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Abstract

Background: The alignment of multiple protein sequences is one of the most commonly performed tasks in

bioinformatics. In spite of considerable research and efforts that have been recently deployed for improving the

performance of multiple sequence alignment (MSA) algorithms, finding a highly accurate alignment between

multiple protein sequences is still a challenging problem.

Results: We propose a novel and efficient algorithm called, MSAIndelFR, for multiple sequence alignment using the

information on the predicted locations of IndelFRs and the computed average log–loss values obtained from IndelFR

predictors, each of which is designed for a different protein fold. We demonstrate that the introduction of a new

variable gap penalty function based on the predicted locations of the IndelFRs and the computed average log–loss

values into the proposed algorithm substantially improves the protein alignment accuracy. This is illustrated by

evaluating the performance of the algorithm in aligning sequences belonging to the protein folds for which the

IndelFR predictors already exist and by using the reference alignments of the four popular benchmarks, BAliBASE 3.0,

OXBENCH, PREFAB 4.0, and SABRE (SABmark 1.65).

Conclusions: We have proposed a novel and efficient algorithm, the MSAIndelFR algorithm, for multiple protein

sequence alignment incorporating a new variable gap penalty function. It is shown that the performance of the

proposed algorithm is superior to that of the most–widely used alignment algorithms, Clustal W2, Clustal Omega,

Kalign2, MSAProbs, MAFFT, MUSCLE, ProbCons and Probalign, in terms of both the sum–of–pairs and total column

metrics.
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Background
Alignment of multiple protein sequences is a crucial step

in bioinformatics analyses, and is used in many appli-

cations including sequence annotation, phylogenetic tree

estimation, evolutionary analysis, secondary structure

prediction and protein database search [1, 2]. Multiple

sequence alignment (MSA) allows us to identify parts of

the protein sequences that are similar to one another with

gaps (spaces) inserted in such a way that similar parts of

these sequences can be easily identified [3]. The concept

of a gap in an alignment is important, since the gap loca-

tions indicate the locations of insertion or deletion (indel)
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mutation events in protein sequences. It should be noted

that the insertion or deletion of an entire subsequence

often occurs as a single mutational event, and such sin-

gle mutational events can create gaps of varying sizes [4].

In recent years, considerable effort has been devoted to

the development of MSA algorithms that can efficiently

detectmutations and generate highly accurate alignments.

Some of the significant algorithms are Clustal W2 [5],

Clustal Omega [6], Kalign2 [7], MSAProbs [8], MAFFT

[9, 10], MUSCLE [11], ProbCons [12] and Probalign [13].

Clustal W2, Clustal Omega, Kalign2 and MSAProbs

are progressive alignment algorithms, while MAFFT,

MUSCLE, ProbCons and Probalign generate an initial

alignment using the progressive alignment algorithm and

then iteratively refine this alignment to achieve higher
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alignment accuracy. A progressive alignment algorithm

involves three steps: (i) calculations of the pairwise dis-

tances between all pairs of sequences to determine the

similarity of each pair of sequences, (ii) construction of a

guide tree based on the distance matrix, and (iii) finally,

alignment of the sequences according to an order deter-

mined by the guide tree [4, 14].

Clustal W2 and Clustal Omega are derived from

Clustal W [15]. Clustal W2 calculates the pairwise dis-

tances between all pairs of sequences using the k–tuple

method [16], and then constructs the guide tree using

the unweighted pair group method with arithmetic mean

(UPGMA) [17]. Clustal Omega is the latest MSA algo-

rithm in the Clustal family, and the main improvements

of Clustal Omega over Clustal W2 are as follows: (i) it

can align any number of protein sequences, (ii) it allows

the use of a profile hidden Markov model, derived from

an alignment of protein sequences related to the input

sequences, and (iii) it allows the user to choose the num-

ber of iterations, in the absence of which it is a progres-

sive algorithm by default. Further, Clustal Omega is the

most accurate and scalable MSA algorithm amongst the

Clustal family. In Kalign2, the pairwise distances between

all pairs of sequences are estimated based on the the

Muth–Manber string matching algorithm [18] and the

guide tree constructed using UPGMA. MSAProbs [8] is

based on combining a pair hidden Markov model with

partition functions to calculate the posterior probabilities,

which are used in estimating the pairwise distance matrix.

In MSAProbs, the guide tree constructed using UPGMA.

It should be noted that MSAProbs is currently the most

accurate alignment algorithm. The alignment algorithms

MAFFT, MUSCLE, ProbCons and Probalign are not fully

progressive. In these algorithms, iterative refinement is

performed to improve the alignment and the guide tree

constructed using UPGMA for the next iteration.

Multiple sequence alignment algorithms use an

objective function (OF) to measure the quality of an

alignment. A simple OF should include a gap penalty

function to score the gaps and substitution matrices to

measure the similarity of amino acid pairs. The most

widely used gap penalty function is the affine gap penalty

(AGP), given by g(k) = go + kge for a gap of length k.

The function g(k) involves two parameters, go and ge, go
representing a gap opening penalty at a specific position

in the protein sequence and ge representing an extension

penalty for extending the gap. This linear AGP function

has the advantage of simplicity and ease of use in MSA

algorithms. However, this penalty function is restrictive

in the sense that the two parameters remain fixed for

aligning different positions in the protein sequence.

MSAProbs, Kalign2, ProbCons and Probalign are MSA

algorithms for which an AGP function is used. In

MSAprobs, ProbCons and Probalign, fixed parameters

are used for the AGP function, wherein a gap opening

penalty of −22 and a gap extension penalty of −1 are

used by default [8, 12, 13]. Kalign2 determines the default

gap penalties for protein alignments by training on a

BAliBASE 3.0 benchmark [19] in order to obtain opti-

mal alignment results. In the MAFFT, MUSCLE, Clustal

W2 and Clustal Omega MSA algorithms, a gap open-

ing penalty (GPO) and a gap extension penalty (GPE)

values are initially specified; then, these algorithms auto-

matically attempt to choose appropriate gap penalties

according to some specific rules. The algorithms MAFFT

and MUSCLE use an AGP function, wherein the default

values are modified depending on the number of existing

gaps at a particular position for a given profile [10, 11].

Clustal W2 and Clustal Omega use an AGP function,

wherein a gap opening penalty (GPO) and a gap exten-

sion penalty (GPE) are initially set by the user from a

menu, and then, these algorithms automatically attempt to

choose appropriate gap penalties for each sequence align-

ment according to the features of the input sequences,

such as sequence divergence, length, and local hydropho-

bic amino acids. It should be noted that the choice of the

AGP parameters has a substantial effect on the alignment

accuracy [2, 20, 21], and the widely–used AGP works well

for closely related or similar sequences, but they are less

effective for highly diverged or dissimilar sequences. As

a consequence, there has been a growing interest in con-

ducting multiple sequence alignment with more general

and flexible gap penalty functions.

In the present work, we propose a novel and efficient

algorithm for multiple sequence alignment, referred to as

MSAIndelFR, that incorporates the information concern-

ing the predicted indel flanking regions (IndelFRs). The

key innovation in MSAIndelFR is the use of the predicted

information about IndelFRs to propose a new variable

gap penalty (VGP) function, wherein the gap opening

penalty is position–specific and the gap extension penalty

is region–specific. It should be noted that the predicted

IndelFRs are the most likely regions for the gaps to be

introduced in the protein sequence alignment, since they

are strongly related to indel mutations [22–26]. There-

fore, it is expected that more accurate alignments can be

obtained by integrating the predicted information about

IndelFRs into the gap penalty function. To the best of our

knowledge, using the predicted information about Indel-

FRs in multiple sequence alignment is novel. The perfor-

mance evaluation results on MSAIndelFR indeed confirm

that incorporating the predicted information about the

indel flanking regions improves the alignment accuracy.

Methods
Indel flanking regions (IndelFRs)

When a pair of protein sequences is aligned, a gap in any of

the two sequences is defined as an indel region. Segments
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of these two sequences immediately before and after an

indel region are called flanking regions, as shown in Fig. 1.

In [27], an indel along with its left and right flanking

regions is referred to as an indel flanking region (IndelFR).

The results in [27] strongly suggest that the IndelFRs

for a given protein sequence are confined only to the

IndelFR segments, which are the segments of the protein

sequence to which all the predicted IndelFRs collectively

belong to.

PPM IndelFR Predictor

A technique for building the IndelFR predictor for a given

protein fold, based on the prediction by partial match

(PPM) [28], was proposed in [27]. This PPM IndelFR pre-

dictor for a given protein fold contains two variable–order

Markov models, one for predicting the left flanking and

the other for predicting the right flanking regions. It is has

been shown in [27] that the best choice for the value of D,

the memory length of the PPM IndelFR predictor, is 4.

Given a test protein sequence Sn = s1s2s3 · · · sn of length

n, the PPM IndelFR predictor scans it using a running

window of length L = 10 moving it one amino acid at

a time, to determine whether the string of amino acids

within a window contains an IndelFR or not. It should be

noted that the impact of an indel on its flanking regions

reduces dramatically as we move away from the indel, and

is negligible after 10 amino acids [23].

The PPM IndelFR predictor, with D = 4, computes

the left and right average values for each position in the

protein sequence, and then uses the algorithm in [27] to

extract the predicted locations of IndelFRs in the protein

sequence. In [27], the average log–loss value for window

of length L = 10 at position i, wini = sisi+1 · · · si+9, in the

sequence is defined as

loglossP(wini) =

−
1

L

(

logP0(si) + logP1(si+1|si)+

logP2(si+2|s1si+1) + · · · +

logPD(si+L−1|si+L−1−D · · · si+L−2)
)

(1)

where the logarithm is taken to base 2. For the purpose

of illustration, the left and right average log–loss values

for the protein sequence d1liab_ at different positions are

shown in Fig. 2.

The PPM IndelFR predictors for 11, 14 and 18 protein

folds from different protein classes: All–α proteins, All–β

proteins and α and β proteins (a/b), respectively, have

been constructed in [27] and for convenience, included in

the supplementary data of this paper (Additional file 1:

Tables S1–S3). Hence, we have 43 different PPM IndelFR

predictors. It should be noted that the PPM IndelFR pre-

dictors were trained using the IndelFR database [22],

which in turn provided IndelFRs for some selected pro-

tein sequences belonging to certain selected protein folds

from the SCOP database [29]. Moreover, it should be

pointed out that the PPM IndelFR predictors in [27] do

not use directly any protein structure information (alpha,

beta or coil) and use only the information about the posi-

tions, lengths, and amino acid compositions of the indel

flanking regions listed in the IndelFR database; however,

the IndelFR database itself has used the structure-based

sequence alignment to extract the information concerning

the indel flanking regions. In [27], it has been demon-

strated that once the PPM IndelFR predictor is built for

a given protein fold, it can be used to compute the aver-

age log–loss values for any protein sequence belonging

to this protein fold. Hence, we will be able to compute

the average log–loss values, and then use the algorithm

in [27] to predict the IndelFRs for protein sequences that

are available in the selected protein folds, even though

the IndelFR database did not provide IndelFRs for these

protein sequences.

MSAIndelFR algorithm

In this section, we propose an algorithm for MSA, termed

MSAIndelFR algorithm, that makes use of the computed

average log–loss values and the predicted IndelFRs from

the PPM IndelFR predictor. The results in [27] concerning

PPM IndelFR predictor have shown that the computed

average log–loss values in and around an IndelFR are

much smaller than that in other regions. In view of

Fig. 1 The indel and the flanking regions
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Fig. 2 The left and right average log-loss values for the d1liab_ using left PPM (LPPM) and right PPM (RPPM) IndelFR predictor. The solid dots

represent the start locations of the predicted left flanking regions and the stars that of the predicted right flanking regions

this observation, we combine the left and right average

log–loss values for any given protein sequence S
n =

s1s2s3 · · · sn of length n to propose a position–specific gap

opening penalty function. The proposed position–specific

gap opening penalty at a particular position i in the

sequence, GPOi, is given by

GPOi =
{

min(LPPMi,RPPMi), 1 ≤ i ≤ (n − L + 1)

GPO(n−L+1), (n − L + 1) < i ≤ n

(2)

where LPPMi and RPPMi are, respectively, the left and

right average log–loss values at position i. It is seen from

this equation that GPOi, for (n − L + 1) < i ≤ n, is

chosen to be equal to the gap opening penalty at position

i = n − L + 1. The gap opening penalties at different

positions for d1liab_ are shown in Fig. 3.

In addition to using the gap opening penalty function

GPOi, we use the predicted IndelFRs to propose a region–

specific gap extension penalty function. As mentioned in

the introduction, the predicted IndelFRs are the most

likely regions for the gaps to be introduced in the protein

sequence, since they are strongly related to indel muta-

tions [22–26]. Moreover, a single indel mutation event

often affects several adjacent amino acids in a protein

sequence [4]. This is taken into consideration in the pro-

posed definition of the gap extension penalty at position i

in the protein sequence, GPEi :

GPEi =

{

0, if position i ∈ IndelFRs

GPOi, otherwise
(3)

In the other words, a zero value is assigned to GPEi, if

the gap introduced at position i is in an IndelFR, while it

is equal to GPOi if i is not in an IndelFR.

As explained above, the gap penalty functions are set

using the IndelFRs predicted by the PPM IndelFR predic-

tor. However, the predictor for a given protein fold is not

trained using any benchmark or any of its subsets. In fact,

it is trained using the IndelFR database [22].

New FASTA format

We modify the standard FASTA format to include infor-

mation about the position–specific gap opening penalty

and the predicted locations of IndelFRs into the stan-

dard FASTA format (Additional file 1: Section 1). Hence,

the input protein sequences to the proposed MSAIndelFR

algorithm should be written using the modified version

of FASTA format, where the position–specific gap open-

ing penalty and the predicted locations of IndelFRs are

added after the main list of amino acids of the protein

sequence.

Fig. 3 The gap opening penalties for the d1liab_ extracted from the left and right average log–loss values shown in Fig. 2
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Alignment strategy

The alignment strategy is based on the standard pro-

gressive alignment method for aligning multiple pro-

tein sequences [14]. First, pairwise distances between

input sequences are calculated to form a distance matrix.

An accurate calculation of pairwise distances can be

accomplished by performing all the pairwise alignments

amongst the input sequences; however, this is not prac-

tical in view of time complexity, especially when the

number of sequences is large, since any pairwise align-

ment requires quadratic time for completion [30]. There-

fore, some of the existing MSA algorithms have used

the k–tuple method [16] to calculate the pairwise dis-

tances approximately. It has been shown in [7] that the

Muth–Manber string matching algorithm proposed in

[18] to calculate the pairwise distances is more accurate

than the k–tuple method; this algorithm finds the dis-

tance between two sequences by matching patterns that

contain at most one error. For example, consider two

sequences ABCABCABC and ABDABDABD that are 67 %

identical. The k–tuple method (with a pattern length of 3)

reports that these two sequences are not identical (i.e.,

share no exact patterns), while the Muth–Manber algo-

rithm reports that these two sequences are 67 % identical.

In view of this, we employ the Muth–Manber algorithm

in our article to calculate the pairwise distances between

the input protein sequences.

Since protein sequences are normally searched with

short length patterns [7, 11, 15, 31], we search with pat-

terns of length 3 of amino acids to calculate the pairwise

distances. Then, a guide tree is constructed from the dis-

tance matrix using the unweighted pair group method

with arithmetic mean (UPGMA) [17], which is the most

popular method for guide tree construction and used

in many MSA algorithms as the default option. Finally,

sequences or profiles are aligned according to the order

prescribed by the guide tree. Hence, at each internal

node of the guide tree, two sequences, or two profiles

or one sequence and one profile are aligned. The pro-

cess of aligning sequences/profiles continues until the

highest level of the guide tree is reached. For this pur-

pose, we use the dynamic programming (DP) approach

along with the proposed gap penalty functions, namely,

the position–specific gap opening penalty function and

the region-specific gap extension penalty function to align

sequences/profiles.

Dynamic programming with variable gap penalty function

We assume that the input protein sequences are evo-

lutionary related over their entire lengths. Therefore, a

global alignment of the input sequences will be obtained

using the DP approach. The optimal alignment in the DP

approach is the alignment which has the highest score,

where the score of an alignment is found by using a gap

penalty function and the substitution matrix S. It should

be noted that any alignment between protein sequences is

intended to reflect the cost of mutational events needed to

transform one sequence to the another [4, 30]. In this arti-

cle, we use a VGP function, which has two subfunctions:

the position–specific gap opening penalty function GPOi

and the region–specific gap extension penalty function

GPEi.

Let An = a1a2a3 · · · an and B
m = b1b2b3 · · · bm be

two sequences of length n and m, respectively. The DP

approach finds the optimal alignment between A and B

by computing the optimal alignments between all prefixes

of A and B. The amino acids in A and B are assigned

to one of three possible states: aligned, gap in sequence

A, or gap in sequence B during the alignment process.

These states are represented by three matrices in the DP

approach. LetA [1 : i]= a1a2 · · · ai be a prefix of sequence

A, B [1 : j]= b1b2 · · · bj be a prefix of sequence B, M(i, j)

be the optimal score for aligning A [1 : i] and B [1 : j]

given that ai is aligned to bj, IA(i, j) be the optimal score

given that ai is aligned to a gap, and IB(i, j) be the optimal

score given that bj is aligned to a gap, where 1 ≤ i ≤ n and

1 ≤ j ≤ m. The recursive equations to find the various ele-

ments in the state matrices M(i, j), IA(i, j), and IB(i, j) are

given by

M(i, j) = s(ai, bj) +

max

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M(i − 1, j − 1),
With ai−1 aligned to bj−1,

, align ai to bj

IA(i, j),
End a gap in A,

, align ai to bj

IB(i, j),
End a gap in B,

, align ai to bj

(4)

IA(i, j) =

max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(i − 1, j) −
(

GPOA
i + GPEAi

)

,
Open a new

gap in A

IA(i − 1, j) − GPEAi ,
Extend an old

gap in A

(5)

IB(i, j) =

max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(i, j − 1) −

(

GPOB
j + GPEBj

)

,
Open a new

gap in B

IB(i, j − 1) − GPEBj ,
Extend an old

gap in B

(6)

with

M(0, 0) = 0,M(0, j) = GPOB
1 +

m
∑

j=1

GPEBj ,

M(i, 0) = GPOA
1 +

n
∑

i=1

GPEAi

IA(0, j) = −∞, IB(i, 0) = −∞

(7)
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where s(ai, bj) can be obtained directly from the substitu-

tion matrix S, GPOA
i and GPEAi are, respectively, the gap

opening and extension penalty functions for the sequence

A, and GPOB
j and GPEBj are the corresponding penalty

functions for the sequence B. Once the computation ofM

is completed, it contains the maximum alignment score,

and a trace back procedure is used to retrieve the align-

ment between A and B.

In this article, we implement the memory efficient

DP algorithm proposed in [32], which can align two

sequences of lengths, say n and m (n ≥ m), with a time

complexity of O(mn) and a space complexity of O(n).

Since it has been shown in [33] that the selection of a

particular substitution matrix does not noticeably affect

the alignment accuracy, and that there is little difference

in the alignment accuracy using BLOSUM [34], PAM

[35] or GONNET [36] as the substitution matrix, we use

GONNET250 as the substitution matrix.

In order to continue aligning sequences/profiles until

the highest level of the guide tree is reached, we need the

gap penalty functions: GPOi and GPEi, for each profile.

For example, consider the alignment of two sequences,

say, A and B at the lowest level of the tree to produce

the profile C. The position–specific gap opening penalty

function for profile C is defined to be

GPOC
i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

GPOA
j + GPOB

k ,
if aj is aligned with

bk at position i

GPOA
j ,

if there is a gap in

B at position i

GPOB
k ,

if there is a gap in

A at position i

(8)

where GPOA
j , GPOB

k and GPOC
i are the gap opening

penalty functions at positions j, k, and i for A, B and C,

respectively. In a similar manner, we define the gap exten-

sion penalty function for C. This makes a gap more likely

to occur at a position, where a gap already exists. If there

is no gap at a position i in C, then the gap opening penalty

is increased by adding both GPOA
j and GPOB

k to avoid

introducing gaps at the aligned positions.

As already mentioned, the internal nodes of the guide

tree are visited in a bottom–up order, and for each vis-

ited node a pairwise alignment of sequences/profiles is

computed using the DP approach along with the proposed

VGP function. The MSA associated with the root node is

the final alignment.

Results and discussion
The performance ofMSA algorithms are usually evaluated

on alignment benchmarks containing reference align-

ments. In this article, we use four popular benchmarks,

namely, BAliBASE 3.0 [19], OXBENCH [37], PREFAB 4.0

[11] and SABmark 1.65 [38] to evaluate the performance

of the proposed MSAIndelFR algorithm as well as that

of the eight most–widely used MSA algorithms, namely,

Clustal W2 version 2.1, Clustal Omega version 1.2.0,

MSAProbs version 0.9.7, Kalign2 version 2.04, MAFFT

version 7.184, MUSCLE version 3.8.31., ProbCons version

1.12 and Probalign version 1.4. For MAFFT, auto option is

used with the maximum iterative refinement (maxiterate

option) set to 1000, while the default options are used

for all the other algorithms, including the proposed

MSAIndelFR.

In the present article, we select the reference align-

ments from the above four benchmarks that have pro-

tein sequences belonging to one of the 43 protein folds

(Additional file 1: Tables S1–S3). We use the PPM IndelFR

predictor to compute the average log–loss values, and

then use the algorithm in [27] to predict the IndelFRs

for protein sequences that are available in the alignment

benchmarks, even though the IndelFR database does not

contain IndelFRs for these protein sequences. We would

like to emphasize that no training is needed in the pro-

posed MSAIndelFR algorithm. Further, it does not make

use of the protein information (alpha, beta or coil) as

input. It makes use of the computed average log–loss val-

ues and the predicted IndelFRs obtained from the PPM

IndelFR predictors proposed in [27]. It should be noted

that the PPM IndelFR predictors do not use any of the

above–mentioned four benchmarks for their training, and

the training set for any of the PPM IndelFR predictors

is virtually different from the test set of the proposed

MSAIndelFR algorithm on all the four benchmarks (See

Section 5 of the Additional file 1).

We use the measures, sum-of-pairs (SP) and total

columns (TC) [20], which are the most commonly used

metrics, to evaluate and compare the performance of

the various MSA algorithms. The SP value is defined as

the number of correctly aligned amino acid pairs found

in the test alignment divided by the total number of

aligned amino acid pairs in the core blocks of the refer-

ence alignment, where the core blocks of the reference

alignment refer to the regions for which reliable align-

ments are known to exist. We use the BENCH database

(Edgar, R.C., http://www.drive5.com/bench) to determine

the core blocks in the selected benchmarks. It should be

noted that the quality (Q) metric used in [11] is equiv-

alent to SP. The TC value is defined as the number of

correctly aligned columns found in the test alignment

divided by the total number of aligned columns in the

core blocks of the reference alignment, and hence, gives

the proportion of the total alignment columns that is

recovered in the test alignment. A value of 1.0 for TC indi-

cates perfect agreement between the test and reference

alignments. It should be noted that the TC value is equiv-

alent to the SP value in the case of pairwise alignment

http://www.drive5.com/bench
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(as in the PREFAB benchmark). We calculate the SP and

TC values employing the QSCORE software available at

the website [39].1 In order to determine if the improve-

ments, achieved in terms of the SP and TC values, by the

proposed MSAIndelFR algorithm are statistically signif-

icant, the Wilcoxon matched-pair signed-rank test [40]

is used.

Evaluation using BAliBASE 3.0

For evaluating multiple sequence alignment algorithms,

BAliBASE [19] is the most widely used benchmark. This

benchmark contains 3D structural–based alignments that

are manually refined. Out of the 386 reference alignments

in BAliBASE, there are 186 alignments that have protein

sequences which belong to one or the other of the 43

selected protein folds.

The average SP and TC values of MSAIndelFR as well as

those of the other algorithms using this benchmark as ref-

erence are given in Table 1. The results show that MSAIn-

delFR achieves the highest SP and TC values. Specifically,

it provides an average SP value of 86.23 % represent-

ing an improvement of 6.02 %, 1.37 %, 4.12 %, 4.29 %,

6.17 %, 10.37 %, 0.39 % and 0.78 % over that of MSAProbs,

MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,

ProbCons and Probalign respectively. Also, it provides an

average TC value of 57.56 % representing an improvement

of 2.62 %, 3.06 %, 10.15 %, 7.20 %, 13.87 %, 18.19 %, 2.74 %

and 3.92 %, respectively, over that of the other alignment

algorithms.

Boxplots would show more detailed information about

the distribution of the SP and TC values than that pro-

vided by Table 1. They indicate whether a distribution is

skewed or if there are potential unusual observations (out-

liers) in the data set. In addition, they are very useful when

large numbers of test cases are involved and when two or

more methods are being compared. Finally, they can be

used to determine the first, second (median), and third

quartiles as well as interquartile range (IQR) values for

various distributions. The width of a box indicates the IQR

value, which is the difference between the third and first

quartile values.

In view of the above reasons, boxplots resulting from

the distributions of the SP values of the various algo-

rithms evaluated using BAliBASE 3.0 are shown in Fig. 4.

This figure clearly shows that MSAIndelFR performs bet-

ter than the other algorithms, since it has the lowest IQR

value as well as the highest first quartile value. It is noted

that even though MSAIndelFR, and MSAprobs have an

almost equal median value of 91 %, the distribution of the

SP values generated by MSAIndelFR is much narrower

than that generated by MSAProbs, since the former has

an IQR value of 12 %, whereas the latter a value of 20 %.

In addition, it is seen that 75 % of the MSAIndelFR align-

ments have an SP value of more than 84 % (first quartile),

whereas 25 % of the alignments have an SP value of more

than 96 % (third quartile). Figure 5 shows the distribu-

tions of the TC values of MSAIndelFR and those of the

other algorithms. It is seen from this figure that, just as the

case with respect to the SP values, MSAIndelFR performs

better than the other algorithms, just as the case is with

respect to the SP values.

Evaluation using OXBENCH

The OXBENCH benchmark [37] is a set of structure-

based alignments. Out of the 395 reference alignments

in OXBENCH, there are 191 alignments that have pro-

tein sequences which belong to one or the other of the 43

selected protein folds.

The average SP and TC values of MSAIndelFR as well as

those of the other algorithms using this benchmark as ref-

erence are given in Table 1. The results show that MSAIn-

delFR achieves the highest SP and TC values. Specifically,

Table 1 Average SP and TC values of MSAIndelFR and other multiple alignment algorithms for the benchmarks, BAliBASE 3.0,

OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65)

BAliBASE OXBENCH PREFAB SABRE

MSA algorithm SP (%) TC (%) SP (%) TC (%) SP (%) TC (%) SP (%) TC (%)

MSAIndelFR 86.23 57.56 91.88 83.83 59.35 59.35 53.59 34.38

MSAProbs 80.21 (54.93) (89.39) (79.78) (57.52) (57.52) (51.55) (25.21)

MAFFT 84.86 54.50 88.22 77.98 53.93 53.93 50.14 24.33

MUSCLE 82.11 47.41 88.66 78.93 55.74 55.74 46.33 20.80

Clustal Omega 81.94 50.35 88.05 77.76 55.96 55.96 45.11 19.58

Kalign2 80.06 43.68 87.55 77.30 56.33 56.33 41.64 18.91

Clustal W2 75.86 39.37 87.94 77.00 56.05 56.05 40.38 15.98

ProbCons (85.85) 54.81 88.86 78.80 56.44 56.44 51.27 24.97

Probalign 85.45 53.63 89.08 79.52 56.63 56.63 50.33 23.67

Bold faced values indicate the best performance, while the values in parentheses indicate the second best performance
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Fig. 4 Boxplots for the distributions of the SP values of MSAIndelFR and the other MSA algorithms using the BAliBASE 3.0 benchmark, where the top

and bottom of a box and the line in between represent the third quartile, first quartile and median, respectively

it provides an average SP value of 91.88 % represent-

ing an improvement of 2.49 %, 3.65 %, 3.22 %, 3.83 %,

4.33 %, 3.94 %, 3.02 % and 2.80 % over that of MSAProbs,

MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,

ProbCons and Probalign, respectively. Also, it provides an

average TC value of 83.83 % representing an improvement

of 4.05 %, 5.85 %, 4.90 %, 6.07 %, 6.53 %, 6.83 %, 5.02 %

and 4.31 %, respectively, over that of the other alignment

algorithms.

The boxplots for the SP and TC value distributions

of the various algorithms are given in Additional file 1:

Figures S1 and S2, respectively. These figures clearly show

that MSAIndelFR performs better than the other algo-

rithms, since it has the lowest IQR value as well as the

highest first quartile value. In addition, it is seen that 75 %

of the MSAIndelFR alignments have an SP value of more

than 91 % (first quartile), whereas 25 % of the alignments

have an SP value of 100 % (third quartile).

Fig. 5 Boxplots for the distributions of the TC values of MSAIndelFR and the other MSA algorithms using the BAliBASE 3.0 benchmark, where the top

and bottom of a box and the line in between represent the third quartile, first quartile and median, respectively
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Evaluation using PREFAB 4.0

The PREFAB 4.0 benchmark [11] is a fully automatically

generated benchmark containing 1681 reference align-

ments. Out of the 1681 reference alignments in PREFAB

4.0, there are 863 alignments that have protein sequences

which belong to one or the other of the 43 selected protein

folds.

The average SP and TC values of MSAIndelFR as well

as those of the other algorithms using this benchmark

as reference are given in Table 1. The results show that

MSAIndelFR achieves the highest SP and TC values.

Specifically, it provides an average SP value of 59.35 % rep-

resenting an improvement of 1.83 %, 5.42 %, 3.61 %, 3.39 %,

3.02 %, 3.30 %, 2.92 % and 2.72 % over that of MSAProbs,

MAFFT, MUSCLE, Clustal Omega, Kalign2, Clustal W2,

ProbCons and Probalign, respectively. Also, it provides a

similar TC improvements over the other algorithms.

The boxplots for the SP and TC value distributions

of the various algorithms are given in Additional file 1:

Figures S3 and S4, respectively. These figures clearly show

that MSAIndelFR performs better than the other algo-

rithms, since it has the lowest IQR value as well as the

highest first quartile value. In addition, it is seen that 75 %

of the MSAIndelFR alignments have an SP value of more

than 31 % (first quartile), whereas 25 % of the alignments

have an SP value of 88 % (third quartile).

Evaluation using SABRE (SABmark 1.65)

The SABmark 1.65 [38] is a very challenging bench-

mark for multiple sequence alignment. This benchmark is

divided into two subsets: Twilight zone and Superfamilies.

The similarity level between any two protein sequences

is less than 50% in the Superfamily set, while it is at

most 25% in the Twilight set. In [41], the author argued

that the pairwise reference alignments in SABmark are

not suitable to evaluate the MSA algorithms, and hence

constructed the SABRE benchmark [42], containing 423

out of the 634 SABmark groups. In this article, we use

SABRE instead of the original SABmark benchmark. Out

of the 423 reference alignments in the SABRE bench-

mark, there are 79 alignments that have protein sequences

which belong to one or the other of the 43 selected protein

folds.

The average SP and TC values of MSAIndelFR as well

as those of the other algorithms using this benchmark

as reference are given in Table 1. The results show that

MSAIndelFR achieves the highest SP and TC values.

Specifically, it provides an average SP value of 53.59 %

representing an improvement of 2.04 %, 3.45 %, 7.25 %,

8.48 %, 11.94 %, 13.21 %, 2.32 % and 3.25 % over that of

MSAProbs, MAFFT, MUSCLE, Clustal Omega, Kalign2,

Clustal W2, ProbCons and Probalign, respectively. Also, it

provides an average TC value of 34.38 % representing an

improvement of 9.18 %, 10.06 %, 13.58 %, 14.80 %, 15.48 %,

18.40 %, 9.42 % and 10.71 %, respectively, over that of the

other alignment algorithms.

The boxplots for the SP and TC value distributions

of the various algorithms are given in Additional file 1:

Figures S5 and S6, respectively. These figures clearly show

that even for this challenging benchmark, MSAIndelFR

performs better than all the other algorithms in terms of

the median value (52 %). In addition, it is seen that 75 %

of MSAIndelFR alignments have an SP value of more than

29 % (first quartile), whereas 25 % of the alignments have

an SP value of more than 77 % (third quartile).

Statistical significance

The Wilcoxon matched-pair signed-rank test [40] is now

used to determine if the improvements achieved, in terms

of the SP and TC values, by the proposed MSAIndelFR

algorithm are statistically significant. Tables 2 and 3 give

the p-values obtained by the Wilcoxon matched-pair

signed-rank test between the proposed MSAIndelFR and

other alignment algorithms for the four benchmarks using

the SP and TC scores, respectively. A p-value less than

0.05 is considered to be statistically significant [8, 12, 13].

Thus, it is seen from Table 2 that MSAIndelFR yields

improvements that are statistically very significant over

all the other algorithms on the BAliBASE and PREFAB

benchmarks, as far as the SP values are concerned. It

also achieves statistically significant improvements over

five of the algorithms, MAFFT, MUSCLE, Clustal Omega,

Kalign2 and Clustal W2 on the OXBENCH and SABRE

benchmarks. As to the improvement achieved in term

of the TC values, it seen from Table 3 that MSAIndelFR

achieves, in general, statistically significant improvements

over the algorithms, MAFFT, MUSCLE, Clustal Omega,

Kalign2 and Clustal W2 on all the four benchmarks.

Run time comparison

We now compare the run times of the proposed MSAIn-

delFR and other alignment algorithms using a desktop PC

Table 2 P-values obtained by the Wilcoxon matched-pair

signed-rank test between MSAIndelFR and the other multiple

alignment algorithms on the benchmarks, BAliBASE 3.0,

OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65) using SP scores

MSA algorithm BAliBASE OXBENCH PREFAB SABRE

MSAProbs 4.52 × 10−3 0.128 3.2 × 10−3 0.344

MAFFT 2.82 × 10−8 1.78 × 10−7 9.23 × 10−5 4.24 × 10−2

MUSCLE 2.57 × 10−11 9.32 × 10−4 7.7 × 10−8 1.0 × 10−2

Clustal Omega 2.51 × 10−14 1.96 × 10−5 5.4 × 10−5 3.65 × 10−2

Kalign2 1.79 × 10−7 1.63 × 10−6 1.06 × 10−6 1.2 × 10−4

Clustal W2 7.76 × 10−17 3.4 × 10−5 3.54 × 10−7 3.25 × 10−5

ProbCons 5.49 × 10−3 0.243 6.17 × 10−8 0.398

Probalign 5.67 × 10−3 0.215 4.70 × 10−9 0.388
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Table 3 P-values obtained by the Wilcoxon matched-pair

signed-rank test between MSAIndelFR and the other multiple

alignment algorithms on the benchmarks, BAliBASE 3.0,

OXBENCH, PREFAB 4.0 and SABRE (SABmark 1.65) using TC scores

MSA algorithm BAliBASE OXBENCH PREFAB SABRE

MSAProbs 6.09 × 10−2 0.298 3.2 × 10−3 0.125

MAFFT 6.97 × 10−7 1.20 × 10−5 9.23 × 10−5 1.86 × 10−2

MUSCLE 2.18 × 10−11 7.41 × 10−3 7.7 × 10−8 5.10 × 10−2

Clustal Omega 4.11 × 10−8 1.29 × 10−4 5.4 × 10−5 8.47 × 10−3

Kalign2 5.46 × 10−6 1.36 × 10−6 1.06 × 10−6 3.99 × 10−3

Clustal W2 3.86 × 10−11 3.47 × 10−6 3.54 × 10−7 2.50 × 10−4

ProbCons 2.48 × 10−2 0.694 6.17 × 10−8 0.288

Probalign 8.92 × 10−2 0.377 4.70 × 10−9 0.147

with Intel(R) Core(TM) i7–2600 CPU at 3.40GHZ and

RAM of 16GB. As explained earlier, MSAIndelFR needs

the computed average log–loss values and the predicted

locations of IndelFRs to set the gap penalty functions

for each protein sequence in the selected reference align-

ments from the four benchmarks (see Eqs. (2) and (3)).

This information is available in [43]. The alignment times

(in seconds) of the MSAIndelFR and other algorithms for

aligning the protein sequences from the four alignment

benchmarks are given in Table 4. It is seen from this

table that the proposed MSAIndelFR algorithm provides

the second best alignment time after Kalign2, but outper-

forms Kalign2 in terms of both the SP and TC metrics for

all the benchmarks.

Conclusion
In this article, we have proposed a novel and efficient

algorithm, MSAIndelFR algorithm, for multiple protein

sequence alignment; the algorithm incorporates the infor-

Table 4 Overall execution time (in seconds) of MSAIndelFR and

other multiple alignment algorithms using the benchmarks,

BAliBASE 3.0, OXBENCH, PREFAB 4.0 and SABmark 1.65

MSA algorithm BAliBASE OXBENCH PREFAB SABRE

MSAIndelFR (131.63) (9.38) (35.59) (6.51)

MSAProbs 1323.47 14.9 44.49 17.52

MAFFT 1270.66 333.58 1511.83 155.37

MUSCLE 665.11 94.35 28.92 60.58

Clustal Omega 199.86 12.07 40.7 10.13

Kalign2 32.74 7.54 32.9 3.66

Clustal W2 769.35 12.55 35.69 10.69

ProbCons 7526 45.22 76.90 65.10

Probalign 4623 25.40 58.38 30.59

Bold faced values indicate the best performance, while the values in parentheses

indicate the second best performance

mation on the predicted locations of IndelFRs and the

computed average log–loss values obtained from IndelFR

predictors, each of which is designed for a different pro-

tein fold. A new variable gap penalty function has been

proposed to make the gap placement more accurate in

the protein alignment, wherein the gap opening penalty is

position–specific and the gap extension penalty is region–

specific. In order to study the performance of the pro-

posed algorithm, an extensive evaluation has been car-

ried using some of the protein sequences from the four

popular benchmarks, namely, BAliBASE 3.0, OXBENCH,

PREFAB 4.5, and SABRE (SABmark 1.65). In this selec-

tion of these sequences, it is ensured that they belong to

one of the 43 protein folds for which IndelFR predictors

are available. The results have shown that the perfor-

mance of the proposedMSAIndelFR algorithm is superior

to that of the eight most–widely used alignment algo-

rithms, Clustal W2, Clustal Omega, MSAProbs, Kalign2,

MAFFT, MUSCLE, ProbCons and Probalign, in terms

of both the SP and TC metrics which have been calcu-

lated using reference alignments of the four benchmarks.

Furthermore, it has been shown that the improvements

achieved over all the other algorithms by the proposed

algorithm are, in general, statistically significant. It is to

be made clear that the concepts behind the proposed

alignment algorithm are not restricted to the 43 pro-

tein folds considered in this article. These protein folds

have been used to illustrate the proposed algorithm. How-

ever, if a protein sequence to be aligned belongs to some

other protein fold, a new predictor needs to be first

constructed and then used in the proposed alignment

scheme.

Availability of supporting data
The source code is available on request from the authors.

Endnote
1An example of calculating the SP and TC values is

given in Section 2 of the Additional file 1.

Additional file

Additional file 1: Supplementary materials. Additional file 1 contains

more details about the modified version of FASTA model, example explains

how both the sum–of–pairs (SP) and the total column (TC) values are

computed, Boxplots of SP and TC value distributions of the MSAIndelFR

and other MSA algorithms using OXBENCH, PREFAB and SABRE (SABmark)

benchmarks, and the list of the 43 protein folds from the three different

protein classes. (PDF 2703 kb)
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