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Abstract

Unsupervised protein language models trained

across millions of diverse sequences learn struc-

ture and function of proteins. Protein language

models studied to date have been trained to per-

form inference from individual sequences. The

longstanding approach in computational biology

has been to make inferences from a family of evo-

lutionarily related sequences by fitting a model

to each family independently. In this work we

combine the two paradigms. We introduce a pro-

tein language model which takes as input a set

of sequences in the form of a multiple sequence

alignment. The model interleaves row and column

attention across the input sequences and is trained

with a variant of the masked language modeling

objective across many protein families. The per-

formance of the model surpasses current state-of-

the-art unsupervised structure learning methods

by a wide margin, with far greater parameter effi-

ciency than prior state-of-the-art protein language

models.

1. Introduction

Unsupervised models learn protein structure from patterns

in sequences. Sequence variation within a protein fam-

ily conveys information about the structure of the protein

(Yanofsky et al., 1964; Altschuh et al., 1988; Göbel et al.,

1994). Since evolution is not free to choose the identity of

amino acids independently at sites that are in contact in the

folded three-dimensional structure, patterns are imprinted

onto the sequences selected by evolution. Constraints on the

structure of a protein can be inferred from patterns in related

sequences. The predominant unsupervised approach is to

fit a Markov Random Field in the form of a Potts Model to

a family of aligned sequences to extract a coevolutionary
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Figure 1. Left: Sparsity structure of the attention. By constraining

attention to operate over rows and columns, computational cost

is reduced from O(M2L2) to O(LM2) +O(ML2) where M is

the number of rows and L the number of columns in the MSA.

Middle: Untied row attention uses different attention maps for

each sequence in the MSA. Tied row attention uses a single atten-

tion map for all sequences in the MSA, thereby constraining the

contact structure. Ablation studies consider the use of both tied

and untied attention. The final model uses tied attention. Right:

A single MSA Transformer block. The depicted architecture is

from the final model, some ablations alter the ordering of row and

column attention.

signal (Lapedes et al., 1999; Thomas et al., 2008; Weigt

et al., 2009).

A new line of work explores unsupervised protein language

models (Alley et al., 2019; Rives et al., 2020; Heinzinger

et al., 2019; Rao et al., 2019). This approach fits large

neural networks with shared parameters across millions of

diverse sequences, rather than fitting a model separately

to each family of sequences. At inference time, a single

forward pass of an end-to-end model replaces the multi-

stage pipeline, involving sequence search, alignment, and

model fitting steps, standard in bioinformatics. Recently,

promising results have shown that protein language models

learn secondary structure, long-range contacts, and function

via the unsupervised objective (Rives et al., 2020), making

them an alternative to the classical pipeline. While small and

recurrent models fall well short of state-of-the-art (Rao et al.,

2019), the internal representations of very large transformer

models are competitive with Potts models for unsupervised

structure learning (Rives et al., 2020; Rao et al., 2021).

Potts models have an important advantage over protein lan-
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guage models during inference. The input to the Potts model

is a set of sequences. Inference is performed by fitting a

model that directly extracts the covariation signal from the

input. Current protein language models take a single se-

quence as input for inference. Information about evolution-

ary variation must be stored in the parameters of the model

during training. As a result, protein language models require

many parameters to represent the data distribution well.

In this work, we unify the two paradigms within a protein

language model that takes sets of aligned sequences as in-

put, but shares parameters across many diverse sequence

families. Like prior protein language models operating on

individual sequences, the approach benefits from learning

from common patterns across protein families, allowing

information to be generalized and transferred between them.

By taking sets of sequences as input, the model gains the

ability to extract information during inference, which im-

proves the parameter efficiency.

We introduce the MSA Transformer, a model operating

on sets of aligned sequences. The input to the model is a

multiple sequence alignment. The architecture interleaves

attention across the rows and columns of the alignment as in

axial attention (Ho et al., 2019). We propose a variant of ax-

ial attention which shares a single attention map across the

rows. The model is trained using the masked language mod-

eling objective. Self supervision is performed by training

the model to reconstruct a corrupted MSA.

We train an MSA Transformer model with 100M parameters

on a large dataset (4.3 TB) of 26 million MSAs, with an av-

erage of 1192 sequences per MSA. The resulting model sur-

passes current state-of-the-art unsupervised structure learn-

ing methods by a wide margin, outperforming Potts models

and protein language models with 650M parameters. The

model improves over state-of-the-art unsupervised contact

prediction methods across all multiple sequence alignment

depths, with an especially significant advantage for MSAs

with lower depth. Information about the contact pattern

emerges directly in the tied row attention maps. Evaluated

in a supervised contact prediction pipeline, features cap-

tured by the MSA Transformer outperform trRosetta (Yang

et al., 2019) on the CASP13 and CAMEO test sets. We

find that high precision contact predictions can be extracted

from small sets of diverse sequences, with good results from

as few as 8-16 sequences. We investigate how the model

performs inference by independently destroying the covaria-

tion or sequence patterns in the input, finding that the model

uses both signals to make predictions.

2. Related Work

Unsupervised Contact Prediction The standard ap-

proach to unsupervised protein structure prediction is

to identify pairwise statistical dependencies between the

columns of an MSA, which are modeled as a Potts model

Markov Random Field (MRF). Since exact inference is

computationally intractable, a variety of methods have been

proposed to efficiently fit the MRF, including mean-field

inference (Morcos et al., 2011), sparse-inverse covariance es-

timation (Jones et al., 2012), and the current state-of-the-art,

pseudolikelihood maximization (Balakrishnan et al., 2011;

Ekeberg et al., 2013; Seemayer et al., 2014). In this work

we use Potts models fit with psuedolikelihood maximization

as a baseline, and refer to features generated from Potts

models as “co-evolutionary features.” Making a connection

with the attention mechanism we study here, Bhattacharya

et al. (2020) show that a single layer of self-attention can

perform essentially the same computation as a Potts model.

Deep Models of MSAs Several groups have proposed to

replace the shallow MRF with a deep neural network. Ries-

selman et al. (2018) train deep variational autoencoders on

MSAs to predict function. Riesselman et al. (2019) train

autoregressive models on MSAs, but discard the alignment,

showing that function can be learned from unaligned se-

quences. In contrast to our approach which is trained on

many MSAs, these existing models are trained on a single

set of related sequences and do not provide a direct method

of extracting protein contacts.

Supervised Structure Prediction Supervised structure

prediction using deep neural networks has driven ground-

breaking progress on the protein structure prediction prob-

lem (Senior et al., 2019; Jumper et al., 2020). Initial models

used coevolutionary features (Wang et al., 2017; Liu et al.,

2018; Yang et al., 2019; Senior et al., 2019; Adhikari &

Elofsson, 2020). Recently MSAs have been proposed as

input to supervised structure prediction methods. Mirabello

& Wallner (2019) and Kandathil et al. (2020) study mod-

els that take MSAs as input directly, respectively using 2D

convolutions or GRUs to process the input. More recently,

AlphaFold2 (Jumper et al., 2020) uses attention to process

MSAs in an end-to-end model supervised with structures.

The central difference in our work is to model a collection

of MSAs using unsupervised learning. This results in a

model that contains features potentially useful for a range of

downstream tasks. We use the emergence of structure in the

internal representations of the model to measure the ability

of the model to capture biology from sequences. This is

a fundamentally distinct problem setting from supervised

structure prediction. The MSA Transformer is trained in

a purely unsupervised manner and learns contacts without

being trained on protein structures.

Large protein sequence databases contain billions of se-

quences and are undergoing exponential growth. Unsuper-

vised methods can directly use these datasets for learning,
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while supervised methods are limited to supervision from

the hundreds of thousands of crystallized structures. Unsu-

pervised methods can learn from regions of sequence space

not covered by structural knowledge.

Protein Language Models Protein language modeling

has emerged as a promising approach for unsupervised learn-

ing of protein sequences. Bepler & Berger (2019) combined

unsupervised sequence pre-training with structural supervi-

sion to produce sequence embeddings. Alley et al. (2019)

and Heinzinger et al. (2019) showed that LSTM language

models capture some biological properties. Simultaneously,

Rives et al. (2020) proposed to model protein sequences

with self-attention, showing that transformer protein lan-

guage models capture accurate information of structure and

function in their representations. Rao et al. (2019) evalu-

ated a variety of protein language models across a panel of

benchmarks concluding that small LSTMs and transformers

fall well short of features from the bioinformatics pipeline.

A combination of model scale and architecture improve-

ments has been instrumental to recent successes in protein

language modeling. Elnaggar et al. (2020) study a variety

of transformer variants. Rives et al. (2020) show that large

transformer models produce state-of-the-art features across

a variety of tasks. Notably, the internal representations of

transformer protein language models are found to directly

represent contacts. Vig et al. (2020) find that specific at-

tention heads of pre-trained transformers correlate directly

with protein contacts. Rao et al. (2021) combine multiple at-

tention heads to predict contacts more accurately than Potts

models, despite using just a single sequence for inference.

Alternatives to the masked language modeling objective

have also been explored, such as conditional generation

(Madani et al., 2020) and contrastive loss functions (Lu

et al., 2020). Most relevant to our work, Sturmfels et al.

(2020) and Sercu et al. (2020) study alternative learning ob-

jectives using sets of sequences for supervision. Sturmfels

et al. (2020) extended the unsupervised language model-

ing to predict the position specific scoring matrix (PSSM)

profile. Sercu et al. (2020) used amortized optimization

to simultaneously predict profiles and pairwise couplings.

In natural language processing, recent work (Lewis et al.,

2020; Gu et al., 2018) has explored models using multiple

sequences. However, previous work on protein language

models has not considered inference directly from sets of

sequences.

3. Methods

Transformers are powerful sequence models capable of pass-

ing information from any position to any other position

(Vaswani et al., 2017). However, they are not trivially ap-

plied to a set of aligned sequences. Naively concatenating

M sequences of length L in an MSA would allow attention

across all sequences, but the (ML)2 self-attention maps

would be prohibitively memory-intensive. The main con-

tribution of this paper is to extend transformer pre-training

to operate on an MSA, while respecting its structure as an

M × L character matrix.

We describe the input MSA as a matrix x ∈ R
M×L, where

rows correspond to sequences in the MSA, columns are

positions in the aligned sequence, and entries xmi take

integer values1 encoding the amino acid identity of sequence

m at position i. After embedding the input, each layer has

a R
M×L×d state as input and output. For the core of the

transformer, we adapt the axial attention approach from

Ho et al. (2019) and Child et al. (2019). This approach

alternates attention over rows and columns of the 2D state

(see Fig. 1). This sparsity pattern in the attention over the

MSA brings the attention cost to O(LM2) for the column

attention, and O(ML2) for the row attention.

Feedforward Layers We deviate from Ho et al. (2019)

in the interleaving of the feedforward layers. Rather than

applying a feedforward layer after each row or column at-

tention, we apply row and column attention followed by a

single feedforward layer (see Fig. 1). This choice follows

more closely the transformer decoder architecture (Vaswani

et al., 2017).

Position Embedding The standard transformer position

embedding is a 1D signal added to each position in the se-

quence. Either fixed sinusoidal (Vaswani et al., 2017) or

learned (Devlin et al., 2019) position embeddings are most

commonly used. Rives et al. (2020) found that learned po-

sition embeddings generally resulted in better downstream

performance for protein language models.

An MSA is a 2D input so we must consider two types of

position embeddings. For all models trained, we provide

a 1D sequence position embedding, which is added inde-

pendently to each row of the MSA. This allows the model

to distinguish different aligned positions. For one model,

we also add a position embedding independently to each

column of the MSA, which allows the model to distinguish

different sequences (without this, the model treats the input

sequences as an unordered set). We also ensure that the

first position in the sequence is always the reference so that

it can always be uniquely identified through the position

embedding. We find that incorporating the column position

embedding increases performance slightly and so choose

to use it in the final model (see Appendix A.3.6 for further

discussion).

1The final vocab size is 29, consisting of 20 standard amino
acids, 5 non-standard amino acids, the alignment character ‘.’, gap
character ‘-’, the start token, and the mask token
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Figure 2. Left: Top-L long-range contact precision (higher is better). Comparison of MSA Transformer with Potts model (left scatter

plot), and ESM-1b (right scatter plot). Each point represents a single protein (14,842 total) and is colored by the depth of the full MSA for

the sequence. The Potts model is given the full MSA as input; ESM-1b is given only the reference sequence; and the MSA Transformer

is given an MSA subsampled with hhfilter to a maximum of 256 sequences. The MSA Transformer outperforms both models for the

vast majority of sequences. Right: Long-range contact precision performance as a function of MSA depth. Sequences are binned by

MSA depth into 10 bins; average performance in each bin along with 95% confidence interval is shown. The minimum MSA depth in the

trRosetta dataset is 100 sequences. While model performance generally increases with MSA depth, the MSA Transformer performs very

well on sequences with low-depth MSAs, rivaling Potts model performance on MSAs 10x larger.

Tied Row Attention The standard implementation of ax-

ial attention allows for independent attention maps for each

row and column of the input. However, in an MSA each

sequence should have a similar structure; indeed, direct-

coupling analysis exploits this fact to learn contact infor-

mation. To leverage this shared structure we hypothesize it

would be beneficial to tie the row attention maps between

the sequences in the MSA. As an additional benefit, tied

attention reduces the memory footprint of the row attentions

from O(ML2) to O(L2).

Let M be the number of rows, d be the hidden dimension

and Qm,Km be the matrix of queries and keys for the m-th

row of input. We define tied row attention (before softmax

is applied) to be:
M
∑

m=1

QmKT
m

λ(M,d)
(1)

The denominator λ(M,d) would be the normalization con-

stant
√
d in standard scaled-dot product attention. In tied

row attention, we explore two normalization functions to

prevent attention weights linearly scaling with the number

of input sequences: λ(M,d) = M
√
d (mean normaliza-

tion) and λ(M,d) =
√
Md (square-root normalization).

Our final model uses square-root normalization.

Pre-training Objective We adapt the masked language

modeling objective (Devlin et al., 2019) to the MSA setting.

The loss for an MSA x, and masked MSA x̃ is as follows:

LMLM(x; θ) =
∑

(m,i)∈mask

log p(xmi|x̃; θ) (2)

The probabilities are the output of the MSA transformer,

softmax normalized over the amino acid vocabulary inde-

pendently per position i in each sequence m. We consider

masking tokens uniformly at random over the MSA or mask-

ing entire columns of the MSA. Masking tokens uniformly

at random results in best performance (Table A.2). Note

that the masked token can be predicted not only from con-

text amino acids at different positions but also from related

sequences at the same position.

Pre-training Dataset Models are trained on a dataset of

26 million MSAs. An MSA is generated for each UniRef50

(Suzek et al., 2007) sequence by searching UniClust30

(Mirdita et al., 2017) with HHblits (Steinegger et al., 2019).

The average depth of the MSAs is 1192. See Fig. A.2 for

MSA depth distribution.

Models and Training We train 100M parameters model

with 12 layers, 768 embedding size, and 12 attention heads,

using a batch size of 512 MSAs, learning rate 10−4, no

weight decay, and an inverse square root learning rate sched-

ule with 16000 warmup steps. All models are trained on

32 V100 GPUs for 100k updates. The four models with

best contact precision are then further trained to 150k up-

dates. Finally, the best model at 150k updates is trained to

450k updates. Unless otherwise specified, all downstream

experiments use this model.

Despite the use of axial attention and tied attention to lower

the memory requirements, large MSAs still do not easily

fit in memory at training time. The baseline model fits a

maximum of N = 214 tokens on a 32 GB V100 GPU at

training time. To work around this limitation we subsample

the input MSAs to reduce the number of sequences and limit

the maximum sequence length to 1024.
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MSA Subsampling During Inference At inference time,

memory is a much smaller concern. Nevertheless we do

not provide the full MSA to the model as it would be com-

putationally expensive and the model’s performance can

decrease when the input is much larger than that used during

training. Instead, we explore four strategies for subsampling

the sequences provided to the model.

• Random: This strategy parallels the one used at train-

ing time, and selects random sequences from the MSA

(ensuring that the reference sequence is always in-

cluded).

• Diversity Maximizing: This is a greedy strategy

which starts from the reference and adds the sequence

with highest average hamming distance to current set

of sequences.

• Diversity Minimizing: This strategy is equivalent to

the Diversity Maximizing strategy, but adds the se-

quence with lowest average hamming distance. It is

used to explore the effects of diversity on model per-

formance.

• HHFilter: This strategy applies hhfilter (Steinegger

et al., 2019) with the -diff M parameter, which re-

turns M or more sequences that maximize diversity

(the result is usually close to M ). If more than M
sequences are returned we apply the Diversity Maxi-

mizing strategy on top of the output.

4. Results

We study the MSA Transformer in a panel of structure pre-

diction tasks, evaluating unsupervised contact prediction

from the attentions of the model, and performance of fea-

tures in supervised contact and secondary structure predic-

tion pipelines.

To calibrate the difficulty of the masked language model-

ing task for MSAs, we compare against two simple predic-

tion strategies using the information in the MSA: (i) col-

umn frequency baseline, and (ii) nearest sequence baseline.

These baselines implement the intuition that a simple model

could use the column frequencies to make a prediction at

the masked positions, or copy the identity of the missing

character from the most similar sequence in the input. Ta-

ble A.1 reports masked language modeling performance.

The MSA Transformer model (denoising accuracy of 64.0)

significantly outperforms the PSSM (accuracy 41.4) and

nearest-neighbor (accuracy 46.7) baselines.

4.1. Unsupervised Contact Prediction

Rao et al. (2021) showed that transformer protein language

models learned to capture information about protein struc-

ture in their attention maps using little to no supervision.

Table 1. Average long-range precision for MSA and single-

sequence models on the unsupervised contact prediction task.

Model L L/2 L/5

Potts 39.3 52.2 62.8

TAPE 11.2 14.0 17.9

ProTrans-T5 35.6 46.1 57.8

ESM-1b 41.1 53.3 66.1

MSA Transformer 57.4 71.7 82.1

This is done by training a small logistic regression (one pa-

rameter per attention head) on a limited number of protein

structures to predict the probability of a contact between

residues i and j based on the attentions between the residues

for all attention heads. The logistic regression weights are

shared for all pairs of positions (see Appendix A.1 for more

details).

We use the same validation methodology. A logistic regres-

sion with 144 parameters is fit on 20 training structures from

the trRosetta dataset (Yang et al., 2019). This is then used to

predict the probability of protein contacts on another 14842

structures from the trRosetta dataset (training structures are

excluded). At inference time, we use hhfilter to subsample

256 sequences.

We compare to two state-of-the-art transformer protein lan-

guage models: ESM-1b (Rives et al., 2020) with 650M

parameters and ProTrans-T5 (Elnaggar et al., 2020) with

3B parameters. For the single-sequence protein language

models we use the sequence belonging to the structure as

input. We also compare against Potts models using the

APC-corrected (Dunn et al., 2008) Frobenius norm of the

coupling matrix computed on the MSA (Kamisetty et al.,

2013).

Table 1 compares unsupervised contact prediction perfor-

mance of the models. The MSA Transformer significantly

outperforms all baselines, increasing top-L long-range con-

tact precision by a full 15 points over the previous state-of-

the-art. Table 2 shows results on harder test sets CAMEO

hard targets (Haas et al., 2018) and CASP13-FM (Shrestha

et al., 2019). The CASP13-FM test set consists of 31 free

modeling domains (from 25 targets); the CAMEO hard tar-

gets are a set of 131 domains (out of which we evaluate on

the 129 that fit within the 1024 character maximum con-

text length of the model). On the CASP13-FM test set,

unsupevised contact prediction with the MSA Transformer

(43.4 top-L long-range precision) is competitive with the

trRosetta base model (45.7 top-L long-range precision), a

fully supervised structure prediction model.

Fig. 2 shows the top-L long-range precision distribution

across all structures, comparing the MSA Transformer with
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Figure 3. Contact prediction from a small set of input sequences. Predictions are compared under diversity minimizing and diversity

maximizing sequence selection strategies. Visualized for 4zjp chain A. Raw contact probabilities are shown below the diagonal, top L

contacts are shown above the diagonal. (blue: true positive, red: false positive, grey: ground-truth contacts). Top-L long-range contact

precision below each plot. Contact precision improves with more sequences under both selection strategies. Maximizing the diversity

enables identification of long-range contacts from a small set of sequences.

Table 2. Unsupervised contact prediction on CASP13 and CAMEO

(long-range precision). Note the large improvement of MSA Trans-

former over classical Potts models and ESM-1b.

CASP13-FM CAMEO

Model L L/5 L L/5

Potts 16.9 31.5 24.0 42.8

ProTrans-T5 16.5 27.0 25.9 43.4

ESM-1b 17.0 30.4 30.9 52.7

MSA Transformer 44.8 72.5 43.5 66.8

Potts models and ESM-1b. The MSA Transformer matches

or exceeds Potts models on 98.5% of inputs and matches or

exceeds ESM-1b on 91.0% of inputs. Fig. 2 also shows un-

supervised contact performance as a function of MSA depth.

The model outperforms ESM-1b and Potts models across

all MSA depths and has a significant advantage for lower

depth MSAs. We find no statistically significant correlation

between sequence length and contact precision.

4.2. Supervised Contact Prediction

Used independently, features from current state-of-the-art

protein language models fall short of co-evolutionary fea-

tures from Potts models on supervised contact prediction

tasks (Rives et al., 2020).

We evaluate the MSA Transformer as a component of a

supervised structure prediction pipeline. Following Rives

et al. (2020), we train a deep residual network with 32 pre-

activation blocks, each with a filter size of 64, using learning

rate 0.001. The network is supervised with binned pairwise

distance distributions (distograms) using the trRosetta train-

ing set (Yang et al., 2019) of 15051 MSAs and structures.

Table 3. Supervised contact prediction on CASP13 and CAMEO

(long-range precision). ∗Uses outer-concatenation of the query

sequence representation as features. †Additionally uses the row

attention maps as features.

CASP13-FM CAMEO

Model L L/5 L L/5

trRosettabase 45.7 69.6 50.9 75.5

trRosettafull 51.8 80.1 53.2 77.5

Co-evolutionary 40.1 65.2 47.3 72.1

ProTrans-T5 25.0 41.4 40.8 63.3

ESM-1b 28.2 50.2 44.4 68.4

MSA Transformer∗ 54.5 80.2 53.6 78.0

MSA Transformer† 54.6 77.5 55.8 79.1

We evaluate two different ways of extracting features from

the model. In the first, we use the outer concatenation of the

output embeddings of the query sequence. In the second,

we combine the outer concatenation with the symmetrized

row self-attention maps. For comparison, we train the same

residual network over co-evolutionary features from Potts

models (Seemayer et al., 2014). Additionally we compare

to features from state-of-the-art protein language models

ESM-1b and ProTrans-T5 using the outer concatenation of

the sequence embeddings. Dropout of 0.1 is used for all

language model-based contact predictors. We also compare

to trRosetta (Yang et al., 2019), a state-of-the-art supervised

structure prediction method prior to AlphaFold2 (Jumper

et al., 2020).

The MSA Transformer produces a substantial improvement

over co-evolutionary features for supervised contact pre-

diction. Table 3 shows a comparison between the models
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MSA Transformer

Table 4. CB513 8-class secondary structure prediction accuracy.

Model CB513

Netsurf 72.1

HMM Profile 71.2± 0.1
ProTrans-T5 71.4± 0.3
ESM-1b 71.6± 0.1
MSA Transformer 73.4 ± 0.3

on the CASP13-FM and CAMEO test sets. The best MSA

Transformer model, using the combination of attention maps

with features from the final hidden layer, outperforms all

other models including the trRosetta baseline model (which

uses 36 residual blocks) and the trRosetta full model (which

uses 61 residual blocks, data augmentation via MSA sub-

sampling, and predicts inter-residue orientations). Model

ensembling over all 5 released models is used in the eval-

uation of the trRosetta models. Table A.4 gives additional

comparisons with LSTM and transformer protein language

models available in the literature.

4.3. Secondary Structure Prediction

To further evaluate the quality of representations generated

by the MSA Transformer, we train a state-of-the-art down-

stream head based on the Netsurf architecture (Klausen

et al., 2019). The downstream model is trained to predict

8-class secondary structure from the pretrained representa-

tions. We evaluate models on the CB513 test set (Cuff &

Barton, 1999). The models are trained on the Netsurf train-

ing dataset. Representations from the MSA Transformer

(72.9%) surpass the performance of HMM profiles (71.2%)

and ESM-1b embeddings (71.6%) (Table 4).

4.4. Ablation Study

We perform an ablation study over seven model hyperpa-

rameters, using unsupervised contact prediction on the vali-

dation set for evaluation. For each combination of hyperpa-

rameters, a model is pre-trained with the masked language

modeling objective for 100k updates. Training curves for

the models are shown in Fig. A.3 and Top-L long-range

precision is reported in Table A.2.

The ablation studies show the use of tied attention plays a

critical role in model performance. After 100k updates, a

model trained with square-root normalized tied attention

outperforms untied attention by more than 17 points and

outperforms mean normalized tied-attention by more than 6

points on long-range contact precision.

Parameter count also affects contact precision. A model

with half the embedding size (384) and only 30M parameters

reaches a long-range precision of 52.8 after 100k updates,
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Figure 4. Comparison of MSA selection strategies. Model perfor-

mance increases with more sequences. Selection strategies that

maximize diversity of the input (MaxHamming and hhfilter) per-

form best. Random selection is nearly as good, suggesting the

model has learned to compensate for the varying diversity during

training time. Minimizing diversity performs worst. Using diver-

sity maximizing approaches the MSA Transformer outperforms

ESM-1b and Potts baselines using just 16 input sequences.

3.5 points lower than the base model, yet 11.7 points higher

than the state-of-the-art 650M parameter single-seequence

model. See Appendix A.3 for further discussion.

5. Model Analysis

We examine how the model uses its input MSA in experi-

ments to understand the role of sequence diversity, attention

patterns, and covariation in the MSA.

5.1. Effect of MSA diversity

The diversity of the input sequences strongly influences

inference of structure. We explore three inference time

strategies to control the diversity of the input sequence

sets: (i) diversity maximizing, (ii) diversity minimizing,

and (iii) random selection (see Section 3). Fig. 4 shows

average performance across the test set for each selection

strategy as the number of sequences used for input increases.

Two approaches to maximize diversity, greedy hamming

distance maximization and hhfilter, perform equivalently.

Both strategies surpass ESM-1b performance with just 16

input sequences. In comparison, the diversity minimizing

strategy, hamming distance minimization, performs poorly,

requiring 256 sequences to surpass ESM-1b. Random se-

lection performs well, although it falls behind the diversity

maximizing strategies. The qualitative effects of MSA di-

versity are illustrated in Fig. 3, where the addition of just

one high-diversity sequence outperforms the addition of 31

low-diversity sequences.

In principle, the model’s attention could allow it to identify

and focus on the most informative parts of the input MSA.
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Figure 5. Left: Average correlation between row-attention and

column entropy. This is computed by taking an average over the

first dimension of each L× L row-attention map and computing

correlation with per-column entropy of the MSA. Right: Average

correlation between column-attention and sequence weights. This

is computed by taking an average over the first two dimensions for

each L×M×M column-attention map and computing correlation

with sequence weights (see Appendix A.5). Both quantities are

measures of MSA diversity. The relatively high correlation (>

0.57) of some attention heads to these measures suggests the model

explicitly looks at diverse sequences.

We find row attention heads that preferentially attend to

highly variable columns. We also identify specific column

attention heads that attend to more informative sequences.

In this experiment random subsampling is used to select

inputs for the model. Fig. 5 compares the distribution of

attention weights with two measures of MSA diversity: (i)

per-column entropy of the MSA; and (ii) computed sequence

weights (Appendix A.5). Per column entropy gives a mea-

sure of how variable a position is in the MSA. Computed

sequence weights measure how informative a sequence is in

the context of the other sequences in the MSA. Sequences

with few similar sequences receive high weights. The maxi-

mum average Pearson correlation between a row attention

head and column entropy is 0.59. The maximum average

Pearson correlation between a column attention head and

sequence weights is 0.58. These correlations between at-

tention weights and measures of MSA diversity suggest

the model is specifically looking for informative sequences

when processing the input.

5.2. Attention Corresponds to Protein Contacts

In Section 4.1, we use the heads in the model’s tied row

attention directly to predict contacts in the protein’s three-

dimensional folded structure. Following Rao et al. (2021)

we fit a sparse logistic regression to the model’s row atten-

tion maps to identify heads that correspond with contacts.

Fig. A.1 shows the weight values in the learned sparse lo-

gistic regression fit using 20 structures. A sparse subset (45

/ 144) of heads are predictive of protein contacts. The most

predictive heads are concentrated in the final layers.

5.3. Inference: Covariance vs. Sequence Patterns

Potts models and single-sequence language models predict

protein contacts in fundamentally different ways. Potts mod-

els are trained on a single MSA; they extract information

directly from the covariance between mutations in columns

of the MSA. Single-sequence language models do not have

access to the MSA, and instead make predictions based on

patterns seen during training. The MSA Transformer may

use both covariance-based and pattern-based inference. To

disentangle the two modes, we independently ablate the

covariance and sequence patterns in the model’s input via

random shuffling. To ensure that there is enough informa-

tion in the input for covariance-based extraction to succeed,

we subsample each MSA to 1024 sequences using hhfilter,

using only MSAs with at least 1024 sequences, and apply

the model to unshuffled and shuffled inputs.

To remove covariance information, we randomly permute

the values in each column of the MSA. This preserves per-

column amino acid frequencies (PSSM information) while

destroying pairwise correlations between columns. Under

this condition, Potts model performance drops to the random

guess baseline. Since ESM-1b takes a single sequence as

input, the permutation trivially produces the same sequence,

and the result is unaffected. Unlike the Potts model, the

MSA Transformer retains some ability to predict contacts,

which increases sharply as a function of MSA Depth. This

indicates that the model can make predictions from patterns

in the sequence profile in the absence of covariance.

To remove sequence patterns seen during training, we ran-

domly permute the order of positions (columns) in the MSA.

This preserves all covariance information between pairs of

columns, but results in a scrambled input dissimilar to a

real protein. Under this condition, Potts model performance

is unaffected since its parameterization is invariant to se-

quence order. ESM-1b performance drops to the random

guess baseline. The MSA Transformer does depend on

sequence order, and predicts spurious contacts along the di-

agonal of the reordered sequence. When predicted contacts

with sequence separation < 6 are removed, the remaining

predictions align with the correct contacts. This shows the

model can predict directly from covariance when presented

with sequence patterns unobserved in training.

Together these ablations independently destroy the informa-

tion used by Potts models and single-sequence language

models, respectively. Under both conditions, the MSA

Transformer maintains some capability to predict contacts,

demonstrating that it uses both modes of inference.

6. Discussion

Prior work in unsupervised protein language modeling has

focused on inference from individual sequences. We study

an approach to perform inference from a set of aligned se-

quences in an MSA. We use axial attention to efficiently

parameterize attention over the rows and columns of the
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Figure 6. The MSA Transformer uses both covariance and similarity to training sequences to perform inference. Left: Examples (pdbid:

5ahw, chain: A) of model performance after independently shuffling each column of an MSA to destroy covariance information, and after

independently permuting the order of positions to destroy sequence patterns. The MSA Transformer maintains reasonable performance

under both conditions. A Potts model fails on the covariance-shuffled MSA, while a single-sequence language model (ESM-1b) fails on

the position-shuffled sequence. Right: Model performance before and after shuffling, binned by depth of the original (non-subsampled)

MSA. 1024 sequence selected with hhfilter are used as input to MSA Transformer and Potts models. MSAs with fewer than 1024

sequences are not considered in this analysis. Average Top-L long-range precision drops from 52.9 (no ablation) to 15.9 (shuffled

covariance) and 27.9 (shuffled positions) respectively. A Null (random guessing) baseline is also considered. Potts model performance

drops to the Null baseline under the first condition and ESM-1b performance drops to the Null baseline under the second condition. The

MSA Transformer produces reasonable predictions under both scenarios, implying it uses both modes of inference.

MSA. This approach enables the model to extract infor-

mation from dependencies in the input set and generalize

patterns across MSAs. We find the internal representations

of the model enable state-of-the-art unsupervised structure

learning with an order of magnitude fewer parameters than

current protein language models.

While supervised methods have produced breakthrough re-

sults for protein structure prediction (Jumper et al., 2020),

unsupervised learning provides a way to extract the informa-

tion contained in massive datasets of sequences produced

by low cost gene sequencing. Unsupervised methods can

learn from billions of sequences, enabling generalization to

regions of sequence space not covered by structural knowl-

edge.

Models fit to MSAs are widely used in computational bi-

ology including in applications such as fitness landscape

prediction (Riesselman et al., 2018), pathogenicity predic-

tion (Sundaram et al., 2018; Frazer et al., 2020), remote

homology detection (Hou et al., 2018), and protein design

(Russ et al., 2020). The improvements we observe for struc-

ture learning suggest the unsupervised language modeling

approach here could also apply to these problems.

Improvement in unsupervised learning of structure and func-

tion with protein language models has been linked to scale

of the models (Rives et al., 2020). Further scaling the ap-

proach studied here in the number of parameters and input

sequences is a potential direction for investigating the limits

of unsupervised learning for protein sequences.
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A. Appendix

A.1. Unsupervised Contact Prediction

For unsupervised contact prediction, we adopt the methodol-

ogy from Rao et al. (2021), which shows that sparse logistic

regression trained on the attention maps of a single-sequence

transformer is sufficient to predict protein contacts using a

small number (between 1 − 20) of training structures. To

predict the probability of contact between amino acids at

position i and j, the attention maps from each layer and

head are independently symmetrized and corrected with

APC (Dunn et al., 2008). The input features are then the

values ālhij for each layer l and head h. The models have

12 layers and 12 heads for a total of 144 attention heads.

2 4 6 8 10 12

Head

2
4

6
8

1
0

1
2

L
ay

er

Regression Weight

0 5.00

Layer Avg.

-16.00

-8.00

0.00

8.00

16.00

Figure A.1. Weight values of learned sparse logistic regression

trained on 20 structures. A sparse subset (55 / 144) of contact

heads, largely in the final layers, are predictive of protein contacts.

An L1-regularization coefficient of 0.15 is applied. The

regression is trained on all contacts with sequence separation

≥ 6. 20 structures are used for training. Trained regression

weights are shown in Fig. A.1.

A.2. Dataset Generation

For the unsupervised training set we retrieve the UniRef-50

(Suzek et al., 2007) database dated 2018-03. The UniRef50

clusters are partitioned randomly in 90% train and 10%

test sets. For each sequence, we construct an MSA using

HHblits, version 3.1.0. (Steinegger et al., 2019) against the

UniClust302017−10 database (Mirdita et al., 2017). Default

settings are used for HHblits except for the the number of

search iterations (-n), which we set to 3.

A.3. Ablation Studies

Ablation studies are conducted over a set of seven hyperpa-

rameters listed in Table A.2. Since the cost of an exhaustive

search over all combinations of hyperparameters is pro-

hibitive, we instead train an exhaustive search over four of

the hyperparameters (embedding size, block order, tied at-

tention, and masking pattern) for 10k updates. The best run

is then selected as the base hyperparameter setting for the
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Figure A.2. Distribution of MSA depths in the MSA Transformer

training set. Average MSA depth is 1192 and median MSA depth

is 1101.

Table A.1. Validation perplexity and denoising accuracy on

UniRef50 validation MSAs. PSSM probabilities and nearest-

neighbor matching are used as baselines. To compute perplexity

under the PSSM, we construct PSSMs using the input MSA, taking

the cross-entropy between the PSSM and a one-hot encoding of

the masked amino acid. When calculating PSSM probabilities,

we search over pseudocounts in the range [10−10, 10), and select

10−2, which minimizes perplexity. For denoising accuracy, the

argmax for each column is used. For nearest-neighbor matching,

masked tokens are predicted using the values from the sequence

with minimum hamming distance to the masked sequence. This

does not provide a probability distribution, so perplexity cannot

be calculated. MSAs with depth 1 are ignored, since the baselines

fail in this condition. Perplexity ranges from 1 for a perfect model

to 21 for a uniform model selecting over the common amino acids

and gap token.

Model Perplexity Denoising Accuracy

PSSM 14.1 41.4

Nearest-Neighbor - 46.7

MSA Transformer 2.44 64.0

full ablation study, in which only one parameter is changed

at a time.

For the full ablation study, each model is trained for 100k

updates using a batch size of 512. The four best performing

models are then further trained to 150k updates. Contact

prediction on the trRosetta dataset (Yang et al., 2019) is

used as a validation task. Precision after 100k updates (and

150k for the best models) is reported in Table A.2 and the

full training curves are shown in Fig. A.3. The model with

best hyperparameters is then further trained to 450k updates.

The performance of this model is reported in Table A.3.

Validation perplexity is also reported in Table A.2. In gen-

eral we find limited correspondence between perplexity and

contact prediction performance across models.
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Table A.2. Hyperparameter search on MSA Transformer. P@L is long-range (s ≥ 24) precision on unsupervised contact prediction

following Rao et al. (2021). Perplexity is reported after 100k updates and precision is reported after 100k and 150k updates.

D Block Tied Masking Mask p MSA Pos Emb Subsample
P@L

(100k)

P@L

(150k)

Ppl

(100k)

768 Row-Column Sqrt Uniform 0.15 No Log-uniform 56.3 56.3 3.01

384 52.8 - 3.10

Column-Row 55.7 - 3.01

None 42.1 - 3.03

Mean 50.1 - 3.00

Column 38.8 - 3.54

0.2 56.6 56.3 3.04

Yes 56.5 57.1 3.00

Full 56.5 56.1 2.91

Table A.3. Average precision on 14842 test structures for MSA and single-sequence models trained on 20 structures.

6 ≤ sep < 12 12 ≤ sep < 24 24 ≤ sep

Model L L/2 L/5 L L/2 L/5 L L/2 L/5

Potts 17.2 26.7 44.4 21.1 33.3 52.3 39.3 52.2 62.8

TAPE 9.9 12.3 16.4 10.0 12.6 16.6 11.2 14.0 17.9

ProtBERT-BFD 20.4 30.7 48.4 24.3 35.5 52.0 34.1 45.0 57.4

ProTrans-T5 20.1 30.6 48.5 24.6 36.1 52.4 35.6 46.1 57.8

ESM-1b 21.6 33.2 52.7 26.2 38.6 56.4 41.1 53.3 66.1

MSA Transformer 25.6 41.0 64.6 31.9 48.9 71.1 57.4 71.7 82.1

Table A.4. Supervised Contact Prediction performance on CASP13-FM and CAMEO-hard targets. Reported numbers are long-range

(s ≥ 24) contact precision. Three variants of the MSA Transformer are included for comparison: ∗unsupervised model, †supervised

model using final hidden representations of the reference sequence as input, ‡supervised model using final hidden representations of

reference sequence and all attention maps as input. Baseline and final trRosetta models are also included for comparison. L is defined as

the number of valid residues.

CASP13-FM CAMEO

Model L L/2 L/5 L L/2 L/5

Co-evolutionary 40.1 52.5 65.2 47.3 60.9 72.1

Unirep 11.2 14.5 16.6 17.8 23.0 30.8

SeqVec 13.8 18.3 21.9 22.5 30.3 39.8

TAPE 12.3 14.4 17.8 15.9 20.6 26

ProtBERT-BFD 24.7 32.1 40.6 37.0 48.1 60.0

ProTrans-T5 25.0 32.9 41.4 40.8 52.5 63.3

ESM-1b 28.2 37.4 50.2 44.4 57.2 68.4

trRosettabase 45.7 58.4 69.6 50.9 64.6 75.5

trRosettafull 51.8 66.6 80.1 53.2 67.1 77.5

MSA Transformer∗ 44.8 59.7 72.5 43.5 55.9 66.8

MSA Transformer† 54.5 70.0 80.2 53.6 68.4 78.0

MSA Transformer‡ 54.6 68.4 77.5 55.8 69.8 79.1
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MSA Transformer

Potts (Balakrishnan et al., 2011), TAPE transformer (Rao

et al., 2019), ESM-1b (Rives et al., 2020), ProtBERT-BFD,

and ProTrans-T5 (Elnaggar et al., 2020) are used as unsu-

pervised contact prediction comparisons. The best MSA

Transformer outperforms all other methods by a wide mar-

gin, increasing long-range precision at L by a full 16 points.

See below for a discussion of all seven hyperparameters.

A.3.1. EMBEDDING SIZE (D)

Since the MSA Transformer is provided with more infor-

mation than single sequence protein language models, it is

possible that many fewer parameters are needed to learn the

data distribution. To test this hypothesis we train a model

with half the embedding size (384 instead of 768) resulting

in 30M total parameters. The resulting model achieves a

Top-L long-range precision of 52.8 after 100k updates, 3.5

points lower than the baseline model. This suggests that

model size is still an important factor in contact precision,

although also shows that a model with fewer than 30M

parameters can still outperform 650M and 3B parameter

single-sequence models.

A.3.2. MASKING PATTERN

We consider two strategies for applying BERT masking

to the MSA: uniform and column. Uniform masking ap-

plies masking uniformly at random across the MSA. Col-

umn masking always masks full columns of the MSA. This

makes the training objective substantially more difficult

since the model cannot look within a column of an MSA

for information about masked tokens. We find that column

masking is significantly worse (by almost 20 points) than

uniform masking.

A.3.3. BLOCK ORDERING

Row attention followed by column attention slightly outper-

forms column attention followed by row attention.

A.3.4. TIED ATTENTION

We consider three strategies for row attention: untied, mean

normalization, and square root normalization (see Section 3).

We find that tied attention substantially outperforms untied

attention and that square root normalization outperforms

mean normalization.

A.3.5. MASKING PERCENTAGE

As the MSA Transformer has more context than single se-

quence models, its training objective is substantially easier

than that of single sequence models. Therefore, we explore

whether increasing the masking percentage (and thereby

increasing task difficulty) would improve the model. How-

ever, we do not find a statistically significant difference
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Figure A.3. Training curves for MSA Transformer with different

hyperparameters. See Section 4.4 for a description of each hyper-

parameter searched over. ESM-1b training curve, ESM-1b final

performance (after 505k updates), and average Potts performance

are included as dashed lines for comparison.

between masking 15% or 20% of the positions. Therefore,

we use a masking percentage of 15% in all other studies for

consistency with ESM-1b and previous masked language

models.

A.3.6. MSA POSITIONAL EMBEDDING

An MSA is an unordered set of sequences. However, due to

the tools used to construct MSAs, there may be some pat-

tern to the ordering of sequences in the MSA. We therefore

examine the use of a learned MSA positional embedding

in addition to the existing learned sequence positional em-

bedding. The positional embedding for a sequence is then

a learned function of its position in the input MSA (not in

the full MSA). Subsampled sequences in the input MSA are

sorted according to their relative ordering in the full MSA.

We find that the inclusion of an MSA positional embedding

does modestly increase model performance, and therefore

include it in our final model.
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MSA Transformer
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Figure A.4. KL Divergence between distribution of row attention

across amino acids and background distribution of amino acids.

The fraction of attention on an amino acid k is defined as the aver-

age over the dataset of alh

i 1{xi == k}, where xi is a particular

token in the input MSA and alh is the attention in a particular layer

and head. KL Divergence is large for early layers but decreases in

later layers.

A.3.7. SUBSAMPLE STRATEGY

At training time we explore two subsampling strategies. The

first strategy is adapted from Yang et al. (2019): we sam-

ple the number of output sequences from a log-uniform

distribution, with a maximum of N/L sequences to avoid

exceeding the maximum tokens we are able to fit in GPU

memory. Then, we sample that number of sequences uni-

formly from the MSA, ensuring that the reference sequence

is always chosen. In the second strategy, we always sample

the full N/L sequences from the MSA. In our hyperparame-

ter search, most models use the first strategy, while our final

model uses the second. We find no statistically significant

difference in performance between the two strategies. How-

ever, it is possible that the log-uniform strategy would help

prevent overfitting and ultimately perform better after more

training.

The CCMpred implementation of Potts (Balakrishnan et al.,

2011; Ekeberg et al., 2013), UniRep (Alley et al., 2019), Se-

qVec (Heinzinger et al., 2019), TAPE transformer (Rao et al.,

2019), ESM-1b (Rives et al., 2020), ProtBERT-BFD, and

ProTrans-T5 (Elnaggar et al., 2020) are used as supervised

contact prediction comparisons. In Table A.4 we show the

complete results for long-range precision over the CASP-13

FM targets and CAMEO-hard domains referenced in (Yang

et al., 2019). All baseline models are trained for 200 epochs

with a batch size of 4.

A.4. Attention to Amino Acids

Vig et al. (2020) examine the distribution of amino acids

attended to by single-sequence models. The attention in

single-sequence models is roughly equivalent to the row-

attention in our model, but there is no column-attention

analogue. We therefore examine the distribution of amino

acids attended to by the column attention heads. In Fig. A.4

we show the KL-divergence between the distribution of

attention across amino acids and the background distribution

of amino acids. The divergence is large for earlier layers

in the model but decreases in later layers, suggesting the

model stops focusing on the amino acid identities in favor

of focusing on other properties.

A.5. Sequence Weights

Sequence reweighting is a common technique used for fit-

ting Potts models which helps to compensate for data bias in

MSAs (Morcos et al., 2011). Informally, sequence reweight-

ing downweights groups of highly similar sequences to

prevent them from having as large of an effect on the model.

The sequence weight wi is defined as,

wi =

(

1 +
∑

j 6=i

1
{

dhamming(xi, xj) < 0.2
}

)−1

(3)

where xi, xj are the i-th and j-th sequences in the MSA,

dhamming is the hamming distance between two sequences

normalized by sequence length, and wi is the sequence

weight of the i-th sequence.
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