks. How-

ever, when we execute the router and the expert networks

together, they perform very well.

The empirical results for CIFAR-10 and CIFAR-100

suggest that, during training phase, fixing � to value 0.9

in the objective function tends to give relatively higher

scores. To avoid redundant experiments, we perform rest

of the training with � fixed to 0.9. Table 5 presents the

performance of MS-Net for F-MNIST.

It is clear that with � = 1 in Eq. (4) we simply optimize

the expert networks on training data sampled from subset

class indices. On the contrary, with � = 0 we optimize the

expert networks on the dataset comprising of all the avail-

able classes, which is analogous to the naive Ensemble

Learning (EL) of DNNs. The optimal value for � has no

theoretical bindings , rather it is dependent on the dataset.

Expert networks trained with � in the range 0.3 ∼ 0.9 give

near optimal classification scores. However, fixing � to

either 0 or 1 during training degrades the performance

scores, which implies that we should maintain a certain

range for � while optimizing the proposed loss function.

The variable n tells the experts up to how many top-n most

probable prediction of router to further re-evaluate. For

all the experiments, we re-evaluate up-to top-3 of rout-

er’s prediction. The � depicts the total number of samples

correctly re-classified by the experts. A positive � value

depicts the number of samples expert networks have cor-

rectly re-classified and a negative value for � indicates the

number of mis-classifications by the experts, or in other

words, � is the measurement of improvement in accuracy

by our framework relative to the router network. All the

scores that we report in this paper (figures and tables) are

relative to the backbone network, which in this case is the

router network. It is worth noting that, we use the online

inference method during the testing. Thus for MS-Net,

we make the prediction for a single observation at each

iteration as oppose to batch processing. Due to modular

nature of the framework, the online inference is the sim-

plest implementation.

Table 2 Training hyper-parameters for router and experts

Network Dataset Batch size Epochs Steps

C-10 32 300 50

Router C-100 128 300 50

F-MNIST 64 200 60

C-10 32 30 8

Experts C-100 16 25 8

F-MNIST 64 30 10

Table 3 Performance on

CIFAR-10 with variable

probability distribution �

The backbone (ResNet-20)

score is 92.68% , and the � score

depicts the number of samples

correctly re-classified by MS-

Net expert networks (relative to

the backbone)

� � n acc. (%) �

0.3 2 2 93.70 +102

3 93.65 +97

3 2 94.74 +206

3 94.60 +191

4 2 94.80 +212

3 94.85 +217

0.5 2 2 93.65 +97

3 93.66 +98

3 2 94.75 +207

3 94.64 +196

4 2 95.00 +228

3 95.00 +228

0.7 2 2 93.60 +92

3 93.58 +90

3 2 94.83 +215

3 94.75 +207

4 2 95.03 +235

3 95.10 +242

0.9 2 2 93.54 +86

3 93.34 +66

3 2 94.15 +147

3 94.06 +138

4 2 95.38 +270

3 95.30 +261

1.0 2 2 93.30 +52

3 93.09 +41

3 2 93.85 +117

3 93.83 +115

4 2 94.01 +133

3 93.90 +123

773International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

9.1 Performance on CIFAR‑10

Table 3 represents the performance of MS-Net for CIFAR-

10. From our experimental results, we can deduce the fol-

lowing key observations.

1. As we increase the value of � the accuracy increases.

Refer to Fig. 8 (d, e) for graphical illustration of this

phenomenon. However, for the case of CIFAR-10

increasing top-n beyond the value 2 does not improve

the performance further (Fig. 8 (a, b and c)).

2. We observe gradual improvement in performance for

the expert networks trained with increasing � which can

be confirmed by Figs. 5 (a) and 6. The score gets low-

est when we train the expert networks with � = 1 . This

phenomenon suggests that training the expert networks

solely on its subset classes (� = 1 i.e. clamping X = 1

in the objective function during the whole training pro-

cess) does not improve performance, rather degrades.

This degradation of result occurs due to imbalanced

logit value in the last layer since the expert networks do

not encounter any training data from rest of the classes

(classes apart from the subset classes) during the train-

ing phase. Training these experts on the whole set of

data alternatively within the optimal range of probabil-

ity distribution substantially improve the performance.

This method acts as a very effective regularization, as

it prevents the experts from over-fitting on the dataset

from subset classes. A graphical overview of the effect

of the probability distribution � is presented in the bar

chart Fig. 6.

3. In our experiment, we obtain the best score (with

ResNet-20 backbone) for CIFAR-10 (95.38%) with

� = 4, n = 2 and � = 0.9 . The � score with the men-

tioned parameters is +270 , which means, integration

of the expert networks with router further improves the

performance by +2.70% . In other words, the router with

a backbone network ResNet-20 has a top-1 accuracy of

92.68% and by integrating the experts for further re-eval-

uation, we levitate the top-1 score by +2.70 i.e. 95.38%.

9.2 Performance on CIFAR‑100

Table 4 represents the result for CIFAR-100. For CIFAR-

100, the same hyper-parameters � = 4, n = 2 and � = 0.9

give relatively high score of 71.68% . We can observe from

the Table 7 that router’s top-1 performance (ResNet-20)

for CIFAR-100 is only 69.58% , and with the integration

of the experts the performance increases by 2.48% . This

phenomenon suggests that as we increase � and n we are

more likely to get higher accuracy. The scores in Table 7

Table 4 Performance on

CIFAR-100 with variable

probability distribution of �

The backbone (ResNet-20)

score is 69.58% , and the � score

depicts the number of samples

correctly re-classified by MS-

Net expert networks (relative to

the backbone)

� � n acc. (%) �

0.3 2 2 71.00 +132

3 70.80 +127

3 2 71.27 +170

3 71.09 +152

4 2 71.06 +150

3 71.06 +150

0.5 2 2 71.07 +148

3 71.05 +142

3 2 71.10 +152

3 71.28 +170

4 2 71.05 +142

3 71.25 +167

0.7 2 2 71.00 +136

3 71.01 +142

3 2 71.03 +144

3 71.11 +152

4 2 71.52 +193

3 71.25 +167

0.9 2 2 70.68 +110

3 71.00 +141

3 2 70.85 +127

3 71.09 +151

4 2 71.61 +203

3 71.28 +170

1.0 2 2 69.73 +15

3 69.72 +14

3 2 69.74 +16

3 69.52 − 5

4 2 70.16 +58

3 69.75 +17

Table 5 Performance on

F-MNIST with � = 0.9

The backbone (ResNet-20)

score for F-MNIST is 95.22% ,

and the � score depicts the num-

ber of samples correctly re-clas-

sified by MS-Net’s expert net-

works (relative to the backbone)

Dataset � n acc. (%) �

FMNIST 2 2 95.80 +60

3 95.96 +74

3 2 95.80 +60

3 96.77 +156

4 2 96.02 +80

3 96.77 +156

774 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

depict that MS-Net has relatively lower score on CIFAR-100

compared to CIFAR-10 and F-MNIST. This phenomenon

is also observable for other state-of-the-art DNN (refer to

Table 8). The probable reason for such low performance is

mostly due to fewer amount of data per class in CIFAR-100.

While CIFAR-10 has 6000 samples per class, CIFAR-100

has only 600 samples. This problem has been mitigated to

a certain extent recently by leveraging large scale Transfer

Learning (ImageNet pre-trained)[46], learning data augmen-

tation policy or Auto-Augment (AA) [13], task-specific NAS

with Transfer Learning (TL) [59, 71], Neural Architecture

through hybrid online TL with multi-objective evolutionary

search procedure [75] and so on. The MS-Net proposed in

this study also has a significant improvement in performance

compared to the backbone networks. We may expect fur-

ther improvement if we introduce TL and other techniques

described above.

9.3 Performance on F‑MNIST

Table 5 represents the result of MS-Net on F-MNIST.

In order to avoid redundant experiment the same

hyper-parameters that give optimal score for CIFAR-10

and CIFAR-100 are set during the training. The network

achieves score of 96.77% on F-MNIST test set. The delta

score is +156, which is relatively higher. To our knowledge,

the best score for F-MNIST was 96.30% , reported by Wide-

ResNet-28-10 with Random Erasing data-augmentation[79].

Thus, MS-Net achieves a state-of-the-art score for this par-

ticular dataset.

10 Optimal value for � , top‑n evaluation
and ˇ

A very common intuition is that as we increase the n of the

router we can score (at best) as good as the router’s top-

n prediction score. In practice, increasing n beyond the

value 2 does not substantially improve the performance,

however, increasing the value of � gradually improves

the accuracy of the network. For numerical comparison

please refer to the Tables 3 and 4. In addition, Figs. 6

and 7 represent the effect of � and n for CIFAR-10 and

CIFAR-100 respectively. An interesting observation from

Table 6 Performance of

individual expert network on

all the subsets. The highlighted

parts depict the score of each

expert on its corresponding

subset class index obtained

through the Round Robin

partition

The last column S depicts the performance of experts on whole set of data. The row with R represents the

performance of router network on individual subset. In this table, all the experts and the router network

have ResNet-20 backbone. The � is 4 which also depicts the cardinality of each subset. We train all experts

with � = 0.9

Dataset net sub S

sub
0

sub
1

sub
2

sub
3

sub
4

sub
5

sub
6

sub
7

sub
8

sub
9

C-10 e
0

97.55 95.125 89.6 63.325 58.07 60.15 69.15 75.87 83.27 91.17 75.13

e
1

87.52 98.22 80.22 71.6 62.27 57.57 66 62.32 72.23 76.38 72.65

e
2

80.05 92 99.17 83.52 65.55 55.32 45.97 47.85 58.92 70.2 70.54

e
3

76.8 82.2 83.77 97.55 90.2 87 84.47 79.07 81 74.7 83.05

e
4

70.87 74.25 74.75 83 97.05 95.42 92.82 89.5 88 81 84.5

e
5

62.52 62.65 68.7 76.62 92.57 98.7 92 86.2 79.2 71.47 78.88

e
6

61.27 62.42 62.37 71.27 84.7 91.25 98.9 91.25 82.35 73.5 77.77

e
7

73.57 71.27 71.87 77.27 87.65 92.62 96.52 98.27 91.72 82.7 83.43

e
8

81 77.92 73.25 78.17 84.45 87.4 92.47 96.27 98.47 91.23 85.33

e
9

87.97 78.62 72.47 65.57 73.12 75.05 81.6 91.23 92.47 98.8 81.73

R 90.07 90.02 87.87 89.97 92.85 93.1 94.87 94.15 94.62 93.15 92.68

FMNIST e
0

98.67 85.05 80.30 60.57 60.77 77.35 77.85 97.87 97.27 96.17 82.32

e
1

90.52 97.10 95.35 75.92 76.40 76.45 77.27 86.40 86.62 87.52 84.48

e
2

91.52 96.90 98.50 80.80 80.25 80.27 81.82 92.15 91.40 92.20 87.90

e
3

60.90 80.52 80.70 98.72 97.35 93.97 93.05 74.80 74.55 60.52 80.11

e
4

40.12 62.60 62.55 82.25 97.37 94.60 90.90 70.05 70.10 51.55 72.61

e
5

65.67 70.70 71.60 83.22 88.52 98.32 96.65 82.55 81.05 68.70 80.50

e
6

74.95 70.95 70.50 76.90 80.47 96.65 98.75 86.42 86.87 78.15 81.81

e
7

81.97 77.47 74.30 67.45 77.97 81.55 84.77 98.55 98.12 92.12 83.23

e
8

75.22 71.95 60.27 51.45 45.60 45.01 57.67 74.74 99.67 91.35 84.66

e
9

90.10 85.35 83.95 80.20 87.87 91.20 92.60 96.22 98.32 99.87 90.57

R 90.07 90.02 87.87 89.97 92.85 93.1 94.87 94.15 94.62 93.15 95.22

775International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

the Fig. 8 is that, as we increase � the performance levi-

tates dramatically, on the contrary, increasing n does not

increase accuracy with a big margin. This is also the case

for the CIFAR-100 dataset. The graphs in Fig. 9 indicate

that, for a fixed value of � , increasing n further increases

the accuracy, but not with a substantial margin. Although

in this literature, our experiment is limited to � ≤ 4 , we

can anticipate that for CIFAR-100 further increasing �

will increase the accuracy. The reason is that CIFAR-

100 is relatively difficult dataset with a large number of

classes. Thus, from the above observations we can con-

clude with following guidelines for optimal parameters

selection.

1. Evaluating till top-2 probable predictions of the router

will suffice. This statement is true at-least for all the

dataset we have explored so far.

2. Setting the redundancy rate variable � to 3 provides with

a comparable classification score for all cases. We know

that increasing � implies that we have more expert net-

works for each class. Thus, in situation where we have

enough resource budgets, we can increase the variable �

beyond 3 for more redundant expert networks and accu-

racy.

3. During the training phase the variable � of objective

function (Eq. (4)) plays a crucial role in performance.

Although there are no fixed value or theoretical bind-

ings for � , we recommend to avoid fixing � to two

extreme values i.e. 0 and 1. Optimizing the expert net-

works keeping � in range of 0.3–0.9 tend to give opti-

mal score.

Thus, to keep the experiments simple, the training of MS-

Net (implementation with different backbone networks) in

the rest of the paper will confine to the above mentioned

hyper-parameters.

Fig. 5 The objective function of MS-Net optimized with differ-

ent probability distribution � . The y-axis depicts the � scores (no. of

samples correctly re-classified by experts). The x-axis represents the

index of each data-points. Each point in the graph depicts the num-

ber of samples correctly re-classified (of the ResNet-20 router) by the

experts till that particular data-index

Fig. 6 Performance (%) of MS-Net (with Resnet-20 backbone) on

CIFAR-10 with variable distribution for � . It is evident that optimiz-

ing the objective function with two extreme values � = 0 or 1 does

not provide with an optimal performance. Probability distribution

ranging from 0.3 to 0.9 tends to give the near optimal performance

776 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

11 Training expert networks
without knowledge distillation

KD plays a vital role in training the expert networks. Ear-

lier in the section 6 we proposed a slight variant of objec-

tive function (Eq. (4)) where we replace the KD term with

simple cross entropy loss term (Eq. (7)). We train MS-Net

on CIFAR-10, CIFAR-100 and F-MNIST leveraging the

loss Losswokd depicted in Eq. (7). The hyper-parameters are

exactly identical to the experiments done with KD loss. The

results show that, expert networks of MS-Net optimized

without KD loss drops in accuracy with a substantial mar-

gin. In Fig. 10 we show the contrast for the classification

accuracy. Figure 11 depict the contrast between the � of

MS-Net trained with and without the KD loss for CIFAR-10,

CIFAR-100 and F-MNIST respectively. Using distillation

in the loss term assists the expert networks in retaining

the existing knowledge of the router. This also ensures the

experts are at-least as good as the router network in the worst

case scenario. In other words, the expert networks are less

prone to mis-classify samples that are already correctly clas-

sified by the router networks.

12 Comparison to state‑of‑the‑art results

In this section we provide a brief comparison of MS-Net

to the performance of existing state-of-the-art DNNs on

CIFAR-10, CIFAR-100 and F-MNIST dataset. For com-

parison we provide two tables, Tables 7 and 8, wherein,

Table 7 Performance of

MS-Net for CIFAR-10 (C-10),

CIFAR-100 (C-100) and

F-MNIST

The first section depicts the score of backbone networks itself, which also indicates the performance of

routers. The second section represents the performance of our proposed framework (MS-Net) equipped

with different backbone networks. We train MS-Net with different backbone networks with exact same

hyper-parameters

Type Methods C-10 C-100 F-MMNIST # Param. (M)

Backbone ResNet-20 [32] 92.68 69.58 95.22 0.269

GoogleNet [69] 92.93 78.03 93.70 6.2

MobileNet [35] 94.43 68.08 95.00 2.36

MS-Net framework MS-Net (ResNet-20) 95.38 71.61 96.77 2.95

MS-Net (GoogleNet) 97.01 85.05 96.80 55.80

MS-Net (MobileNet) 96.01 78.03 96.80 21.24

Table 8 Performance of state-

of-the-art networks for CIFAR-

10 (C-10), CIFAR-100 (C-100)

and F-MNIST

The first section reports the score for relatively larger DNN, which we term as Type-I. The second section

i.e. the Type-II are the networks that share relatively same computational capacity and parameters as MS-

Net. Type-II section also includes automated learned architectures (without human intervention) through

evolutionary search, reinforcement learning and so on. The table is divided for ease of comparison and

contrast

Type Methods C-10 C-100 F-MMNIST # Param. (M)

Type-I GPIPE + TL [37] 99.00 91.30 – 556

Shared WRN [65] 97.47 82.57 – 118

SGDR WRN-28-10 3 runs × 3 snapshots [53] 96.75 83.36 – 329

SGDR WRN-28-10 16 runs × 3 snapshots [53] 96.75 83.36 – 1752

Type-II Res2net-29 [25] - 83.44 – 36.9

PyramidNet+ShakeDrop+ Fast AA [52] 98.3 88.3 – -

Wide GatedResNet [66] (4,10) + Dropout 96.35 81.73 – 36.5

DenseNet [36] 96.54 82.62 95.40 20

Inception [70] - 77.19 – 22.3

VGG16-BN [67] 92.64 72.93 93.50 34.0

ResNet-101 [32] 93.75 77.78 94.9 42.7

ResNet-152 [32] 95.38 77.61 – 58.3

FractalNet [47] 95.4 76.27 – 38.6

NAS V3 [83] 96.35 - – 37.4

NASNet-A (7 @ 2304) [84] 97.03 - – 27.6

EfficientNet-B7 + NAS + TL [71] 98.9 - – 64

777International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

first table depicts the performance of backbone networks

(routers) and MS-Net frameworks (with different backbone

networks), and second table represents the performance

of state-of-the-art DNNs. For the ease of comparison and

illustration, we divide the benchmark Table 8 into two

types, where Type-I represents the network with large

number of parameters, Type-II with parameters and com-

putational resource almost similar to our proposed frame-

work. The Type-II networks also include several architec-

tures learned by using computationally expensive methods

(e.g. evolutionary search and reinforcement learning)

equipped with transfer learning (TL). For bench-marking,

we refer to the site [79].

We can observe from the Table 7 that, MS-Net frame-

work elevates the classification accuracy with a significant

margin relative to the backbone router. Comparing MS-

Net framework with Type-I networks from Table 8, the

network actually performs with a neck-and-neck scores.

However, compared to Type-II networks (approximately

similar parameter counts) MS-Net performs with high

score relative to most of the networks. The highest score

that we obtain so far is with the backbone network Goog-

leNet, leveraging at most 55.80M parameters (Table 7).

This high score and setup undeniably come with a trade-

off of more computational resources and parameter budget.

Fig. 7 Performance (%) of MS-Net on CIFAR-100 (ResNet-20 back-

bone) with different distribution for � . The optimal score for distribu-

tion 0.3 to 0.9 holds for CIFAR-100 too

Fig. 8 The effect of variable n and � on CIFAR-10 during test phase:

The first row (a,b and c) depicts the variation of � score by keeping �

fixed and changing variable n, i.e. it demonstrates how the network

performs when we tweak the variable n. The second row (d and e)

depicts performance of network keeping the n fixed while nudging

variable � . The last Figure (f) summarizes all the � score Figures (a,

b, c, d and e) in a single graph for comparison

778 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

Most recently, researchers have been trying to find the

best structure using evolutionary algorithms, reinforce-

ment learning algorithms, and so on, and some very

interesting results have been obtained [75, 82–84]. For

example, for the database CIFAR-10, the best perfor-

mance obtained so far is 98.9% (refer to Type-II section

Fig. 9 The effect of variable n and � on CIFAR-100 during test phase:

The first row (a,b and c) depicts the variation of � score while keep-

ing � fixed and changing variable n, i.e. it demonstrates how the net-

work performs when we tweak the variable n. The first two figures of

second row depict the performance of network keeping n fixed while

nudging variable � . The last Fig. (f) combine all the Fig. (a, b, c, d

and e) for depicting the contrast clearly

Fig. 10 Performance of the MS-Net trained with and without KD loss

779International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

of Table 8) and the model’s training parameter number is

64M [71]. However, based on the ‘no free lunch theorem’

[34], an optimal model is usually fine-tuned for some spe-

cific database, and the model may not be useful for solv-

ing other problems. Even for the same problem with more

observed data, to preserve the best performance, we have

to use a very expensive process to re-design the model.

On the other hand, the MS-NET structure proposed in this

study is very simple, and can leverage the performance

of any existing state-of-the-art models by increasing the

inference cost slightly. In this sense, MS-NET can be a

good starting point for solving various problems.

13 Conclusion

In this paper, we have proposed a modular neural network

architecture termed as the MS-Net (Modular Redundant

Network). For a C-class classification problem, the net-

work consisted of a router network and C expert networks.

In summary, the key idea of the research have been to

further re-evaluate the top-n most probable predictions of

the router by leveraging these expert networks. To effec-

tively train these expert networks we have proposed a sto-

chastic objective function equipped with the knowledge

distillation technique that facilitates alternative training

on a subset of expert data and whole set of data. This

alternative training have been regulated by clamping a

Bernoulli random variable to each of loss function term.

We have constructed the subsets of data systematically by

Round-Robin fashion. As a result, it has provided us with

a mean to control the redundancy of each class in the set of

subsets, which have also allowed us to know which expert

network is a specialist on which subset (thus we have more

interpret-ability). We have shown that, with a very limited

parameter budget and simple DNN as backbone, our net-

work has achieved performance comparable or sometimes

equivalent to more complex DNNs.

An interesting research direction would be to apply

Neural Architecture Search (NAS) strategy in MS-Net.

We can anticipate that implementing such approach can

further cut down redundant parameters of expert networks.

In this way, each expert network can be reshaped and

designed based on its assigned expert data. Fortunately,

the modular nature of MS-Net have allowed each of the

individual expert network to be independent and local, i.e.

they are not dependent on each other during the training

and inference phase. This suggests that, the experts can be

trained and tested in parallel, which give us an opportunity

to utilize powerful parallel computing systems. Further

optimization of this network can be obtained by reducing

the number of expert networks evaluation. As we have

known from our experiments, during the inference phase

the router network chooses fixed number of experts for

further evaluation. The final prediction can been obtained

only after all the selected experts have been completely

evaluated. This can be time-consuming and redundant for

easy data or patterns. To mitigate the unnecessary evalu-

ation of experts the concept of Progressive inference

introduced in the literature[49] can be leveraged in our

modular network. The main idea is to stop evaluation of

expert networks once we reach a certain softmax confi-

dence or threshold (the threshold can be obtained through

trial and error). In this way the parameter usage can be

further reduced without comprising the network accuracy.

So far, in this paper we have leveraged the router network

as the teacher model for knowledge distillation. We can

anticipate that using more accurate and powerful DNN as

the teacher model can assist the expert networks in gener-

alizing better. In our future work, we anticipate to deploy

the proposed modular neural network in real world sce-

nario. In order to test the network, we will build a test bed

equipped with multiple neural computational sticks (pow-

ered by vision processing units) and run several experts in

parallel for faster and efficient inference.

Fig. 11 Contrast of scores: The figure represents the � score difference for MS-Net trained with and without the KD loss

780 International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

Compliance with ethical standards

Conflict of interest There is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. URL https ://www.cs.toron to.edu/~kriz/cifar .html

 2. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with

local binary patterns. European conference on computer vision.

Springer, Berlin, pp 469–481

 3. Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E,

Case C, Casper J, Catanzaro B, Cheng Q, Chen G, et al. (2016)

Deep speech 2: End-to-end speech recognition in english and

mandarin. In: International conference on machine learning, pp

173–182

 4. Anand R, Mehrotra K, Mohan CK, Ranka S (1995) Efficient clas-

sification for multiclass problems using modular neural networks.

IEEE Trans Neural Netw 6(1):117–124

 5. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep

convolutional encoder-decoder architecture for image segmenta-

tion. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

 6. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

 7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

 8. Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model compres-

sion. In: Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp 535–

541. ACM

 9. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL

(2017) Deeplab: Semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs. IEEE

Trans Pattern Anal Mach Intell 40(4):834–848

 10. Clark P, Boswell R (1991) Rule induction with cn2: Some recent

improvements. European Working Session on Learning. Springer,

Berlin, pp 151–163

 11. Collobert R, Weston J (2008) A unified architecture for natu-

ral language processing: Deep neural networks with multitask

learning. In: Proceedings of the 25th international conference on

Machine learning, pp 160–167. ACM

 12. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

 13. Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV (2019) Auto-

augment: Learning augmentation strategies from data. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp 113–123

 14. Cubuk ED, Zoph B, Shlens J, Le QV (2019) Randaugment: Prac-

tical data augmentation with no separate search. arXiv preprint

arXiv :1909.13719

 15. Dumoulin V, Visin F (2016) A guide to convolution arithmetic for

deep learning. arXiv preprint arXiv :1603.07285

 16. Dutt A, Pellerin D, Quénot G (2019) Coupled ensembles of neural

networks. Neurocomputing

 17. Elsken T, Metzen JH, Hutter F (2018) Neural architecture search:

A survey. arXiv preprint arXiv :1808.05377

 18. Freund Y, Schapire RE (1995) A desicion-theoretic generaliza-

tion of on-line learning and an application to boosting. European

conference on computational learning theory. Springer, Berlin, pp

23–37

 19. Friedman JH (2002) Stochastic gradient boosting. Comput Statist

Data Analy 38(4):367–378

 20. Furlanello T, Lipton ZC, Tschannen M, Itti L, Anandkumar

A (2018) Born again neural networks. arXiv preprint arXiv

:1805.04770

 21. Fürnkranz J (1999) Separate-and-conquer rule learning. Artif

Intell Rev 13(1):3–54

 22. Fürnkranz J (2002) Pairwise classification as an ensemble tech-

nique. European Conference on Machine Learning. Springer,

Berlin, pp 97–110

 23. Fürnkranz J (2002) Round robin classification. J Mach Learn Res

2:721–747 (Mar)

 24. Fürnkranz J (2003) Round robin ensembles. Intell Data Anal

7(5):385–403

 25. Gao S, Cheng MM, Zhao K, Zhang XY, Yang MH, Torr PH

(2019) Res2net: A new multi-scale backbone architecture. IEEE

transactions on pattern analysis and machine intelligence

 26. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE inter-

national conference on computer vision, pp 1440–1448

 27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley

D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Advances in neural information processing systems, pp

2672–2680

 28. Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y (2013)

An empirical investigation of catastrophic forgetting in gradient-

based neural networks. arXiv preprint arXiv :1312.6211

 29. Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with

deep recurrent neural networks. In: 2013 IEEE international con-

ference on acoustics, speech and signal processing, pp 6645–6649.

IEEE

 30. Hampshire JB II, Waibel A (1992) The meta-pi network: Building

distributed knowledge representations for robust multisource pat-

tern recognition. IEEE Trans Pattern Anal Mach Intell 7:751–769

 31. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 770–778

 32. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep

residual networks. European conference on computer vision.

Springer, Berlin, pp 630–645

 33. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in

a neural network. arXiv preprint arXiv :1503.02531

 34. Ho YC, Pepyne DL (2002) Simple explanation of the no-free-

lunch theorem and its implications. J Optimiz Theory Appl

115(3):549–570

 35. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand

T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv pre-

print arXiv :1704.04861

 36. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp 4700–4708

 37. Huang Y, Cheng Y, Bapna A, Firat O, Chen D, Chen M, Lee H,

Ngiam J, Le QV, Wu Y, et al. (2019) Gpipe: Efficient training of

giant neural networks using pipeline parallelism. In: Advances in

Neural Information Processing Systems, pp 103–112

 38. Intisar CM, Watanobe Y (2018) Classification of online judge

programmers based on rule extraction from self organizing

http://creativecommons.org/licenses/by/4.0/
https://www.cs.toronto.edu/%7ekriz/cifar.html
http://arxiv.org/abs/1909.13719
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1805.04770
http://arxiv.org/abs/1805.04770
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861

781International Journal of Machine Learning and Cybernetics (2021) 12:763–781

1 3

feature map. In: 2018 9th International Conference on Aware-

ness Science and Technology (iCAST), pp 313–318. IEEE

 39. Intisar CM, Zhao Q (2019) A selective modular neural network

framework. In: 2019 IEEE 10th International Conference on

Awareness Science and Technology (iCAST), pp 1–6. IEEE

 40. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE et al (1991)

Adaptive mixtures of local experts. Neural Comput 3(1):79–87

 41. Jain AK, Farrokhnia F (1991) Unsupervised texture segmenta-

tion using gabor filters. Pattern Recogn 24(12):1167–1186

 42. Jordan MI, Jacobs RA (1994) Hierarchical mixtures of experts

and the em algorithm. Neural Comput 6(2):181–214

 43. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement

learning: A survey. J Artif Intell Res 4:237–285

 44. Ketkar N (2017) Introduction to pytorch. Deep learning with

python. Springer, Berlin, pp 195–208

 45. Kim T, Cha M, Kim H, Lee JK, Kim J (2017) Learning to dis-

cover cross-domain relations with generative adversarial net-

works. In: Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pp 1857–1865. JMLR. org

 46. Kolesnikov A, Beyer L, Zhai X, Puigcerver J, Yung J, Gelly S,

Houlsby N (2019) Big transfer (bit): General visual representa-

tion learning. arXiv preprint arXiv :1912.11370

 47. Larsson G, Maire M, Shakhnarovich G (2016) Fractalnet: Ultra-

deep neural networks without residuals. arXiv preprint arXiv

:1605.07648

 48. LeCun Y, Denker JS, Solla SA (1990) Optimal brain damage. In:

Advances in neural information processing systems, pp 598–605

 49. Lee H, Lee JS (2018) Local critic training for model-paral-

lel learning of deep neural networks. arXiv preprint arXiv

:1805.01128

 50. Leung HC, Zue VW (1989) Applications of error back-propaga-

tion to phonetic classification. In: Advances in neural information

processing systems, pp 206–214

 51. Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2016) Pruning

filters for efficient convnets. arXiv preprint arXiv :1608.08710

 52. Lim S, Kim I, Kim T, Kim C, Kim S (2019) Fast autoaugment.

arXiv preprint arXiv :1905.00397

 53. Loshchilov I, Hutter F (2016) Sgdr: Stochastic gradient descent

with warm restarts. arXiv preprint arXiv :1608.03983

 54. Lowe DG, et al. (1999) Object recognition from local scale-invar-

iant features. In: iccv, vol. 99, pp 1150–1157

 55. Minsky M (1988) Society of mind. Simon and Schuster, New York

 56. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-

stra D, Riedmiller M (2013) Playing atari with deep reinforcement

learning. arXiv preprint arXiv :1312.5602

 57. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare

MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al

(2015) Human-level control through deep reinforcement learning.

Nature 518(7540):529

 58. Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2016) Pruning

convolutional neural networks for resource efficient inference.

arXiv preprint arXiv :1611.06440

 59. Nayman N, Noy A, Ridnik T, Friedman I, Jin R, Zelnik L (2019)

Xnas: Neural architecture search with expert advice. In: Advances

in Neural Information Processing Systems, pp 1977–1987

 60. Park SH, Fürnkranz J (2012) Efficient prediction algorithms for

binary decomposition techniques. Data Min Knowl Discovery

24(1):40–77

 61. Pham H, Guan MY, Zoph B, Le QV, Dean J (2018) Efficient neu-

ral architecture search via parameter sharing. arXiv preprint arXiv

:1802.03268

 62. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-

time object detection with region proposal networks. In: Advances

in neural information processing systems, pp 91–99

 63. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. International

Conference on Medical image computing and computer-assisted

intervention. Springer, Berlin, pp 234–241

 64. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang

Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet

large scale visual recognition challenge. Int J Computer Vision

115(3):211–252

 65. Savarese P, Maire M (2019) Learning implicitly recurrent cnns

through parameter sharing. arXiv preprint arXiv :1902.09701

 66. Savarese PH, Mazza LO, Figueiredo DR (2016) Learning identity

mappings with residual gates. arXiv preprint arXiv :1611.01260

 67. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv

:1409.1556

 68. Socher R, Bengio Y, Manning C (2012) Deep learning for nlp.

Tutorial at Association of Computational Logistics (ACL)

 69. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan

D, Vanhoucke V, Rabinovich A (2015) Going deeper with con-

volutions. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 1–9

 70. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)

Rethinking the inception architecture for computer vision. In:

Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp 2818–2826

 71. Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for

convolutional neural networks. arXiv preprint arXiv :1905.11946

 72. Waibel A, Sawai H, Shikano K (1989) Modularity and scaling

in large phonemic neural networks. IEEE Trans Acoust Speech

Signal Process 37(12):1888–1898

 73. Warburton K (2003) Deep learning and education for sustain-

ability. Int J Sustainab Higher Educ 4(1):44–56

 74. Watanabe C, Hiramatsu K, Kashino K (2018) Modular representa-

tion of layered neural networks. Neural Netw 97:62–73

 75. Wong C, Houlsby N, Lu Y, Gesmundo A (2018) Transfer learning

with neural automl. In: Advances in Neural Information Process-

ing Systems, pp 8356–8365

 76. Wu H, Zhang J, Huang K, Liang K, Yu Y (2019) Fastfcn: Rethink-

ing dilated convolution in the backbone for semantic segmenta-

tion. arXiv preprint arXiv :1903.11816

 77. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated resid-

ual transformations for deep neural networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp 1492–1500

 78. Yang C, Xie L, Qiao S, Yuille A (2018) Knowledge distillation in

generations: More tolerant teachers educate better students. arXiv

preprint arXiv :1805.05551

 79. Zalandoresearch: zalandoresearch/fashion-mnist (2019). URL

https ://githu b.com/zalan dores earch /fashi on-mnist

 80. Zhang Y, Xiang T, Hospedales TM, Lu H (2018) Deep mutual

learning. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp 4320–4328

 81. Zhao Q (1997) Stable online evolutionary learning of nn-mlp.

IEEE Trans Neural Netw 8(6):1371–1378

 82. Zhao Q, Higuchi T (1996) Evolutionary learning of nearest-neigh-

bor mlp. IEEE Trans Neural Netw 7(3):762–767

 83. Zoph B, Le QV (2016) Neural architecture search with reinforce-

ment learning. arXiv preprint arXiv :1611.01578

 84. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transfer-

able architectures for scalable image recognition. In: Proceedings

of the IEEE conference on computer vision and pattern recogni-

tion, pp 8697–8710

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1912.11370
http://arxiv.org/abs/1605.07648
http://arxiv.org/abs/1605.07648
http://arxiv.org/abs/1805.01128
http://arxiv.org/abs/1805.01128
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1905.00397
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1902.09701
http://arxiv.org/abs/1611.01260
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1903.11816
http://arxiv.org/abs/1805.05551
https://github.com/zalandoresearch/fashion-mnist
http://arxiv.org/abs/1611.01578

	MS-NET: modular selective network
	Abstract
	1 Introduction
	2 Outline
	3 Related work
	4 Proposed network architecture
	5 Round robin based data-set partition with sliding window
	6 Training phase
	7 Inference phase
	8 Experiments
	8.1 Datasets
	8.2 Experiment settings

	9 Result discussion
	9.1 Performance on CIFAR-10
	9.2 Performance on CIFAR-100
	9.3 Performance on F-MNIST

	10 Optimal value for  , top-n evaluation and
	11 Training expert networks without knowledge distillation
	12 Comparison to state-of-the-art results
	13 Conclusion
	References

