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Abstract

Temporally locating and classifying action segments in

long untrimmed videos is of particular interest to many ap-

plications like surveillance and robotics. While traditional

approaches follow a two-step pipeline, by generating frame-

wise probabilities and then feeding them to high-level tem-

poral models, recent approaches use temporal convolutions

to directly classify the video frames. In this paper, we in-

troduce a multi-stage architecture for the temporal action

segmentation task. Each stage features a set of dilated tem-

poral convolutions to generate an initial prediction that is

refined by the next one. This architecture is trained using a

combination of a classification loss and a proposed smooth-

ing loss that penalizes over-segmentation errors. Extensive

evaluation shows the effectiveness of the proposed model in

capturing long-range dependencies and recognizing action

segments. Our model achieves state-of-the-art results on

three challenging datasets: 50Salads, Georgia Tech Ego-

centric Activities (GTEA), and the Breakfast dataset.

1. Introduction

Analyzing activities in videos is of significant impor-

tance for many applications ranging from video indexing to

surveillance. While methods for classifying short trimmed

videos have been very successful [3, 9], detecting and tem-

porally locating action segments in long untrimmed videos

is still challenging.

Earlier approaches for action segmentation can be

grouped into two categories: sliding window ap-

proaches [22, 11, 19], that use temporal windows of differ-

ent scales to detect action segments, and hybrid approaches

that apply a coarse temporal modeling using Markov mod-

els on top of frame-wise classifiers [13, 16, 21]. While these

approaches achieve good results, they are very slow as they

require solving a maximization problem over very long se-

quences.

Motivated by the advances in speech synthesis, recent
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Figure 1. Overview of the multi-stage temporal convolutional net-

work. Each stage generates an initial prediction that is refined by

the next stage. At each stage, several dilated 1D convolutions are

applied on the activations of the previous layer. A loss layer is

added after each stage.

approaches rely on temporal convolutions to capture long

range dependencies between the video frames [15, 17, 5]. In

these models, a series of temporal convolutions and pooling

layers are adapted in an encoder-decoder architecture for

the temporal action segmentation. Despite the success of

such temporal models, these approaches operate on a very

low temporal resolution of a few frames per second.

In this paper, we propose a new model that also uses

temporal convolutions which we call Multi-Stage Temporal

Convolutional Network (MS-TCN). In contrast to previous

approaches, the proposed model operates on the full tempo-

ral resolution of the videos and thus achieves better results.

Our model consists of multiple stages where each stage out-
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puts an initial prediction that is refined by the next one. In

each stage, we apply a series of dilated 1D convolutions,

which enables the model to have a large temporal recep-

tive field with less parameters. Figure 1 shows an overview

of the proposed multi-stage model. While this architec-

ture already performs well, we further employ a smooth-

ing loss during training which penalizes over-segmentation

errors in the predictions. Extensive evaluation on three

datasets shows the effectiveness of our model in captur-

ing long range dependencies between action classes and

producing high quality predictions. Our contribution is

thus two folded: First, we propose a multi-stage tempo-

ral convolutional architecture for the action segmentation

task that operates on the full temporal resolution. Second,

we introduce a smoothing loss to enhance the quality of

the predictions. Our approach achieves state-of-the-art re-

sults on three challenging benchmarks for action segmen-

tation: 50Salads [25], Georgia Tech Egocentric Activities

(GTEA) [8], and the Breakfast dataset [12]. 1

2. Related Work

Detecting actions and temporally segmenting long

untrimmed videos has been studied by many researchers.

While traditional approaches use a sliding window ap-

proach with non-maximum suppression [22, 11], Fathi and

Rehg [7] model actions based on the change in the state of

objects and materials. In [6], actions are represented based

on the interactions between hands and objects. These repre-

sentations are used to learn sets of temporally-consistent ac-

tions. Bhattacharya et al. [1] use a vector time series repre-

sentation of videos to model the temporal dynamics of com-

plex actions using methods from linear dynamical systems

theory. The representation is based on the output of pre-

trained concept detectors applied on overlapping temporal

windows. Cheng et al. [4] represent videos as a sequence

of visual words, and model the temporal dependency by

employing a Bayesian non-parametric model of discrete se-

quences to jointly classify and segment video sequences.

Other approaches employ high level temporal modeling

over frame-wise classifiers. Kuehne et al. [13] represent the

frames of a video using Fisher vectors of improved dense

trajectories, and then each action is modeled with a hid-

den Markov model (HMM). These HMMs are combined

with a context-free grammar for recognition to determine

the most probable sequence of actions. A hidden Markov

model is also used in [26] to model both transitions be-

tween states and their durations. Vo and Bobick [28] use

a Bayes network to segment activities. They represent com-

positions of actions using a stochastic context-free grammar

with AND-OR operations. [20] propose a model for tempo-

ral action detection that consists of three components: an

1The source code for our model is publicly available at https://

github.com/yabufarha/ms-tcn.

action model that maps features extracted from the video

frames into action probabilities, a language model that de-

scribes the probability of actions at sequence level, and fi-

nally a length model that models the length of different

action segments. To get the video segmentation, they use

dynamic programming to find the solution that maximizes

the joint probability of the three models. Singh et al. [23]

use a two-stream network to learn representations of short

video chunks. These representations are then passed to a bi-

directional LSTM to capture dependencies between differ-

ent chunks. However, their approach is very slow due to the

sequential prediction. In [24], a three-stream architecture

that operates on spatial, temporal and egocentric streams is

introduced to learn egocentric-specific features. These fea-

tures are then classified using a multi-class SVM.

Inspired by the success of temporal convolution in

speech synthesis [27], researchers have tried to use simi-

lar ideas for the temporal action segmentation task. Lea et

al. [15] propose a temporal convolutional network for ac-

tion segmentation and detection. Their approach follows an

encoder-decoder architecture with a temporal convolution

and pooling in the encoder, and upsampling followed by de-

convolution in the decoder. While using temporal pooling

enables the model to capture long-range dependencies, it

might result in a loss of fine-grained information that is nec-

essary for fine-grained recognition. Lei and Todorovic [17]

build on top of [15] and use deformable convolutions in-

stead of the normal convolution and add a residual stream

to the encoder-decoder model. Both approaches in [15, 17]

operate on downsampled videos with a temporal resolution

of 1-3 frames per second. In contrast to these approaches,

we operate on the full temporal resolution and use dilated

convolutions to capture long-range dependencies.

There is a huge line of research that addresses the action

segmentation task in a weakly supervised setup [2, 10, 14,

21, 5]. Kuehne et al. [14] train a model for action segmen-

tation from video transcripts. In their approach, an HMM

is learned for each action and a Gaussian mixture model

(GMM) is used to model observations. However, since

frame-wise classifiers do not capture enough context to de-

tect action classes, Richard et al. [21] use a GRU instead

of the GMM that is used in [14], and they further divide

each action into multiple sub-actions to better detect com-

plex actions. Both of these models are trained in an itera-

tive procedure starting from a linear alignment based on the

video transcript. Similarly, Ding and Xu [5] train a tem-

poral convolutional feature pyramid network in an iterative

manner starting from a linear alignment. Instead of using

hard labels, they introduce a soft labeling mechanism at the

boundaries, which results in a better convergence. In con-

trast to these approaches, we address the temporal action

segmentation task in a fully supervised setup and the weakly

supervised case is beyond the scope of this paper.
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3. Temporal Action Segmentation

We introduce a multi-stage temporal convolutional net-

work for the temporal action segmentation task. Given the

frames of a video x1:T = (x1, . . . , xT ), our goal is to infer

the class label for each frame c1:T = (c1, . . . , cT ), where

T is the video length. First, we describe the single-stage

approach in Section 3.1, then we discuss the multi-stage

model in Section 3.2. Finally, we describe the proposed

loss function in Section 3.3.

3.1. Single­Stage TCN

Our single stage model consists of only temporal con-

volutional layers. We do not use pooling layers, which

reduce the temporal resolution, or fully connected layers,

which force the model to operate on inputs of fixed size

and massively increase the number of parameters. We call

this model a single-stage temporal convolutional network

(SS-TCN). The first layer of a single-stage TCN is a 1 × 1
convolutional layer, that adjusts the dimension of the in-

put features to match the number of feature maps in the

network. Then, this layer is followed by several layers of

dilated 1D convolution. Inspired by the wavenet [27] ar-

chitecture, we use a dilation factor that is doubled at each

layer, i.e. 1, 2, 4, ...., 512. All these layers have the same

number of convolutional filters. However, instead of the

causal convolution that is used in wavenet, we use acausal

convolutions with kernel size 3. Each layer applies a dilated

convolution with ReLU activation to the output of the previ-

ous layer. We further use residual connections to facilitate

gradients flow. The set of operations at each layer can be

formally described as follows

Ĥl = ReLU(W1 ∗Hl−1 + b1), (1)

Hl = Hl−1 +W2 ∗ Ĥl + b2, (2)

where Hl is the output of layer l, ∗ denotes the convolu-

tion operator, W1 ∈ R3×D×D are the weights of the dilated

convolution filters with kernel size 3 and D is the number of

convolutional filters, W2 ∈ R1×D×D are the weights of a

1× 1 convolution, and b1, b2 ∈ RD are bias vectors. These

operations are illustrated in Figure 2. Using dilated convo-

lution increases the receptive field without the need to in-

crease the number of parameters by increasing the number

of layers or the kernel size. Since the receptive field grows

exponentially with the number of layers, we can achieve

a very large receptive field with a few layers, which helps

in preventing the model from over-fitting the training data.

The receptive field at each layer is determined using this

formula

ReceptiveF ield(l) = 2l+1 − 1, (3)

where l ∈ [1, L] is the layer number. Note that this formula

is only valid for a kernel of size 3. To get the probabilities

Dilated Conv

ReLU

1 x 1

+

Figure 2. Overview of the dilated residual layer.

for the output class, we apply a 1 × 1 convolution over the

output of the last dilated convolution layer followed by a

softmax activation, i.e.

Yt = Softmax(WhL,t + b), (4)

where Yt contains the class probabilities at time t, hL,t is

the output of the last dilated convolution layer at time t,

W ∈ RC×D and b ∈ RC are the weights and bias for the

1 × 1 convolution layer, where C is the number of classes

and D is the number of convolutional filters.

3.2. Multi­Stage TCN

Stacking several predictors sequentially has shown sig-

nificant improvements in many tasks like human pose es-

timation [29, 18]. The idea of these stacked or multi-stage

architectures is composing several models sequentially such

that each model operates directly on the output of the previ-

ous one. The effect of such composition is an incremental

refinement of the predictions from the previous stages.

Motivated by the success of such architectures, we in-

troduce a multi-stage temporal convolutional network for

the temporal action segmentation task. In this multi-stage

model, each stage takes an initial prediction from the pre-

vious stage and refines it. The input of the first stage is the

frame-wise features of the video as follows

Y 0 = x1:T , (5)

Y s = F(Y s−1), (6)

where Y s is the output at stage s and F is the single-stage

TCN discussed in Section 3.1. Using such a multi-stage

architecture helps in providing more context to predict the

class label at each frame. Furthermore, since the output of

each stage is an initial prediction, the network is able to cap-

ture dependencies between action classes and learn plau-

sible action sequences, which helps in reducing the over-

segmentation errors.
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Note that the input to the next stage is just the frame-wise

probabilities without any additional features. We will show

in the experiments how adding features to the input of next

stages affects the quality of the predictions.

3.3. Loss Function

As a loss function, we use a combination of a classifica-

tion loss and a smoothing loss. For the classification loss,

we use a cross entropy loss

Lcls =
1

T

∑

t

−log(yt,c), (7)

where yt,c is the the predicted probability for the ground

truth label at time t.

While the cross entropy loss already performs well, we

found that the predictions for some of the videos contain a

few over-segmentation errors. To further improve the qual-

ity of the predictions, we use an additional smoothing loss

to reduce such over-segmentation errors. For this loss, we

use a truncated mean squared error over the frame-wise log-

probabilities

LT−MSE =
1

TC

∑

t,c

∆̃2
t,c, (8)

∆̃t,c =

{

∆t,c : ∆t,c ≤ τ

τ : otherwise
, (9)

∆t,c = |log yt,c − log yt−1,c| , (10)

where T is the video length, C is the number of classes, and

yt,c is the probability of class c at time t.

Note that the gradients are only computed with respect

to yt,c, whereas yt−1,c is not considered as a function of the

model’s parameters. This loss is similar to the Kullback-

Leibler (KL) divergence loss where

LKL =
1

T

∑

t,c

yt−1,c(log yt−1,c − log yt,c). (11)

However, we found that the truncated mean squared error

(LT−MSE) (8) reduces the over-segmentation errors more.

We will compare the KL loss and the proposed loss in the

experiments.

The final loss function for a single stage is a combination

of the above mentioned losses

Ls = Lcls + λLT−MSE , (12)

where λ is a model hyper-parameter to determine the contri-

bution of the different losses. Finally to train the complete

model, we minimize the sum of the losses over all stages

L =
∑

s

Ls. (13)

3.4. Implementation Details

We use a multi-stage architecture with four stages, each

stage contains ten dilated convolution layers, where the di-

lation factor is doubled at each layer and dropout is used

after each layer. We set the number of filters to 64 in all

the layers of the model and the filter size is 3. For the loss

function, we set τ = 4 and λ = 0.15. In all experiments,

we use Adam optimizer with a learning rate of 0.0005.

4. Experiments

Datasets. We evaluate the proposed model on three chal-

lenging datasets: 50Salads [25], Georgia Tech Egocentric

Activities (GTEA) [8], and the Breakfast dataset [12].

The 50Salads dataset contains 50 videos with 17 action

classes. On average, each video contains 20 action instances

and is 6.4 minutes long. As the name of the dataset indi-

cates, the videos depict salad preparation activities. These

activities were performed by 25 actors where each actor pre-

pared two different salads. For evaluation, we use five-fold

cross-validation and report the average as in [25].

The GTEA dataset contains 28 videos corresponding to

7 different activities, like preparing coffee or cheese sand-

wich, performed by 4 subjects. All the videos were recorded

by a camera that is mounted on the actor’s head. The frames

of the videos are annotated with 11 action classes includ-

ing background. On average, each video has 20 action in-

stances. We use cross-validation for evaluation by leaving

one subject out.

The Breakfast dataset is the largest among the three

datasets with 1, 712 videos. The videos were recorded in

18 different kitchens showing breakfast preparation related

activities. Overall, there are 48 different actions where each

video contains 6 action instances on average. For evalua-

tion, we use the standard 4 splits as proposed in [12] and

report the average.

For all datasets, we extract I3D [3] features for the video

frames and use these features as input to our model. For

GTEA and Breakfast datasets we use the videos temporal

resolution at 15 fps, while for 50Salads we downsampled

the features from 30 fps to 15 fps to be consistent with the

other datasets.

Evaluation Metrics. For evaluation, we report the frame-

wise accuracy (Acc), segmental edit distance and the seg-

mental F1 score at overlapping thresholds 10%, 25%
and 50%, denoted by F1@{10, 25, 50}. The overlapping

threshold is determined based on the intersection over union

(IoU) ratio. While the frame-wise accuracy is the most

commonly used metric for action segmentation, long action

classes have a higher impact than short action classes on

this metric and over-segmentation errors have a very low
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F1@{10,25,50} Edit Acc

SS-TCN 27.0 25.3 21.5 20.5 78.2

MS-TCN (2 stages) 55.5 52.9 47.3 47.9 79.8

MS-TCN (3 stages) 71.5 68.6 61.1 64.0 78.6

MS-TCN (4 stages) 76.3 74.0 64.5 67.9 80.7

MS-TCN (5 stages) 76.4 73.4 63.6 69.2 79.5

Table 1. Effect of the number of stages on the 50Salads dataset.

Figure 3. Qualitative result from the 50Salads dataset for compar-

ing different number of stages.

impact. For that reason, we use the segmental F1 score as a

measure of the quality of the prediction as proposed by [15].

4.1. Effect of the Number of Stages

We start our evaluation by showing the effect of using

a multi-stage architecture. Table 1 shows the results of a

single-stage model compared to multi-stage models with

different number of stages. As shown in the table, all of

these models achieve a comparable frame-wise accuracy.

Nevertheless, the quality of the predictions is very differ-

ent. Looking at the segmental edit distance and F1 scores

of these models, we can see that the single-stage model pro-

duces a lot of over-segmentation errors, as indicated by the

low F1 score. On the other hand, using a multi-stage archi-

tecture reduces these errors and increases the F1 score. This

effect is clearly visible when we use two or three stages,

which gives a huge boost to the accuracy. Adding the fourth

stage still improves the results but not as significant as the

previous stages. However, by adding the fifth stage, we can

see that the performance starts to degrade. This might be

an over-fitting problem as a result of increasing the num-

ber of parameters. The effect of the multi-stage architecture

can also be seen in the qualitative results shown in Figure 3.

Adding more stages results in an incremental refinement of

the predictions. For the rest of the experiments we use a

multi-stage TCN with four stages.

4.2. Multi­Stage TCN vs. Deeper Single­Stage TCN

In the previous section, we have seen that our multi-stage

architecture is better than a single-stage one. However, that

comparison does not show whether the improvement is be-

cause of the multi-stage architecture or due to the increase

in the number of parameters when adding more stages. For

a fair comparison, we train a single-stage model that has the

same number of parameters as the multi-stage one. As each

F1@{10,25,50} Edit Acc

SS-TCN (48 layers) 49.0 46.4 40.2 40.7 78.0

MS-TCN 76.3 74.0 64.5 67.9 80.7

Table 2. Comparing a multi-stage TCN with a deep single-stage

TCN on the 50Salads dataset.

F1@{10,25,50} Edit Acc

Lcls 71.3 69.7 60.7 64.2 79.9

Lcls + λLKL 71.9 69.3 60.1 64.6 80.2

Lcls + λLT−MSE 76.3 74.0 64.5 67.9 80.7

Table 3. Comparing different loss functions on the 50Salads

dataset.

Figure 4. Qualitative result from the 50Salads dataset for compar-

ing different loss functions.

stage in our MS-TCN contains 12 layers (ten dilated convo-

lutional layers, one 1× 1 convolutional layer and a softmax

layer), we train a single-stage TCN with 48 layers, which

is the number of layers in a MS-TCN with four stages. For

the dilated convolutions, we use similar dilation factors as

in our MS-TCN. I.e. we start with a dilation factor of 1 and

double it at every layer up to a factor of 512, and then we

start again from 1. As shown in Table 2, our multi-stage

architecture outperforms its single-stage counterpart with a

large margin of up to 27%. This highlights the impact of

the proposed architecture in improving the quality of the

predictions.

4.3. Comparing Different Loss Functions

As a loss function, we use a combination of a cross-

entropy loss, which is common practice for classification

tasks, and a truncated mean squared loss over the frame-

wise log-probabilities to ensure smooth predictions. While

the smoothing loss slightly improves the frame-wise accu-

racy compared to the cross entropy loss alone, we found

that this loss produces much less over-segmentation errors.

Table 3 and Figure 4 show a comparison of these losses.

As shown in Table 3, the proposed loss achieves better F1

and edit scores with an absolute improvement of 5%. This

indicates that our loss produces less over-segmentation er-

rors compared to cross entropy since it forces consecutive

frames to have similar class probabilities, which results in a

smoother output.

Penalizing the difference in log-probabilities is similar to

the Kullback-Leibler (KL) divergence loss, which measures

the difference between two probability distributions. How-

ever, the results show that the proposed loss produces better

results than the KL loss as shown in Table 3 and Figure 4.
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Figure 5. Loss surface for the Kullback-Leibler (KL) diver-

gence loss (LKL) and the proposed truncated mean squared loss

(LT−MSE) for the case of two classes. yt,c is the predicted proba-

bility for class c and yt−1,c is the target probability corresponding

to that class.

The reason behind this is the fact that the KL divergence

loss does not penalize cases where the difference between

the target probability and the predicted probability is very

small. Whereas the proposed loss penalizes small differ-

ences as well. Note that, in contrast to the KL loss, the

proposed loss is symmetric. Figure 5 shows the surface for

both the KL loss and the proposed truncated mean squared

loss for the case of two classes. We also tried a symmet-

ric version of the KL loss but it performed worse than the

proposed loss.

4.4. Impact of λ and τ

The effect of the proposed smoothing loss is controlled

by two hyper-parameters: λ and τ . In this section, we study

the impact of these parameters and see how they affect the

performance of the proposed model.

Impact of λ: In all experiments, we set λ = 0.15. To an-

alyze the effect of this parameter, we train different models

with different values of λ. As shown in Table 4, the impact

of λ is very small on the performance. Reducing λ to 0.05
still improves the performance but not as good as the de-

fault value of λ = 0.15. Increasing its value to λ = 0.25
also causes a degradation in performance. This drop in per-

formance is due to the fact that the smoothing loss penalizes

heavily changes in frame-wise labels, which affects the de-

tected boundaries between action segments.

Impact of τ : This hyper-parameter defines the threshold to

truncate the smoothing loss. Our default value is τ = 4.

While reducing the value to τ = 3 still gives an improve-

ment over the cross entropy baseline, setting τ = 5 results

in a huge drop in performance. This is mainly because when

τ is too high, the smoothing loss penalizes cases where the

model is very confident that the consecutive frames belong

to two different classes, which indeed reduces the capabil-

ity of the model in detecting the true boundaries between

action segments.

Impact of λ F1@{10,25,50} Edit Acc

MS-TCN (λ = 0.05, τ = 4) 74.1 71.7 62.4 66.6 80.0

MS-TCN (λ = 0.15, τ = 4) 76.3 74.0 64.5 67.9 80.7

MS-TCN (λ = 0.25, τ = 4) 74.7 72.4 63.7 68.1 78.9

Impact of τ F1@{10,25,50} Edit Acc

MS-TCN (λ = 0.15, τ = 3) 74.2 72.1 62.2 67.1 79.4

MS-TCN (λ = 0.15, τ = 4) 76.3 74.0 64.5 67.9 80.7

MS-TCN (λ = 0.15, τ = 5) 66.6 63.7 54.7 60.0 74.0

Table 4. Impact of λ and τ on the 50Salads dataset.

F1@{10,25,50} Edit Acc

Probabilities and features 56.2 53.7 45.8 47.6 76.8

Probabilities only 76.3 74.0 64.5 67.9 80.7

Table 5. Effect of passing features to higher stages on the 50Salads

dataset.

Figure 6. Qualitative results for two videos from the 50Salads

dataset for showing the effect of passing features to higher stages.

4.5. Effect of Passing Features to Higher Stages

In the proposed multi-stage TCN, the input to higher

stages are the frame-wise probabilities only. However, in

the multi-stage architectures that are used for human pose

estimation, additional features are usually concatenated to

the output heat-maps of the previous stage. In this exper-

iment, we therefore analyze the effect of combining addi-

tional features to the input probabilities of higher stages. To

this end, we trained two multi-stage TCNs: one with only

the predicted frame-wise probabilities as input to the next

stage, and for the second model, we concatenated the out-

put of the last dilated convolutional layer in each stage to

the input probabilities of the next stage. As shown in Ta-

ble 5, concatenating the features to the input probabilities

results in a huge drop of the F1 score and the segmental

edit distance (around 20%). We argue that the reason be-

hind this degradation in performance is that a lot of action

classes share similar appearance and motion. By adding the

features of such classes at each stage, the model is confused

and produces small separated falsely detected action seg-

ments that correspond to an over-segmentation effect. Pass-

ing only the probabilities forces the model to focus on the

context of neighboring labels, which are explicitly repre-

sented by the probabilities. This effect can also be seen in

the qualitative results shown in Figure 6.

4.6. Impact of Temporal Resolution

Previous temporal models operate on a low temporal res-

olution of 1-3 frames per second [15, 17, 5]. On the con-
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(a)

(b)

(c)

Figure 7. Qualitative results for the temporal action segmentation task on (a) 50Salads (b) GTEA, and (c) Breakfast dataset.

F1@{10,25,50} Edit Acc

MS-TCN (1 fps) 77.8 74.9 64.0 70.7 78.6

MS-TCN (15 fps) 76.3 74.0 64.5 67.9 80.7

Table 6. Impact of temporal resolution on the 50Salads dataset.

trary, our approach is able to handle higher resolution of

15 fps. In this experiment, we evaluate our model in a low

temporal resolution of 1 fps. As shown in Table 6, the pro-

posed model is able to handle both low and high temporal

resolutions. While reducing the temporal resolution results

in a better edit distance and segmental F1 score, using high

resolution gives better frame-wise accuracy. Operating on a

low temporal resolution makes the model less prune to the

over-segmentation problem, which is reflected in the better

edit and F1 scores. Nevertheless, this comes with the cost of

losing the precise location of the boundaries between action

segments, or even missing small action segments.

F1@{10,25,50} Edit Acc

L = 6 53.2 48.3 39.0 46.2 63.7

L = 8 66.4 63.7 52.8 60.1 73.9

L = 10 76.3 74.0 64.5 67.9 80.7

L = 12 77.8 75.2 66.9 69.6 80.5

Table 7. Effect of the number of layers (L) in each stage on the

50Salads dataset.

4.7. Impact of the Number of Layers

In our experiments, we fix the number of layers (L) in

each stage to 10 Layers. Table 7 shows the impact of this

parameter on the 50Salads dataset. Increasing L form 6 to

10 significantly improves the performance. This is mainly

due to the increase in the receptive field. Using more than

10 layers (L = 12) does not improve the frame-wise accu-

racy but slightly increases the F1 scores.

To study the impact of the large receptive field on short

videos, we evaluate our model on three groups of videos
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Duration F1@{10,25,50} Edit Acc

< 1 min 89.6 87.9 77.0 82.5 76.6

1− 1.5 min 85.9 84.3 71.9 80.7 76.4

≥ 1.5 min 81.2 76.5 58.4 71.8 75.9

Table 8. Evaluation of three groups of videos based on their dura-

tions on the GTEA dataset.

based on their durations. For this evaluation, we use the

GTEA dataset since it contains shorter videos compared to

the others. As shown in Table 8, our model performs well

on both short and long videos. Nevertheless, the perfor-

mance is slightly worse on longer videos due to the limited

receptive field.

4.8. Impact of Fine­tuning the Features

In our experiments, we use the I3D features without fine-

tuning. Table 9 shows the effect of fine-tuning on the GTEA

dataset. Our multi-stage architecture significantly outper-

forms the single stage architecture - with and without fine-

tuning. Fine-tuning improves the results, but the effect of

fine-tuning for action segmentation is lower than for action

recognition. This is expected since the temporal model is by

far more important for segmentation than for recognition.

F1@{10,25,50} Edit Acc

w/o FT SS-TCN 62.8 60.0 48.1 55.0 73.3

MS-TCN (4 stages) 85.8 83.4 69.8 79.0 76.3

with FT SS-TCN 69.5 64.9 55.8 61.1 75.3

MS-TCN (4 stages) 87.5 85.4 74.6 81.4 79.2

Table 9. Effect of fine-tuning on the GTEA dataset.

4.9. Comparison with the State­of­the­Art

In this section, we compare the proposed model to

the state-of-the-art methods on three datasets: 50Salads,

Georgia Tech Egocentric Activities (GTEA), and Breakfast

datasets. The results are presented in Table 10. As shown in

the table, our model outperforms the state-of-the-art meth-

ods on the three datasets and with respect to three evaluation

metrics: F1 score, segmental edit distance, and frame-wise

accuracy (Acc) with a large margin (up to 12.6% for the

frame-wise accuracy on the 50Salads dataset). Qualitative

results on the three datasets are shown in Figure 7. Note that

all the reported results are obtained using the I3D features.

To analyze the effect of using a different type of features,

we evaluated our model on the Breakfast dataset using the

improved dense trajectories (IDT) features, which are the

standard used features for the Breakfast dataset. As shown

in Table 10, the impact of the features is very small. While

the frame-wise accuracy and edit distance are slightly bet-

ter using the I3D features, the model achieves a better F1

score when using the IDT features compared to I3D. This is

mainly because I3D features encode both motion and ap-

pearance, whereas the IDT features encode only motion.

For datasets like Breakfast, using appearance information

does not help the performance since the appearance does

50Salads F1@{10,25,50} Edit Acc

IDT+LM [20] 44.4 38.9 27.8 45.8 48.7

Bi-LSTM [23] 62.6 58.3 47.0 55.6 55.7

ED-TCN [15] 68.0 63.9 52.6 59.8 64.7

TDRN [17] 72.9 68.5 57.2 66.0 68.1

MS-TCN 76.3 74.0 64.5 67.9 80.7

GTEA F1@{10,25,50} Edit Acc

Bi-LSTM [23] 66.5 59.0 43.6 - 55.5

ED-TCN [15] 72.2 69.3 56.0 - 64.0

TDRN [17] 79.2 74.4 62.7 74.1 70.1

MS-TCN 85.8 83.4 69.8 79.0 76.3

MS-TCN (FT) 87.5 85.4 74.6 81.4 79.2

Breakfast F1@{10,25,50} Edit Acc

ED-TCN [15]* - - - - 43.3

HTK [14] - - - - 50.7

TCFPN [5] - - - - 52.0

HTK(64) [13] - - - - 56.3

GRU [21]* - - - - 60.6

MS-TCN (IDT) 58.2 52.9 40.8 61.4 65.1

MS-TCN (I3D) 52.6 48.1 37.9 61.7 66.3

Table 10. Comparison with the state-of-the-art on 50Salads,

GTEA, and the Breakfast dataset. (* obtained from [5]).

not give a strong evidence about the action that is carried

out. This can be seen in the qualitative results shown in

Figure 7. The video frames share a very similar appear-

ance. Additional appearance features therefore do not help

in recognizing the activity.

As our model does not use any recurrent layers, it is very

fast both during training and testing. Training our four-

stages MS-TCN for 50 epochs on the 50Salads dataset is

four times faster than training a single cell of Bi-LSTM

with a 64-dimensional hidden state on a single GTX 1080 Ti

GPU. This is due to the sequential prediction of the LSTM,

where the activations at any time step depend on the activa-

tions from the previous steps. For the MS-TCN, activations

at all time steps are computed in parallel.

5. Conclusion

We presented a multi-stage architecture for the tempo-

ral action segmentation task. Instead of the commonly used

temporal pooling, we used dilated convolutions to increase

the temporal receptive field. The experimental evaluation

demonstrated the capability of our architecture in capturing

temporal dependencies between action classes and reducing

over-segmentation errors. We further introduced a smooth-

ing loss that gives an additional improvement of the pre-

dictions quality. Our model outperforms the state-of-the-art

methods on three challenging datasets with a large margin.

Since our model is fully convolutional, it is very efficient

and fast both during training and testing.
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[2] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev,

Jean Ponce, Cordelia Schmid, and Josef Sivic. Weakly su-

pervised action labeling in videos under ordering constraints.

In European Conference on Computer Vision (ECCV), pages

628–643. Springer, 2014.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? A new model and the kinetics dataset. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 4724–4733, 2017.

[4] Yu Cheng, Quanfu Fan, Sharath Pankanti, and Alok Choud-

hary. Temporal sequence modeling for video event detection.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2227–2234, 2014.

[5] Li Ding and Chenliang Xu. Weakly-supervised action seg-

mentation with iterative soft boundary assignment. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 6508–6516, 2018.

[6] Alireza Fathi, Ali Farhadi, and James M Rehg. Understand-

ing egocentric activities. In IEEE International Conference

on Computer Vision (ICCV), pages 407–414, 2011.

[7] Alireza Fathi and James M Rehg. Modeling actions through

state changes. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2579–2586, 2013.

[8] Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning

to recognize objects in egocentric activities. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 3281–3288, 2011.

[9] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes.

Spatiotemporal residual networks for video action recogni-

tion. In Advances in Neural Information Processing Systems

(NIPS), pages 3468–3476, 2016.

[10] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Con-

nectionist temporal modeling for weakly supervised action

labeling. In European Conference on Computer Vision

(ECCV), pages 137–153. Springer, 2016.

[11] Svebor Karaman, Lorenzo Seidenari, and Alberto

Del Bimbo. Fast saliency based pooling of fisher en-

coded dense trajectories. In European Conference on

Computer Vision (ECCV), THUMOS Workshop, 2014.

[12] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language

of actions: Recovering the syntax and semantics of goal-

directed human activities. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 780–

787, 2014.

[13] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-

end generative framework for video segmentation and recog-

nition. In IEEE Winter Conference on Applications of Com-

puter Vision (WACV), 2016.

[14] Hilde Kuehne, Alexander Richard, and Juergen Gall. Weakly

supervised learning of actions from transcripts. Computer

Vision and Image Understanding, 163:78–89, 2017.

[15] Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and

Gregory D. Hager. Temporal convolutional networks for ac-

tion segmentation and detection. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[16] Colin Lea, Austin Reiter, René Vidal, and Gregory D Hager.
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