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METHODOLOGY

MS2DeepScore: a novel deep learning 
similarity measure to compare tandem mass 
spectra
Florian Huber1* , Sven van der Burg1 , Justin J. J. van der Hooft2  and Lars Ridder1  

Abstract 

Mass spectrometry data is one of the key sources of information in many workflows in medicine and across the 

life sciences. Mass fragmentation spectra are generally considered to be characteristic signatures of the chemical 

compound they originate from, yet the chemical structure itself usually cannot be easily deduced from the spectrum. 

Often, spectral similarity measures are used as a proxy for structural similarity but this approach is strongly limited by a 

generally poor correlation between both metrics. Here, we propose MS2DeepScore: a novel Siamese neural network 

to predict the structural similarity between two chemical structures solely based on their MS/MS fragmentation 

spectra. Using a cleaned dataset of > 100,000 mass spectra of about 15,000 unique known compounds, we trained 

MS2DeepScore to predict structural similarity scores for spectrum pairs with high accuracy. In addition, sampling 

different model varieties through Monte-Carlo Dropout is used to further improve the predictions and assess the 

model’s prediction uncertainty. On 3600 spectra of 500 unseen compounds, MS2DeepScore is able to identify highly-

reliable structural matches and to predict Tanimoto scores for pairs of molecules based on their fragment spectra with 

a root mean squared error of about 0.15. Furthermore, the prediction uncertainty estimate can be used to select a 

subset of predictions with a root mean squared error of about 0.1. Furthermore, we demonstrate that MS2DeepScore 

outperforms classical spectral similarity measures in retrieving chemically related compound pairs from large mass 

spectral datasets, thereby illustrating its potential for spectral library matching. Finally, MS2DeepScore can also be 

used to create chemically meaningful mass spectral embeddings that could be used to cluster large numbers of spec-

tra. Added to the recently introduced unsupervised Spec2Vec metric, we believe that machine learning-supported 

mass spectral similarity measures have great potential for a range of metabolomics data processing pipelines.

Keywords: Mass spectrometry, Metabolomics, Spectral similarity measure, Supervised machine learning, Deep 

learning
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Introduction
In the rapidly growing field of metabolomics, mass spec-

trometry fragmentation approaches are a key source of 

information to chemically characterize large numbers 

of detected molecules. Mass fragmentation (MS/MS or 

MS2) spectra are created through the fragmentation of 

molecules in the mass spectrometer and consist of peaks 

that reflect the mass over charge (m/z) position of the 

resulting mass fragments. �e peak intensities are reflec-

tive of the likelihood various fragmentation paths occur 

for the fragmented molecule. One of the core challenges 

in metabolomics is to link MS/MS spectra to chemical 

structures of the fragmented metabolites. Over the last 

years, many computational tools have been developed 

to help with annotating MS/MS data [1]. In many work-

flows for extracting chemical information from MS/MS 
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spectra, automated quantitative comparisons between 

pairs of spectra play a crucial role. Such comparisons 

are used to match unknown spectra to library spectra, 

i.e., spectra with known or reliably annotated structures 

[2], or to explore chemical relationships by means of net-

works (or graphs) built based on mass spectral similarity 

scores [3, 4].

One key limitation in many approaches using mass 

spectral similarities is that often the main interest is not 

the degree of similarity between two spectra, but the 

structural similarity between the fragmented chemi-

cal compounds [4–6]. �ere is no single absolute meas-

ure to determine such chemical structure relatedness. 

In practice, the structural similarity between molecules 

is frequently computed from molecular fingerprints: 

vectors that describe the presence/absence of many 

structural features in the molecule. Structural similarity 

calculations are central to many applications in chemin-

formatics including virtual screening [7, 8]. Molecular 

fingerprints, however, are computed from the chemical 

structure, which usually are only known for a tiny frac-

tion of all mass spectra from complex mixtures [9]. �e 

most established approach to infer molecular finger-

prints without known chemical structure is through 

support vector machines in combination with the com-

putation of fragmentation trees [10], but this is compu-

tationally expensive, in particular for larger compounds. 

Recently, first attempts have been made to also use deep 

neural networks for directly predicting molecular finger-

prints from mass spectra [11, 12]. One of the main obsta-

cles in predicting molecular fingerprints is that they are 

typically large, very sparse, binary vectors. With limited 

training data it becomes difficult to correctly predict less 

common structural features (i.e., the bits). As a conse-

quence, previous deep learning approaches focused on 

predicting only frequently activated bits of the molecu-

lar fingerprints [11]. Despite missing less frequent bits, 

such predicted fingerprints can still be used by match-

ing them with known library fingerprints [11, 12]. With 

current open spectral libraries growing to such sizes that 

machine learning approaches have sufficient data for 

training, validation, and testing; we recognize that there 

is an opportunity for the development of alternative mass 

spectral similarity scores. �is is also in line with a recent 

review article sketching the current and future role of 

deep learning for metabolite annotation [13].

Here, we present MS2DeepScore, a deep learning 

approach that is trained to predict structural similari-

ties (Tanimoto or Dice scores based on molecular fin-

gerprints) directly from pairs of MS/MS spectra without 

first computing molecular fingerprints. �is is similar 

in spirit to the approach by Ji et al. [14] but uses a con-

ceptually simpler Siamese neural network architecture 

[15]. Furthermore, our approach only relies on peak 

m/z positions and intensities without requiring further 

spectrum information, in contrast to approaches such 

as DeepMass for which the mass and chemical formula 

are both necessary input [14]. �e differences in input to 

these models also makes it difficult to directly compare 

these approaches quantitatively. Our proposed approach 

makes it possible to use MS2DeepScore for predicting 

structural similarities between spectra of various ori-

gins and with varying metadata quality. �e model was 

trained using a dataset of 109,734 MS/MS spectra, which 

was built through curating and cleaning spectra obtained 

from GNPS [16] (see “Methods”). In addition to the pre-

diction of a structural similarity, MS2DeepScore can 

also make use of Monte-Carlo dropout [17] to assess the 

model uncertainty.

We demonstrate that MS2DeepScore can predict struc-

tural similarities with high reliability. When comparing 

commonly used molecular fingerprints, we achieve a 

root mean squared error for predicted Tanimoto scores 

of about 0.15 when run without uncertainty restrictions, 

and down to 0.1 with stronger restrictions on model 

uncertainty. MS2DeepScore is very well suited to detect 

compounds of high structural similarity and further-

more can create mass spectral embeddings that can be 

used for additional spectral clustering. We hence expect 

MS2DeepScore to become a key asset in building future 

MS/MS analysis pipelines. Depending on the desired 

application, MS2DeepScores could also be combined 

with other mass spectral metrics to make full use of their 

complementary aspects.

Results
A large set of MS/MS spectra was retrieved from 

GNPS [16] and subsequently curated and cleaned using 

matchms [18] (see “Methods”). �e resulting train-

ing data set contains chemical structure annotations 

for 109,734 spectra, in the form of SMILES [19] and/or 

InChI [20], which allowed us to create molecular finger-

prints to quantify structural similarities of spectral pairs. 

�e dataset contains 15,062 different molecules (disre-

garding stereoisomerism—as represented by InChIKeys 

unique in the first 14 characters).

We randomly took out 500 of the 15,062 InChIKeys to 

form a validation set and again 500 to form a test set (see 

also “Methods”). �e validation set (3597 spectra of 500 

unique InChIKeys) is used to monitor the model train-

ing process and explore the key hyperparameters while 

the test set (3601 spectra of 500 unique InChIKeys) is 

used for a final unbiased evaluation of our model. Draw-

ing pairs of spectra from the training set (102,536 spectra 

of 14,062 unique molecules), we trained a Siamese neural 

network to predict Tanimoto scores as depicted in Fig. 1.
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A key challenge when training a neural network to 

predict Tanimoto scores is that the total set of possible 

spectrum pairs shows a highly unbalanced distribution 

in structural similarities, with most pairs displaying low 

structural similarity. Our procedure for drawing spectral 

pairs compensates for the unbalanced nature of the data, 

by selecting pairs with probabilities that are weighted 

according to their structural similarity, as described in 

detail in the Methods section. We further applied L1, L2 

and dropout regularization, as well as data augmentation 

techniques to ensure the generalization of the model to 

unseen data.

MS2DeepScore predicts Tanimoto scores with high 

accuracy

In real-world applications of the model, it is acceptable 

that there is a small error in estimation of the structural 

similarity between two spectra, while outliers with large 

errors should be avoided. �erefore, the root mean 

squared error (RMSE) was used as an overall evalua-

tion metric, since it penalizes large errors on individual 

samples. In addition, the model should ideally perform 

well across the full range of possible pair similarities, 

which for the here used Tanimoto and Dice scores lies 

between 0 and 1. However, the datasets are highly unbal-

anced in that respect, since most spectrum pairs have low 

Tanimoto scores (Fig. 3A). We hence decided to inspect 

the model accuracy not as a global average since that 

would strongly bias the outcome to the performance on 

low Tanimoto pairs. Instead, we split all possible spec-

tral pairs into 10 equally spaced Tanimoto score bins. 

In Fig.  2A we display the distributions of the predicted 

Tanimoto scores for each bin, which reveals that the indi-

vidual distributions show a high overlap with the cor-

rect Tanimoto scores. As expected, the prediction is not 

perfect. �e distributions show long tails of predictions 

that differ from the true structural similarities. Looking 

at root mean squared errors (RMSE) across all Tanimoto 

score bins, it can be noted that MS2DeepScore gener-

ally performs very well and can predict Tanimoto scores 

between 0.1 and 0.9 with a RMSE between 0.13 and 0.2. 

Accuracy is lower for the highest and lowest Tanimoto 

scores, which may partly be attributed to the regression 

to the mean effect (the training loss makes it unattractive 

to approach the upper and lower score limit). Another 

reason for the false high Tanimoto score predictions can 

arise from spectra that differ too much from the train-

ing data the model has seen (see also the later described 

effect of assessing the model uncertainty). �e highest 

Tanimoto scores show a relatively long tail indicating 

more frequent wrong predictions (Fig.  2A). Predictions 

are also slightly more spread out for Tanimoto scores 

around 0.6–0.8, a range with relatively few occurrences 

and hence less training data in the dataset. Other under-

lying reasons cannot be ruled out at this point, such as 

poorer correlation between fragmentation information 

Fig. 1 Sketch of the Siamese neural network architectures and training strategy behind MS2DeepScore. The Siamese network uses the same “base 

network” twice during training and prediction to convert a binned spectrum into a spectral embedding (200-dimensional vector). The network 

is trained on spectral pairs and the mean squared error between the cosine similarity of the two spectral embeddings and the actual structural 

similarity score (here: Tanimoto between RDKit 2048bit fingerprints). To increase the robustness of the model data augmentation techniques were 

used which includes moderate random changes of peak intensities as well as removal and addition of low intensity peaks
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Fig. 2 A To better account for the unbalanced nature of the total set of Tanimoto scores we here plotted the MS2DeepScore Tanimoto score 

predictions on the test set across different bins of Tanimoto scores (< 0.1, 0.1–0.2 etc. until > 0.9). B Average precision measures across the different 

Tanimoto score bins by RMSE. C The number of spectrum pairs within the test set which fall into each of the 10 Tanimoto score bins, illustrating the 

highly unbalanced nature of the dataset (see also Fig. 3A for the score distribution across the full dataset)

Fig. 3 A Different molecular fingerprints (morgan2, morgan3, RDKit-daylight) and different scoring methods (Tanimoto/Jaccard vs. Dice) lead 

to very different distributions of scores across the full dataset (15,062 unique InChIKeys hence a total of 15,0622 pairs). Tanimoto scores based on 

RDKit-daylight fingerprints tend to give higher scores and thereby result in less unbalanced pair labels. The very pronounced unbalanced nature 

of Tanimoto scores on circular fingerprints (morgan2, morgan3) can partly be circumvented by switching to Dice scores instead. B MS2DeepScore 

models were trained for each different structural similarity score. RMSEs are here calculated for all spectrum pairs within the test set (3601 spectra) 

which fall into one of the 10 possible structural similarity score bins (x-axis labels)
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and actual structural similarity scores. Taken together, 

MS2DeepScore is highly reliable in separating high, mid, 

and low structural similarity pairs (see also Additional 

file 1: Figure S1), but it might be more error prone when 

it comes to smaller nuances.

Accurate prediction of di�erent structural similarity 

measures

Molecular fingerprints come in many different types and 

flavors which typically do not work equally well for all 

compound classes [7, 8, 21], and there is no general con-

sensus on which molecular fingerprint to use (although 

MAP4 was recently said to “rule them all” [21]). 2D fin-

gerprints can be charaterized as belonging to one of 

four classes [7, 22], two of which are represented in the 

present work. �ose were circular fingerprints (we used 

Morgan-2 and Morgan-3, the RDKit [23] pendants of 

ECFP-4 and ECFP-6) as well as topological fingerprints 

(we used Daylight fingerprints in RDKit). All fingerprints 

were computed with 2048 bits. �en there are also dif-

ferent metrics to compute the similarity between two 

molecular fingerprints [24]. Arguably, Tanimoto (= Jac-

card) is the most common way to compare molecular 

fingerprints, other metrics such as Dice scores are occa-

sionally used. To show that our approach generalizes to 

a variety of structural similarity scores, we trained and 

tested the MS2DeepScore model for the three different 

fingerprints (Morgan-2, Morgan-3 and Daylight) as well 

as 2 different similarity measures (Tanimoto and Dice). 

Overall, MS2DeepScore can make accurate predictions 

for all tested structural similarity measures (Fig. 3A). In 

addition, we observed that the precise distributions of 

all occurring structural similarity scores vary consider-

ably when different structural similarity measures are 

used (Fig.  3B). Structural similarity measures by Tani-

moto scores from circular fingerprints (Morgan-2 and 3) 

have a much higher tendency towards low scores when 

compared to Tanimoto scores from RDKit Daylight fin-

gerprints. �is can partly be adjusted by switching from 

Tanimoto to other metrics such as using a Dice score. 

Overall, we found that MS2DeepScore performs slightly 

better when predicting structural similarity scores with 

a less skewed distribution. �is is to be expected since 

such scores display far more instances of moderate to 

high scores in the entire training dataset, for instance 

Tanimoto scores on daylight fingerprints result in 10–100 

times more pairs across scores in the range from 0.2 to 

0.9 when compared to Tanimoto scores on Morgan-3 

fingerprints (Fig.  3A). Due to its less skewed distribu-

tion, we decided to mainly use Tanimoto scores on RDKit 

Daylight fingerprints (2048bits) for evaluating stuctural 

similarity (unless noted otherwise). It is important to 

note, though, that linear correlation coefficients between 

predicted and actual scores were generally high for the 

pairs with the highest structural similarities (see Addi-

tional file 1: Table S1).

Detecting chemically related pairs: comparison to common 

mass spectral similarity measures

Due to the low number of available correctly or reliably 

annotated mass spectra, many analysis pipelines must 

rely on mass spectral similarity measures. A classical 

way to compare MS/MS mass spectra is to quantify the 

fraction of shared peaks as done by using variations of 

cosine-based similarity scores. �ey come in many types 

and flavors [6, 25], but typically rely on multiplying inten-

sities of matching peaks. �ose pairs of matching peaks 

between two spectra are usually computed as so-called 

assignment problems based on set m/z tolerances. One 

particular variant of such scores is the ‘modified cosine 

score’ which also allows matching peaks that were shifted 

by the difference in precursor m/z [26]. �ose meas-

ures tend to work well for very similar spectra, i.e. with 

many identical peaks. We recently introduced Spec2Vec, 

an unsupervised machine learning approach for com-

puting spectrum similarities based on learned relation-

ships between peaks across large training datasets [6]. 

Spec2Vec based similarity scores were observed to cor-

relate more strongly than classical cosine-like scores 

with structural similarities between the underlying com-

pounds. An additional advantage is its fast computa-

tion, which allows to compare spectra against very large 

libraries. While trained on spectral data, Spec2Vec used 

an unsupervised method, meaning that it was trained on 

non-annotated data and did not make use of the struc-

tural information.

With MS2DeepScore, we now make use of the struc-

tural information that we have for a large fraction of the 

training data. Unlike Spec2Vec, which is trained to learn 

relationships between peaks from peak co-occurrences, 

and unlike modified Cosine, which computes the maxi-

mum overlap of matching peaks, MS2DeepScores is spe-

cifically trained to predict structural similarity scores. 

�e ability of those different scores to identify chemical 

relatedness can thus not simply be compared by measur-

ing their ability to predict Tanimoto score. In practice, 

however, all such scores are all used to identify chemi-

cally closely related compounds. Modified Cosine and 

Spec2Vec scores are for instance used to generate molec-

ular networks in GNPS [4, 6]. We therefore tested the 

scores’ ability to detect chemically related compounds 

by counting identified chemically related pairs within 

the test set (3601 spectra). Since “chemically related” 

is a hard to define concept, we simply operated with a 

fixed Tanimoto score threshold of 0.6 above which we 

call two compounds related. We then computed the 
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precision and recall (see “Methods”) for finding struc-

turally related compounds for all spectrum pairs above 

a threshold for the spectral similarity score which could 

be either MS2DeepScore, Spec2Vec, or modified Cosine 

(Fig. 4). �is reveals that MS2DeepScore clearly outper-

forms both classical measures (two forms of the modified 

Cosine) as well as the unsupervised spectral similarity 

measure Spec2Vec, with respect to identifying high Tani-

moto pairs, which can also be seen in the overall distribu-

tion of scores (Additional file  1: Figure S1). �is makes 

MS2DeepScore a very promising approach for searching 

analogues in large datasets.

Combining di�erent mass spectra for the same compound 

decreases Tanimoto score prediction error further

In many applications, such as library matching or ana-

logue searching, datasets will frequently contain multiple 

mass spectra for a given compound. �is is also the case 

for the data retrieved from GNPS (see “Methods”). �e 

test set, for instance, contains 3601 spectra of 500 unique 

compounds (ignoring stereoisomerism). We hence tested 

whether structural similarity score predictions can be 

improved by taking the median of the scores calculated 

for different pairs of spectra corresponding to the same 

compound pairs. �is can indeed be seen on the test set 

(Fig. 5, compare red and dark blue lines).

Fig. 4 We here define a high structural similarity as Tanimoto > 0.6 

and explore how well high structural similarity pairs can be retrieved 

using various spectral similarities. Collecting all spectrum pairs from 

the test set (3601 spectra) with mass spectral similarity > X with X 

increasing from 0 to 1.0, we compute precision and recall for the 

different mass spectral similarity measures (MS2DeepScore, Spec2Vec, 

modified Cosine). The curves illustrate the tradeoff between higher 

recall (towards the right) and higher precision (towards the left). They 

also reveal that MS2DeepScore gives notably better precision/recall 

combination over the entire range, followed by Spec2Vec and only 

then modified Cosine

Fig. 5 Combining MS2DeepScore predictions for spectral pairs corresponding to the same pair of molecules leads to more reliable Tanimoto score 

predictions. A Individual predictions (red dots) show consistently higher RMSEs than the median of predictions for (pairs of spectra corresponding 

to) the same compound pair (“all”). We also computed the interquartile range (IQR) of predictions of the same molecule pairs, which can be 

used to remove high IQR outliers. Retrieval rates after each label indicate the total fraction of scores that fulfilled the given criterion (IQR < x). B 

When compared to Fig. 2 it is apparent that the high Tanimoto score predictions become notably more reliable when removing scores with large 

variations of same-InChIKey predictions (here: keep scores with IQR < 0.2)
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�e improvement in accuracy becomes even more pro-

nounced when removing potential outliers based on the 

interquartile range (IQR) of all predictions for the same 

pair of molecules. In particular high and low Tanimoto 

score predictions become notably more reliable, even at 

comparably high threshold IQRs (Fig.  5A, e.g. thresh-

old < 0.2 which corresponds to 93% of all scores). Given 

the considerable improvement of the structural similar-

ity prediction, we expect that this use of multiple predic-

tions for mass spectra of the same compound pair can be 

applied successfully in practice, e.g. for library matching 

or analogue search, or when measuring multiple spectra 

of the same compound at various collision energies.

Using Monte-Carlo dropout ensemble models to estimate 

prediction uncertainty

Using ensembles of multiple machine learning models 

is a frequently used technique for improving machine 

learning results, but also to assess the model uncertainty 

(also referred to as epistemic uncertainty). Ensembles 

can be built in many ways, but one particularly effi-

cient ensemble learning technique for neural networks 

is Monte-Carlo dropout [17]. It makes use of the drop-

out layers in a network to randomly silence a fraction of 

the nodes for each inference step. Traditionally, dropout 

is only activated during model training, but in Monte-

Carlo dropout it stays in place when making actual pre-

dictions, which can be interpreted as a random sampling 

technique across a virtually unlimited set of model vari-

ations. Since the neural network architecture used for 

MS2DeepScore includes dropout layers (Fig.  1), it is 

straightforward to do such ensemble learning (Fig. 6).

For a given spectrum, we compute n different embed-

dings, each from a slightly different version of the base 

neural network where 20% of its nodes are silenced 

(dropout rate = 0.2). For a pair of spectra this results in 

n*n Tanimoto score predictions from which an ensemble 

score as well as a dispersion measure to assess the pre-

diction certainty can be calculated. To be less sensitive to 

outliers, we chose to take the median score, rather than 

the mean score. �e prediction uncertainty is measured 

by the interquartile range (25–75%) which is more suited 

than the median absolute deviation for non-symmetric 

distributions [27]. �is is also very accessible computa-

tionally since only n embeddings need to be generated 

per spectrum to obtain a total of n × n independent Tani-

moto score predictions. Inference will hence only take 

10 × longer for an ensemble of 100 predictions.

We tested the resulting uncertainty estimate on all pos-

sible pairs within the 3601 spectra of our test set. Taking 

the median of an ensemble of 100 scores already results 

in an overall drop in prediction error across nearly all 

Tanimoto score bins (Fig. 7B, red vs. blue line). We then 

filtered out scores, according to increasingly stringent 

interquartile range (IQR) thresholds. Over the entire 

dataset, this approach leads to a large decrease in pre-

diction error (Fig.  7A) but comes at the cost of a lower 

retrieval rate which we here define as the fraction of total 

scores for which the IQR is below the set threshold. For 

instance, all predictions within IQR < 0.025—which will 

discard about 75% of the scores—will result in a drop 

of the average RMSE from about 0.17 to about 0.11 

(Fig. 7A). It is important to note, though, that this average 

gain in precision is not distributed equally across the full 

range of Tanimoto scores. �e RMSE drops most signifi-

cantly in the low (< 0.4) and high (> 0.8) Tanimoto score 

range (Fig.  7B), while the error slightly increases in the 

mid score range (0.5–0.7).

Embedding based mass spectral clustering

Unlike recent approaches to predict molecular finger-

prints using deep learning [11, 12], we have chosen to 

train a Siamese neural network [15] to directly pre-

dict Tanimoto similarities. A key feature of our neural 

Fig. 6 Sketch of MS2DeepScore running in Monte-Carlo dropout 

modus. By keeping the dropout layers switched on, model 

predictions will essentially be sampled from random variations of 

the respective neural network. With a dropout rate of 0.2, a random 

selection of 20% of all nodes in the central dense layer(s), see Fig. 1, 

will be silenced. From n resulting variations of the created spectrum 

embeddings an array of n * n scores can be computed. Finally, 

the array of ensemble scores is used to calculate a single median 

score together with the interquartile range as a measure of model 

uncertainty
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network design is the creation of abstract embedding 

vectors for each input spectrum (Fig.  1). �is has two 

main benefits. First, it allows to scale similarity calcula-

tions much more efficiently to very large numbers of 

spectrum pair calculations by separating the mass spec-

trum embedding creation step from the actual similarity 

score calculation. �e embedding creation includes the 

mass spectrum binning as well as the inference step with 

the ‘base’ neural network (Fig.  1) and is computation-

ally far more expensive than the actual score calculation. 

Because embedding creation only needs to happen once 

for each spectrum instead of for each pair, this vastly 

reduces computational cost. As an example: predicting 

all possible similarity scores between the 3601 spectra in 

the test set (6,485,401 unique pairs) took 5–10 min on an 

Intel i7-8550U CPU. �e second reason for choosing this 

network architecture design is that such embeddings can 

have additional value beyond the Tanimoto score pre-

diction. Even though they do not directly correspond to 

any conventional molecular fingerprint, they are trained 

to support a prediction of a fingerprint-based similarity 

score, and therefore we hypothesize that they will contain 

features that reflect chemical properties. Embeddings 

also facilitate rapid large-scale comparisons beyond sim-

ple pair-wise similarity computations. To illustrate pos-

sible future use-cases, we ran t-SNE [28] as implemented 

in scikit-learn [29] on the 200-dimensional embeddings 

of the test set (3601 spectra). �is algorithm provides x,y-

coordinates for every spectrum in the test set which we 

plotted and colored according to the 14 chemical super-

classes provided by ClassyFire [30] (Fig.  8a). Molecules 

of the same chemical class tend to cluster together in the 

resulting t-SNE plot, confirming that the MS2DeepScore 

embeddings represent chemically meaningful molecu-

lar features. Figures 8b, c show that this conclusion also 

holds on a more detailed level, by zooming into a small 

region of the t-SNE plot (Fig. 8b) and coloring according 

to ClassyFire subclasses (Fig.  8c). To put those plots in 

perspective, side-by-side comparisons with t-SNE plots 

based on modified cosine scores are provided in Addi-

tional file 1: Figure S11.

MS2DeepScore python library

MS2DeepScore is available as an easily installable Python 

library running on Python 3.7 and 3.8. Source code and 

installation instructions can be found on GitHub (https:// 

github. com/ match ms/ ms2de epsco re). �e presented 

results were obtained using version 0.2.0. MS2DeepScore 

is integrated in matchms, a recently developed Python 

library for mass spectra import, handling and compari-

sons [18].

Fig. 7 Monte-Carlo dropout provides Tanimoto score predictions, but also the interquartile range as an uncertainty measure (here over 

10 × 10 = 100 individual scores). Discarding scores with higher uncertainties (higher IQR, interquartile range) does indeed improve the average 

prediction performance notably (A), although at the price of lowering the retrieval rate (retrieval rate = fraction of total scores with IQR < threshold 

B. C shows the root mean squared errors for different IQR threshold and for different Tanimoto score bins

https://github.com/matchms/ms2deepscore
https://github.com/matchms/ms2deepscore
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Discussion
Modern deep learning techniques have quickly gained 

popularity in many research fields and in some cases 

even started to replace classical, more heuristic tech-

niques (e.g., in computer vision and natural language 

processing). �e application of deep learning on frag-

mentation mass spectrometry data though, has only just 

begun to enter the stage [13]. �e first promising appli-

cations include the prediction of compound classes from 

MS/MS spectra [31] or from (predicted) molecular fin-

gerprints [32, 33], the prediction of bioactivity signatures 

[34], the prediction of parts of molecular fingerprints [11, 

12], as well as the prediction of the structural similarity 

from MS/MS spectra and chemical formula [14]. With 

MS2DeepScore, we show for the first time that neural 

networks can also be used to predict structural similar-

ity scores, i.e., to obtain a chemical-driven measure, from 

MS/MS spectra without requiring a known molecular 

formula or other metadata. We found that predictions 

are generally accurate (MAE of about 0.12) and get the 

general tendency right with large outliers being rare 

(RMSE of about 0.15). By constructing the test, valida-

tion, and training sets from separate sets of molecules 

we show that the presented MS2DeepScore models are 

predictive for novel molecules. Selecting all spectra for 

500 randomly chosen compounds for our test set should 

reflect the overall diversity of the MS/MS dataset well 

enough. In addition, we observed that the distribution of 

Tanimoto scores within the test set shows a similar pro-

file as the distribution for the training set (Fig. 2B vs. Fig-

ure 3A) and that the chemical diversity in the test set is 

high, with 14 chemical superclasses, 99 different chemi-

cal classes and 140 different chemical subclasses found 

via ClassyFire [30].

MS2DeepScore comes with two inherent downsides, 

when compared to conceptually simple, heuristic meas-

ures such as the Cosine spectral similarity score. One 

limitation that is common for all machine learning-based 

approaches is that a score itself is not deterministic but 

might change when a new model is trained (e.g., when 

using different parameters or different training data). 

In practice that can often largely be addressed by using 

Fig. 8 A 3601 spectra are plotted as colored dots with x,y positions derived through t-SNE based on the MS2DeepScore embeddings. Dots are 

colored according to 14 compound superclasses provided by ClassyFire (large panel). B zooms into a small region for which (C) also the x ClassyFire 

subclasses are displayed
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properly versioned, pre-trained models. �e second limi-

tation, which is typical for neural networks, is the lack of 

an intuitive explanation of why a certain score is given, 

a common problem in the field of deep learning [i.e., 

explainability or explainable artificial intelligence (AI)]. 

Here, however, we also provide the option to use Monte-

Carlo Dropout, an ensemble learning technique which 

makes it possible to assess the model’s own uncertainty. 

�is should in practice help in better identifying and han-

dling uncertain predictions, e.g. for data that are very dif-

ferent from the training data.

Another possible limitation of MS2DeepScore comes 

from the maximum achievable precision. Even after 

numerous experiments with training “deeper” neural net-

works (with more layers), wider neural networks (more 

nodes per layer), or less restrictive mass binning (more 

m/z bins), we could not significantly decrease the over-

all Tanimoto prediction error (Additional file  1). Obvi-

ously, that does not prove that there cannot be a better 

performing neural network for the given task. However, 

it strongly indicates that the achieved precision is already 

fairly high, given the many limitations of the used data-

set. �ese limitations arise from the fact that the used 

spectra come from different instrumentation types, are of 

varying quality, and are likely to be very unbalanced with 

regard to represented compound classes and types. More 

general limitations lie in the possibility that some finger-

print features are simply not represented in any of the 

fragments. It was, however, possible to reduce prediction 

errors considerably by applying various ensemble learn-

ing techniques. Applying Monte-Carlo Dropout (Fig.  7) 

or using ensembles of different architecture models 

(Additional file 1: Figure S2) lead to more reliable results 

and provide means to assess the prediction uncertainty 

which allow users to further specify the desired level of 

precision. �e same was seen when combining scores for 

spectra obtained for the same pair of molecules (Fig. 5). 

On our test set, the largest reduction of the prediction 

error is seen for the highest Tanimoto scores (0.9–1.0). 

Both combining scores for same molecules and applying 

a threshold for the prediction uncertainty as measured 

by Monte-Carlo Dropout, can remove a large part of the 

incorrect predictions (Figs.  5A and 7C). �is indicates 

that many of those predictions stem from spectra which 

differ notably from the training data. Since such high 

Tanimoto scores are rare (Figs.  2C and 3B), a relatively 

small amount of such incorrect predictions could already 

explain the observed behavior.

It is important to note that the neural network was 

not trained on any spectrum metadata such as parent 

mass and elemental formula, like for DeepMASS [14]. 

Such metadata could include parent mass, precursor 

ion charge, adduct information, instrumentation type, 

spectral quality, or more processed information such as 

the elemental formula or chemical compound class. We 

speculate that incorporating relevant metadata in the 

pairwise predictions would have increased the accuracy 

in our evaluation. However, here, we chose not to include 

such metadata. Having a way to predict structural simi-

larities solely based on MS/MS peaks allows MS2Deep-

Score to be easily applied to a large number of spectra 

without costly and timely spectral processing or match-

ing steps. If users have access to this metadata, they can 

anyway still use it for an independent selection step or to 

train an additional small model for removing likely outli-

ers based on metadata pairs. Furthermore, the use of just 

mass fragments also makes MS2DeepScore applicable to 

GCMS data which generally lack precursor masses and to 

serve as an alternative metric to build mass spectral net-

works of volatile compounds [35].

We expect that another promising route to further 

improve the predicted scores lies in using comple-

mentary aspects of different spectral similarity scores. 

MS2DeepScore usually comes very close with its Tani-

moto score predictions but might not always be precise 

enough to handle all nuances. It is—for instance—dif-

ficult to discriminate between high Tanimoto scores 

(say 0.8–0.9) and a near-complete chemical match. Reli-

able identification of exact compound matches hence 

requires additional algorithms, such as the successful use 

of machine learning in combination with computational 

fragmentation trees as well as with library data [36]. Key 

advantages of MS2DeepScore over such an approach are 

the very large gains in computation time which will allow 

to run very extensive screenings between many thou-

sands of compounds, and its ability to predict structural 

similarities based on spectra of novel molecules without 

having to use any metadata or having to consult with 

library data. In practice, we expect hybrid approaches 

that combine multiple algorithms to be a promising route 

forward. MS2DeepScore could be applied for preselect-

ing candidates prior to a computationally more expensive 

step (e.g. using fragmentation trees) or it could be com-

bined with other similarity scores to improve the predic-

tion reliability, e.g., by also consulting other scores such 

as cosine-based spectral similarity scores or Spec2Vec. 

�e latter is frequently outperformed by MS2DeepScore 

(Fig. 5 and Additional file 1: Figure S1) but—as an unsu-

pervised approach—has the advantage that it can be 

trained on unlabeled data which is not directly accessible 

for the presented supervised approach.

Being able to predict Tanimoto scores, or more pre-

cisely Tanimoto scores computed from Daylight2048bit 

fingerprints available in RDKit, can be interpreted as 

being able to infer chemical relatedness from MS/MS 

spectra. �ere is, however, no consensus on how to best 
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quantify chemical relatedness which resulted in a large 

variety of different molecular fingerprints [7, 8, 21] as 

well as fingerprint based scores [24, 37]. We showed that 

MS2DeepScore can be trained to predict various scores 

such as Tanimoto on Daylight fingerprints, Tanimoto on 

Morgan-2 (similar to ECFP-4), or Dice scores on Mor-

gan-2. Given the huge variety of fingerprint types, their 

dimension (number of bits) as well as the used scor-

ing metrics, our explorations should only be seen as a 

starting point, but our observations already suggest that 

MS2DeepScore will be able to cope reasonably well with 

a large variety of different fingerprints and metrics (Fig. 3, 

Additional file 1: Table S1). Since our neural network cre-

ates low dimensional embeddings for each spectrum it 

will also be possible to combine different structural simi-

larity measures by stacking embeddings of different mod-

els that were trained on different scores. Another future 

path might be to modify the Siamese network architec-

ture to predict various structural similarity scores at the 

same time. We do note that to fuel future improvements 

on structural similarity prediction of MS/MS spectrum 

pairs, it is vital that the field converges onto a standard-

ized way of evaluating and comparing approaches. In 

that light, we have put effort to share processed input 

data, the used code, and the resulting models for future 

comparisons.

MS2DeepScore comes as an easy to install and easy to 

use Python library and the actual scores are fast to com-

pute. In particular, the ability to split spectral embedding 

creation from similarity score calculation makes it very 

scalable to large-scale comparisons (many thousands of 

spectra). Our MS2DeepScore model which was trained 

on a public dataset of about 100,000 spectra of 15,000 

compounds can be found online (see link in “Methods”). 

Even though we here showed that such a model per-

formed well on spectral data of unseen compounds, it is 

to be expected that training on even larger, more diverse, 

or more curated datasets will further improve the model 

performance. We are aware that current spectral librar-

ies remain inherently biased toward certain compound 

classes and this needs to be considered when applying 

MS2DeepScore to experimental data. In this light, train-

ing (and ideally: providing) new MS2DeepScore models 

on alternative spectral libraries such as METLIN [38] or 

NIST [39] could become an important step to improve 

neural network based predictions.

Finally, we speculate that MS2DeepScore-generated 

spectral embeddings can further be used for other fasci-

nating tasks. Unlike alternative approaches that directly 

focused on using deep learning for creating low-dimen-

sional embeddings [40], we trained the network on pair-

wise Tanimoto predictions. Yet we found that the spectral 

embeddings allow for chemically meaningful clustering 

(Fig.  8). �is also makes MS2DeepScore a promising 

complementary candidate to the mass spectral metrics 

used in established mass spectrometry based network 

analysis and clustering tools such as GNPS [16] or Met-

Gem [41].

Conclusions
MS2DeepScore is a deep learning technique to predict 

structural similarity scores between fragmentation mass 

spectral pairs. We show that MS2DeepScore can infer 

structural similarities between mass spectra with high 

overall precision, without requiring any additional meta-

data or library data. We demonstrate that the accuracy of 

the predictions can be improved notably by using various 

ensemble learning techniques, in particular by merging 

predicted scores of spectra belonging to the same com-

pound pair or by applying Monte-Carlo Dropout to sam-

ple from random model variations.

MS2DeepScore is very fast and scalable. We con-

clude that this makes MS2DeepScore a powerful novel 

tool for running large scale comparisons and analy-

ses, for instance on complex mixtures rich in spectra of 

unknown compounds. We expect that MS2DeepScore 

can generally be used to complement -or replace- com-

mon currently used spectral similarity measures in many 

metabolomic workflows, including mass spectral net-

work analysis and clustering approaches.

Methods
Data and data preparation

Spectrum data preparation

We use annotated MS/MS spectra from GNPS, which 

underwent basic metadata cleaning as described in [6, 

18]. �e dataset was retrieved from GNPS (25/01/2021) 

and contains a total of 210,407 MS/MS spectra. Metadata 

was cleaned and checked using matchms [18] version 

0.8.2, which included cleaning compound names, extract-

ing adduct information from the given metadata, moving 

metadata to consistent fields and conversions between 

InChI and SMILES as well as to InChIKeys when miss-

ing and when possible. We then ran an automated search 

against PubChem [42] using pubchempy [43] for spectra 

which still missed InChI or SMILES annotations. �e full 

cleaned dataset (210,407 spectra, 184,698 annotated with 

InChIKey and SMILES and/or InChI) can be found on 

zenodo: https:// zenodo. org/ record/ 46993 00.

We here focus on spectra acquired in positive ionisa-

tion mode with proper InChIKey as well as a SMILES 

and/or InChI annotation, which in addition must con-

tain ≥ 5 peaks between 10.0 and 1000.0 Da. �is resulted 

in 109,734 spectra with 15,062 unique InChIKeys (con-

sidering only the first 14 characters).

https://zenodo.org/record/4699300
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�e spectra underwent basic filtering to remove 

excessive amounts of peaks, by removing peaks with 

intensities < 0.1% of the maximum peak intensity and lim-

iting the maximum number of peaks to the 1000 highest 

intensity peaks. �is is mostly done to speed up the later 

binning and training steps and the hence removed peaks 

are most likely noise peaks. Peak intensities were square 

root transformed to avoid a too strong focus on the high-

est intensity peaks only. Spectrum peaks were binned in 

10,000 equally-sized bins ranging from 10 to 1000 m/z. In 

case multiple peaks ended up in one bin the highest peak 

intensity was chosen as value for that bin. Bins that were 

not filled in any of the training-data spectrum represen-

tations were removed from the vector representation, 

here this meant that 9948 out of 10,000 possible bins are 

known to the model. �e resulting vector-representation 

of the spectra served as input for the model.

Structural similarity label for spectrum pairs

Unless noted otherwise, we used Tanimoto scores on 

RDKit [23] Daylight fingerprints (2048 bits) to compute 

structural similarities. For every unique 14-character 

InChIKey the most common InChI was selected (if dif-

ferent InChI existed) and used to generate a molecular 

fingerprint (as implemented in matchms [18]). For each 

pair of molecular fingerprints Tanimoto scores were cal-

culated, indicating the structural similarity of that pair. 

�is resulted in a matrix of 15,062 × 15,062 Tanimoto 

scores to be used as labels for the model training.

Data generation

�e set of 15,062 InChIKeys was split into a training 

(n = 14,062), validation (n = 500), and test set (n = 500). 

To feed the data to the model effectively it was key to 

solve 2 challenges: (1) �e structural similarity label dis-

tribution for all pairs is heavily left-skewed (most pairs 

are not similar, see Fig.  3A). (2) Per unique InChIKey 

multiple spectra could be used. Our MS2DeepScore 

Python library offers two types of data generators, one 

which iterates over all unique InChIKeys (DataGenerato-

rAllInchikeys) and one which iterates over all spectra and 

was used for the presented work (DataGeneratorAllSpec-

trums). �e following algorithm was used to generate one 

cycle of training data, in each training epoch we used one 

cycles (i.e. we went through all spectrums in the training 

set once): each spectrum was then matched to a random 

other spectrum, with the condition that the resulting 

corresponding InChiKey pair had a structural similar-

ity label falling into a randomly chosen bin, which in our 

case were 10 equally-sized bins between 0 and 1. In cases 

where the structural similarity label for none of the pairs 

fell into the selected bin, the bin was iteratively widened 

by 0.1 until a structural similarity label fell into the bin.

After every training epoch, the loss on the valida-

tion set was computed. As for the training data we here 

used DataGeneratorAllSpectrums on the validation set. 

To ensure dataset consistency across experiments we 

used a fixed random seed for the validation set. We also 

used 10 cycles for the validation set which means iterat-

ing 10 times over all 3597 spectra to monitor the train-

ing progress on a total of n = 35,970 spectrum pairs. For 

the final evaluation on the reserved test set, we used all 

possible spectrum pairs between the 3601 for the test set 

(n = 6,485,401 unique spectrum pairs).

Data augmentation

To ensure the model generalizes well to the test data-

set and avoid overfitting we applied three forms of data 

augmentation on the binned spectra. (1) low-intensity 

peak removal: For a randomly chosen percentage (in the 

range of 0–20%) of non-zero bins with an intensity below 

0.4 (actual intensity before transformation) the inten-

sity was set to 0. (2) peak intensity jitter: Each non-zero 

bin intensity (after transformation) underwent changes 

between 0 and ± 40%. (3) new peak addition: For each 

of between 0–10 randomly selected zero-intensity bins 

that bin’s intensity was set to random values between 0 

and 0.01 (after transformation). Data augmentation was 

applied for every training example during training data 

generation.

Deep learning implementation

Network architecture

We train a deep learning network on pairs of MS/

MS spectra to predict the respective structural simi-

larity label. For this, a Siamese network is used [15] 

which has 2 components: (1) A base network that cre-

ates abstract embeddings from both input spectra, and 

(2) A “head” part of the Siamese network which con-

sists of a cosine calculation between both embeddings 

(Fig.  1). In the base network, the binned spectrum vec-

tor is passed through a series of densely connected layers 

until an abstract embedding vector of desired dimen-

sion is created as output. Based on a screening of vari-

ous key parameters (see Additional file 1) we settled on 

an architecture as depicted in Fig.  1: binning spectrum 

peaks between 10.0 and 1000.0 Da into maximum 10,000 

same-width bins. �is input vector is then followed by 2 

densely connected layers, each with 500 nodes, followed 

by a final dense layer of 200 nodes for creating the spec-

tral embedding. Two key measures are taken to prevent 

overfitting and improve generalization of the model to 

unknown data. Firstly, modern regularization techniques 

are applied [44]. �e deep neural network is trained using 

L1  (10–6) and L2  (10–6) weight regularization in the first 

dense layer, as well as dropout in the subsequent layers 
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(dropout rate = 0.2). In addition, batch normalization is 

applied after each dense layer except the output layer.

Uncertainty quanti�cation using Monte-Carlo Dropout 

ensembles

To estimate the uncertainty of a prediction we used 

Monte-Carlo Dropout ensembles [17]. At inference 

time, dropout was applied to all but the first layer of the 

base network. N = 10 embeddings were created from an 

ensemble of these networks with dropout enabled. �is 

resulted in a distribution of structural similarity predic-

tions, for which the median and interquartile range (IQR) 

were calculated.

Training details

Models were trained with the Adam optimizer [44, 45] 

that optimized the mean squared error (MSE) loss. We 

used a batch size of 32, and a learning rate of 0.001. Train-

ing continued until the validation loss did not decrease 

for 5 epochs (early stopping). Model training was done 

on GPU nodes from SURFsara with nvidia GTX 1080 Ti 

graphic cards (Lisa cluster).

Precision/recall analysis for selecting high Tanimoto score 

pairs

�e precision/recall plot in Fig. 4 was created by meas-

uring how many pairs with Tanimoto scores above a 

set threshold (= “high structural similarity pair”) were 

among a subset of all pairs for which the spectral simi-

larity score was > threshold_score. We varied the thresh-

old score from 0 to close to 1 and recorded the precision 

and recall. By precision we here understand the number 

of high structural similarity pairs in the selection divided 

by the number of all selected pairs. Recall refers to the 

number of high structural similarity pairs in the selection 

divided by all high structural similarity pairs.

T-SNE on mass spectral embeddings from MS2DeepScore

For Fig.  8, we used the MS2DeepScore base network 

(Fig. 1) to compute the 200-dimensional spectral embed-

dings for all 3601 spectra in the test set. Using the t-SNE 

[28] implementation from scikit-learn [29] we computed 

two-dimensional coordinates for all spectra. Here we 

used the following settings: metric = ‘cosine’, perplex-

ity = 100, learning-rate = 200 (default) and 1000 itera-

tions (default).
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