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ABSTRACT

Motivation: Multiple sequence alignment is of central importance to
bioinformatics and computational biology. Although a large number
of algorithms for computing a multiple sequence alignment have
been designed, the efficient computation of highly accurate multiple
alignments is still a challenge.
Results: We present MSAProbs, a new and practical multiple
alignment algorithm for protein sequences. The design of MSAProbs
is based on a combination of pair hidden Markov models and
partition functions to calculate posterior probabilities. Furthermore,
two critical bioinformatics techniques, namely weighted probabilistic
consistency transformation and weighted profile–profile alignment,
are incorporated to improve alignment accuracy. Assessed using the
popular benchmarks: BAliBASE, PREFAB, SABmark and OXBENCH,
MSAProbs achieves statistically significant accuracy improvements
over the existing top performing aligners, including ClustalW, MAFFT,
MUSCLE, ProbCons and Probalign. Furthermore, MSAProbs is
optimized for multi-core CPUs by employing a multi-threaded design,
leading to a competitive execution time compared to other aligners.
Availability: The source code of MSAProbs, written in C++, is freely
and publicly available from http://msaprobs.sourceforge.net.
Contact: liuy0039@ntu.edu.sg
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1 INTRODUCTION
Multiple sequence alignment is of central importance to
bioinformatics and computational biology. The approach for
producing an optimal multiple sequence alignment is to simul-
taneously align multiple sequences using dynamic programming.
Unfortunately, this approach is impractical for alignments of more
than a few sequences, due to its high computational cost. Therefore,
many heuristics have been proposed to compute nearly optimal
alignments, such as progressive alignment (Feng and Doolittle,
1987), iterative alignment (Barton and Sternberg, 1987; Berger and
Munson, 1991; Corpet, 1988; Subbiah and Harrison, 1989) and
alignment based on profile hidden Markov models (Krogh et al.,
1994; Rabiner, 1989). State-of-the-art multiple sequence alignment
algorithms tend to share some common techniques to improve
alignment accuracy, including combining iterative alignment with
progressive alignment, and introducing consistency-based schemes.
These algorithms are typically assessed on publicly available
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benchmark data sets, including: BAliBASE (Bahr, 2001; Thompson
et al., 1999, 2005), PREFAB (Edgar, 2004a), SABmark (Van Walle
et al., 2004) and OXBENCH (Raghava et al., 2003). Currently,
the best performing multiple sequence alignment algorithms based
on these benchmark tests are T-Coffee (Notredame et al., 2000),
MAFFT (Katoh et al., 2002, 2005), MUSCLE (Edgar, 2004a,
2004b), ProbCons (Do et al., 2005) and Probalign (Roshan and
Livesay, 2006).

ClustalW (Larkin et al., 2007; Thompson et al., 1994) is
historically one of the most popular multiple sequence alignment
programs (with more than 26 000 citations in the ISI Web
of Science), complying with the typical progressive alignment
pipeline. T-Coffee introduced a consistency-based objective function
COFFEE (Notredame et al., 1998) to progressive alignment by
employing a primary library generated from pairwise global and
local alignments to form three-way alignments. MAFFT uses the
fast Fourier transform method for rapid identification of homologous
regions. It then iteratively refines alignment results after performing
an initial progressive alignment. The accuracy of MAFFT is further
improved by introducing a consistency approach incorporating
pairwise information into the objective function. MUSCLE works
by iteratively refining alignment results with progressive alignment
at the core, adopting a log-expectation scoring scheme instead of
the conventional weighted sum-of-pairs scoring systems. ProbCons
employs maximum expected accuracy as an objective function,
and introduces a probabilistic consistency approach, based on pair
hidden Markov model (pair-HMM) posterior probabilities (Durbin
et al., 1998), to form three-way alignments. Probalign adopts a
very similar strategy to ProbCons, but employs a partition function
(Miyazawa, 1995) to calculate posterior probabilities instead of
using a pair-HMM.

In this article, we present MSAProbs, a new and practical multiple
protein sequence alignment algorithm designed by combining a pair-
HMM and a partition function to calculate posterior probabilities.
We further investigate two critical bioinformatics techniques,
namely weighted probabilistic consistency transformation and
weighted profile–profile alignment, to achieve high alignment
accuracy. In addition, MSAProbs is optimized for modern multi-
core CPUs by employing a multi-threaded design in order to
reduce execution time. Assessed on the four popular benchmarks:
BAliBASE, PREFAB, SABmark and OXBENCH, MSAProbs
demonstrates significant alignment accuracy improvements over
several leading aligners: ClustalW, MAFFT, MUSCLE, ProbCons
and Probalign, with competitive execution time. Since T-Coffee has
been proven to be inferior to MAFFT, MUSCLE and ProbCons in
these papers (Do et al., 2005; Edgar, 2004a; Katoh et al., 2005),
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we have decided not to include the comparison to it. ClustalW is
compared because of its very fast speed (see the ‘Results’ section).

2 METHODS
MSAProbs can be classified as a progressive alignment approach to
computing multiple protein sequence alignments. It works by (i) calculating
all pairwise posterior probability matrices using both a pair-HMM and
a partition function; (ii) calculating a pairwise distance matrix using the
posterior probability matrices; (iii) constructing a guide tree from the
pairwise distance matrix, and calculating sequence weights; (iv) performing
a weighted probabilistic consistency transformation of all pairwise posterior
probability matrices; and (v) computing a progressive alignment along the
guide tree using the transformed posterior probability matrices. To further
improve alignment accuracy, an additional iterative refinement is performed
as a post-processing step of stage (v).

2.1 Posterior probability matrix computation
Given are two protein sequences x and y of a protein sequence dataset S. We
define xi to denote the i-th amino acid in x, and yj to denote the j-th amino
acid in y. Let A be the space of all possible global alignments of x and y. Let
a∗ ∈A be the ‘true’ alignment of x and y. Following ProbCons, the posterior
probability that xi is aligned to yj (denoted as xi ∼yj) in a∗, is defined as

P(xi ∼yj ∈a∗|x,y)=
∑
a∈A

P(a|x,y)1{xi ∼yj ∈a} (1)

for all 1≤ i≤|x| and 1≤ j≤|y|. The indicator function 1{cond} returns 1 if the
condition cond is true and 0, otherwise. P(a|x, y) represents the probability
that a is the true alignment a∗. Thus, P(xi ∼yj ∈a∗|x,y), i.e. P(xi ∼yj) for
short, can be considered as the probability that xi is aligned to yj in the true
alignment a∗. The posterior probability matrix Pxy of x and y is a 2D table of
size |x|×|y|, consisting of the values P(xi ∼yj) for 1≤ i≤|x| and 1≤ j≤|y|.
In MSAProbs, each pairwise posterior probability matrix is calculated by
combining the probability matrices generated by a pair-HMM and a partition
function as follows.

A pair-HMM calculates the pairwise probability matrix Pa
xy using the

Forward and Backward algorithms, as described in Durbin et al. (1998). The
partition function of alignments calculates the pairwise probability matrix
Pb

xy through generating suboptimal alignments using dynamic programming.
For all global alignments of x and y ending at position (i, j), we define Z(i, j)
to denote the partition function, ZM (i, j) to denote the partition function with
xi aligned to yj , ZE (i, j) to denote the partition function with yj aligned to
a gap, and ZF (i, j) to denote the partition function with xi aligned to a gap.
The partition function can then be defined recursively as

ZM (i,j)=Z(i−1,j−1)eβsbt
(
xi,yj

)
ZE (i,j)=ZM (i,j−1)eβρ +ZE (i,j−1)eβσ

ZF (i,j)=ZM (i−1,j)eβρ +ZF (i−1,j)eβσ

Z(i,j)=ZM (i,j)+ZE (i,j)+ZF (i,j)

(2)

where sbt is the substitution matrix, ρ (ρ≤ 0) is the gap open penalty,
σ (σ ≤0) is the gap extension penalty, and β is a parameter measuring
the deviation between suboptimal and optimal alignments. A substitution
matrix sbt gives the substitution rates of amino acids in proteins, derived
from alignments of protein sequences. The boundary conditions and more
details can be obtained from Miyazawa (1995). Using this partition function,
P(xi ∼yj) is defined as

P(xi ∼yj)= ZM (i−1,j−1)Z ′
M (i+1,j+1)

Z
eβsbt

(
xi,yj

)
(3)

where Z
′
M (i, j) represents the partition function of all the reverse alignments

starting from position (|x|, |y|) and ending at (i, j) with xi aligned to yj , for
1≤ i≤|x| and 1≤ j≤|y|.

After computing the probability matrix Pa
xy using pair-HMM and Pb

xy using
partition function, the final probability matrix Pxy is calculated by combining

these two matrices as the root mean square of the corresponding values in
Pa

xy and Pb
xy.

Pxy(xi ∼yj)=
√

Pa
xy(xi ∼yj)2 +Pb

xy(xi ∼yj)2

2
(4)

The underlying motivation of combining the pair-HMM and partition
function probabilistic models for posterior probabilities calculation is
inspired by the alignment accuracy of sequences with long N/C-terminal
extensions in BAliBASE benchmark, reported in the papers Do et al. (2005)
and Roshan and Livesay (2006). In Do et al. (2005), the authors argue that
the alignment accuracy of sequences with long N/C-terminal extensions,
where local alignments tend to be more successful, might be improved by
incorporating a local alignment probabilistic model. Moreover, in Roshan
and Livesay (2006), the partition function shows superior performance on
this type of data sets, indicating that the partition function probabilistic model
might be more successful in locating highly similar regions. These two points
have inspired the approach taken in this article, i.e. the combination of the
two probabilistic models, to multiple sequence alignment.

2.2 Pairwise distance computation
After obtaining the probability matrix Pxy for each x, y∈S, a pairwise
global alignment is performed to obtain the optimal global alignment score
GScore(x, y), where all match/mismatch scores are given by Pxy and gap
penalties are set to zero. The optimal global alignment score S(i, j) ending at
position (i, j) of x and y, for 1≤ i≤|x| and 1≤ j≤|y|, is recursively defined as

S(i,j)=max

⎧⎨
⎩

S(i−1,j−1)+Pxy(xi ∼yj)
S(i−1,j)
S(i,j−1)

(5)

where S(|x|,|y|) stores the final optimal global alignment score GScore(x,y).
Many algorithms approximate pairwise distances from fractional

identities in optimal global or local alignments obtained using a traceback
procedure. In this work, we exploit an alternative approximation that
calculates the pairwise distance d(x,y) from GScore(x, y) using Equation (6),
defined as

d(x,y)=1− GScore
(
x,y

)
min{|x|,|y|} (6)

This approximation is inspired by the fact that for a sequence pair, many
optimal global alignments, giving the same optimal global alignment score,
might be obtained using the traceback procedure. In this case, when using
fractional identities to approximate the pairwise distances, the final distances
are highly dependent on which optimal global alignments are chosen, because
the fractional identities of these alignments generally are not identical. Our
method avoids this dependence by using the optimal global alignment score.

2.3 Guide tree construction and sequence weighting
Given a pairwise distance matrix, a guide tree can be constructed using
clustering methods such as neighbor-joining (Saitou and Nei, 1987; Studier
and Keppler, 1988), UPGMA or its variants (Sneath and Sokal, 1973).
MSAProbs implements the UPGMA that uses the linear combinatorial
strategy to construct the guide tree, as described in Sneath and Sokal (1973).
For this guide tree, the distance between the new cluster z, formed by merging
two existing clusters x and y, and a third cluster w (excluding x and y) is
defined as

d(w,z)= d(w,x)×Leafs(x)+d(w,y)×Leafs(y)

Leafs(x)+Leafs(y)
(7)

where Leafs(x) represents the number of leafs in cluster x.
Sequence weighting is further considered to be able to correct for unequal

sampling from a family of related proteins. After having constructed the
guide tree, sequences are weighted following the tree topology. Among the
available weighting schemes (Altschul et al., 1997; Gerstein et al. 1994;
Gotoh, 1995; Henikoff and Henikoff, 1994; Thompson et al., 1994), we use
the CLUSTALW (Thompson et al., 1994) method.

1959

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/16/1958/218540 by guest on 21 August 2022



[12:12 19/7/2010 Bioinformatics-btq338.tex] Page: 1960 1958–1964

Y.Liu et al.

2.4 Weighted probabilistic consistency transformation
A probabilistic consistency transformation is used to re-estimate more
accurate posterior probabilities of each sequence pair x and y by introducing
another sequence z. Instead of re-computing the posterior probabilities
based on three-sequence alignments, the transformation is performed
based on the already computed probability matrices estimated from
pairwise alignments. ProbCons uses the following heuristic to compute an
approximate probabilistic consistency transformation,

P
′
xy = 1

|S|

⎛
⎝2Pxy +

∑
z∈S,z �=x,y

PxzPzy

⎞
⎠ (8)

where P′
xy is the new transformed posterior probability matrix of x and y,

and |S| is the number of sequences in S.
A drawback of the ProbCons approach is that it considers each sequence

with identical significance. To avoid a biased sampling of sequences, we
therefore derive a weighed probabilistic consistency transformation approach
as follows. We define wx to denote the weight of sequence x computed in
the previous stage, and wN to denote the weighted number of sequences in
S, i.e. the sum of sequence weights in S. This weighted approach is then
defined as

P
′
xy = 1

wN

⎛
⎝(wx +wy)Pxy +

∑
z∈S,z �=x,y

wzPxzPzy

⎞
⎠ (9)

This motivation of the weighted approach is to obtain more accurate
alignments than the non-weighted one. The transformations are further
performed for a fixed number of iterations to refine the probabilities. In
MSAProbs, two iterations (the default value) are used. This default value
offers a good trade-off between alignment accuracy and execution time.

2.5 Progressive alignment
The final progressive alignment first aligns closely related sequences, and
then distantly related sequences along the guide tree. Unlike ProbCons and
Probalign (which are using an un-weighted profile–profile alignment model),
MSAProbs uses a weighted one, which uses the sequence weights calculated
in subsection 2.3. To compute a profile–profile alignment, the posterior
probability matrix of the two profiles is calculated from the probability
matrices of all sequence pairs x and y, where x and y are from different profiles
respectively. After obtaining this probability matrix, the profile–profile
alignment is carried out using Equation (5), where the match/mismatch scores
are given by the probability matrix of the two profiles, and gap penalties are
set to zero.

As a post-processing step, a randomized iterative alignment is employed
to further improve alignment accuracy. This refinement randomly partitions
S into two non-overlapped subsets, and then performs a profile–profile
alignment of the two subsets. MSAProbs designs its own pseudo random
number generator based on the linear congruential method for the random
partition of S. The iterative refinement is designed to complete after a fixed
number of iterations (10 iterations, by default).

2.6 Speed optimizations
The most time-consuming parts of MSAProbs are the posterior probability
matrix computation, with a time complexity of O(N2L2), and the weighted
probabilistic consistency transformation, with a time complexity of O(N2L3),
where N is the number of sequences and L is the average sequence length.
Because posterior probability matrices tend to be sparse with most entries
near zero, the execution time of the probabilistic consistency transformation
can be effectively reduced by using sparse matrix multiplication after
transforming the matrices into sparse matrices (Do et al., 2005). However,
this stage still has high time complexity. Our optimizations are focused on
these two stages.

One optimization is to remove exponential computations in the recursive
partition function equation. For a specific run, the parameters, including

scoring matrix, gap penalties and β, are invariable. Hence, it is viable
to pre-compute the exponential values in Equation (2) before performing
the partition function computation. This leads to a significant decrease of
execution time compared to directly computing using Equation (2). As multi-
core CPUs have been commonplace, single-thread programs will result in the
waste of compute resources of multi-core CPUs. In this case, our algorithm
is optimized for multi-core CPUs by employing a multi-threaded design
based on OpenMP (OpenMP, 2010), a compiler-directive-based application
program interface (API) for explicitly directing multi-threaded, shared-
memory parallelism. For the two stages, due to their irregular parallel natures,
the DYNAMIC schedule policy of OpenMP is used to dynamically assign
work to a team of parallel threads. For the posterior probability matrix
computation stage, the matrix computation of a sequence pair is assigned
to a thread, and for the probabilistic consistency transformation stage, the
transformation for a sequence pair is assigned to a thread.

3 RESULTS

3.1 Accuracy measurement
To assess and rank different multiple protein sequence alignment
algorithms, four benchmark data sets are used: BAliBASE,
PREFAB, SABmark and OXBENCH. All tests are carried out on a
PC with an Intel i7 quad-core 2.67 GHz processor and 12 GB RAM
running the Linux operating system.

BAliBASE is the most widely used benchmark for assessing
multiple protein sequence alignment algorithms. Each alignment is
constructed by a combination of structure and sequence methods
with manual refinement, and contains core blocks, regions for which
reliable alignments are known to exist. BAliBASE 3.0 contains 386
reference alignments, which are organized into five reference sets.
Reference 1 consists of equal-distant sequences, which are further
organized into RV11 and RV12 reference subsets. RV11 consists
of very distant sequences with <20% identity and RV12 consists
of medium to divergent sequences with identities from 20% to
40%. Reference 2 (RV20) contains families with >40% identity
and a highly divergent orphan sequence that shares <20% identity
with the rest of the family. Reference 3 (RV30) consists of families
that contains sub-families with >40% identity and <20% identity
across sub-families. Reference 4 (RV40) consists of sequences with
large N/C-terminal extensions, and Reference 5 (RV50) consists of
sequences with large internal insertions. Accuracy evaluation on
BAliBASE 3.0 is only scored with respect to core blocks.

PREFAB 4.0 is a fully automatically generated benchmark
containing 1681 reference alignments. Each pair of sequences is
supplemented with some homologous sequences found through PSI-
BLAST (Altschul et al., 1997). Accuracy is assessed with respect
to the pairwise structural alignments of the original two protein
sequences using the consensus of FSSP (Holm and Sander, 1998) and
CE (Shindyalo and Bourne, 1998) alignments. Since the pairwise
structural alignments only cover some regions of the sequences,
they can be treated as BAliBASE core blocks.

SABmark is also an automatically generated benchmark
containing two sets of consensus regions based on SOFI (Boutonnet
et al., 1995) and CF structural alignments of sequences selected
from the ASTRAL (Brenner et al., 2000) database. This benchmark
is divided into two subsets: Twilight zone and Superfamilies. Edgar
(2010) argues that the pairwise reference alignments in SABmark
are not generally consistent with a multiple alignment. It is therefore
suggested to construct multiple alignments only from a consistent
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subset of SABmark columns. Hence, SABRE (R.C. Edgar, personal
communication), a subset of SABmark 1.65, is constructed by
identifying mutually consistent columns (MCCs) in the pairwise
reference structure alignment. SABRE contains 423 out of 634
SABmark groups by discarding groups having less than eight MCCs.
MCCs can be considered analogous to BAliBASE core blocks for
accuracy measurement. In this article, we use SABRE, instead of
the original SABmark benchmark, to measure aligners.

OXBENCH is a set of structure based alignments generated
by STAMP (Russell and Barton, 1992) from structures in the
3Dee database (Siddiqui et al., 2001). Accuracy measurement on
OXBENCH can be conducted based on conservative columns,
i.e. structurally conserved regions, which can also be considered
analogous to BAliBASE core blocks.

In this article, alignments are scored according to sum-of-pairs
score (SPS) and column score (CS) for BAliBASE, SABmark, and
OXBENCH. SPS is defined as the number of correctly aligned
residue pairs found in the test alignment divided by the total number
of aligned residue pairs in core blocks of the reference alignment.
CS is defined as the number of correctly aligned columns found in
the test alignment divided by the total number of aligned columns
in core blocks of the reference alignment. For PREFAB, alignments
are scored on the reference structure pair using the quality score Q
(Edgar, 2004a), which is equivalent to SPS. Statistical significance
of the score differences between aligner pairs is calculated using
the Wilcoxon matched-pair signed-rank test (Wilcoxon, 1947) with
a P-value cutoff of 0.05. A collection of the above benchmarks
is available at http://www.drive5.com/bench (R.C. Edgar, personal
communication), and all the scores are calculated using the
QSCORE scoring software (http://www.drive5.com/qscore), written
by Robert C. Edgar.

MSAProbs has two sets of parameters: one for the pair-HMM and
the other for the partition function. For the pair-HMM, MSAProbs
uses the same emission probabilities and transition parameters as
ProbCons (Do et al., 2005). For the partition function, MSAProbs
uses the same parameters as Probalign, i.e. Gonnet 160 substitution
matrix (Gonnet et al., 1992), a gap open penalty of −22, a gap
extension penalty of −1 (not penalizing end gaps) and β=0.2. These
parameters are used by default.

3.2 Accuracy comparison to other algorithms
To assess the performance of MSAProbs for multiple protein
sequence alignment, the above benchmarks are employed to
compare MSAProbs with five top performing multiple sequence
alignment algorithms: ClustalW version 2.0.12, MAFFT version
6.717, MUSCLE version 3.8.31, ProbCons version 1.12 and
Probalign version 1.3. For MAFFT, the L-INS-i strategy, which
yields the most accurate results among all the strategies of MAFFT,
is used with the maximum iterative refinement (–maxiterate option)
set to 1000. All the other algorithms (including MSAProbs) use
their default parameters. All the scores in the following tables are
multiplied by 100, and the best scores in each column are shown in
bold.

On BAliBASE, Tables 1–3 show the mean SPS and CS scores
of the six subsets and the overall dataset. MSAProbs achieves the
highest SPS and CS scores on the overall BAliBASE data set, as well
as all the subsets except for the RV40 subset (MAFFT produces
the highest SPS score and Probalign gives the highest CS score

Table 1. Mean SPS scores on BAliBASE 3.0 subsets

Aligner RV11 RV12 RV20 RV30 RV40 RV50

MSAProbs 74.63 94.86 94.35 88.20 92.32 90.90
MUSCLE 65.75 92.32 91.50 84.23 86.31 85.28
MAFFT 69.18 93.68 93.62 87.81 92.53 90.14
Probalign 71.27 94.65 93.54 86.45 92.21 89.12
ProbCons 74.00 94.59 93.70 87.54 90.03 90.15
ClustalW 58.16 88.36 88.79 77.14 78.94 76.91

Table 2. Mean CS scores on BAliBASE 3.0 subsets

Aligner RV11 RV12 RV20 RV30 RV40 RV50

MSAProbs 53.70 87.45 53.93 63.44 61.04 61.43
MUSCLE 43.31 82.00 42.22 47.67 45.32 47.51
MAFFT 48.35 84.46 48.88 61.83 59.99 58.29
Probalign 48.57 86.77 46.69 59.72 61.23 54.36
ProbCons 52.76 86.82 50.80 60.05 53.61 59.52
ClustalW 32.53 75.58 33.86 38.17 39.82 36.50

Table 3. Overall mean SPS and CS scores and runtime on BAliBASE 3.0

Aligner SPS CS Time (hh:mm:ss)

MSAProbs 89.09 64.51 1:12:56
MUSCLE 84.33 53.17 0:16:11
MAFFT 87.50 61.07 0:41:05
Probalign 87.78 60.68 8:05:35
ProbCons 88.31 61.89 5:29:15
ClustalW 78.65 44.75 0:18:56

Table 4. Statistical significance of aligners on BAliBASE 3.0

Aligner MSAProbs MUSCLE MAFFT Probalign ProbCons ClustalW

MSAProbs <10−10 <10−10 <10−10 6.5×10−9 <10−10

MUSCLE <10−10∗ <10−10∗ <10−10∗ <10−10∗ <10−10

MAFFT <10−10∗ <10−10 0.02∗ 2.5×10−3∗ <10−10

Probalign <10−10∗ <10−10 (0.10) (0.88) <10−10

ProbCons 1.9×10−8∗ <10−10 1.0×10−3 (0.17) <10−10

ClustalW <10−10∗ <10−10∗ <10−10∗ <10−10∗ <10−10∗

Entries show P-value indicating the statistical significance of the mean scores
differences between aligner pairs as measured using Wilcoxon matched-pair signed-rank
test. The upper-right corner shows P-values calculated using SPS scores, and the lower-
left corner shows P-values calculated using CS scores. * indicates the aligner on the
left gives the worse performance, and the better performance, otherwise. For P>0.05,
the difference is considered insignificant and the P-value is shown in parentheses.

on RV40). Table 3 also shows the overall runtime of each aligner.
Table 4 shows the statistical significance of the score differences for
all aligner pairs. From the table, both SPS and CS scores are best to
distinguish between aligners, statistically ranking MSAProbs as the
best.

On PREFAB, Tables 5 and 6 show the overall mean Q scores of all
aligners and the statistical significance of the score differences for
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Table 5. Overall mean Q scores and runtime on PREFAB 4.0

Aligner Q Time (hh:mm:ss)

MSAProbs 70.43 03:34:36
MUSCLE 64.96 00:35:49
MAFFT 68.93 01:18:22
Probalign 68.72 23:59:22
ProbCons 68.43 15:32:43
ClustalW 59.33 01:01:12

Table 6. Statistical significance of aligners on PREFAB 4.0

Aligner MSAProbs MUSCLE MAFFT Probalign ProbCons ClustalW

MSAProbs <10−10 <10−10 <10−10 <10−10 <10−10

MUSCLE <10−10∗ <10−10∗ <10−10∗ <10−10

MAFFT (0.78) (0.07) <10−10

Probalign 3.1×10−3 <10−10

ProbCons <10−10

ClustalW

Details are same as in Table 4.

Table 7. Mean SPS and CS scores and runtime on SABmark 1.65

Aligner Twilight zone Superfamilies Overall Time (mm:ss)

SPS CS SPS CS SPS CS

MSAProbs 43.10 23.04 66.48 46.20 60.51 40.29 1:10
MUSCLE 35.94 17.29 61.46 40.61 54.95 34.66 0:48
MAFFT 39.19 18.85 63.33 42.55 57.17 36.50 1:14
Probalign 42.31 21.08 65.96 44.91 59.92 39.01 3:48
ProbCons 42.31 22.06 65.76 45.29 59.77 39.36 2:44
ClustalW 33.24 16.42 58.68 36.22 52.18 31.17 0:18

Table 8. Statistical significance of aligners on SABmark 1.65

Aligner MSAProbs MUSCLE MAFFT Probalign ProbCons ClustalW

MSAProbs <10−10 <10−10 0.03 2.8×10−3 <10−10

MUSCLE <10−10∗ 6.0×10−5∗ <10−10∗ <10−10∗ 1.2×10−4

MAFFT <10−10∗ 0.01 <10−10∗ <10−10∗ 5.5×10−10

Probalign 0.02∗ <10−10 1.3×10−9 (0.57) <10−10

ProbCons 0.02∗ <10−10 <10−10 (0.95) <10−10

ClustalW <10−10∗ 6.6×10−5∗ 2.0×10−7∗ <10−10∗ <10−10∗

Details are same as in Table 4.

all aligner pairs, respectively. From the tables, MSAProbs achieves
statistically significant accuracy improvement over all the other
aligners.

On SABmark, MSAProbs achieves the highest mean SPS and
CS scores on the overall data set, as well as for the Twilight
zone and Superfamilies subsets, as shown in Table 7. Meanwhile,
MSAProbs statistically outperforms all the other aligners for both
scores (Table 8).

Table 9. Overall mean SPS and CS scores and runtime on OXBENCH

Aligner Overall Time (mm:ss)

SPS CS

MSAProbs 90.06 81.70 1:42
MUSCLE 89.50 80.67 0:23
MAFFT 88.86 79.48 1:02
Probalign 89.97 81.68 7:28
ProbCons 89.68 80.88 5:04
ClustalW 89.45 80.19 0:26

Table 10. Statistical significance of aligners on OXBENCH

Aligner MSAProbs MUSCLE MAFFT Probalign ProbCons ClustalW

MSAProbs 2.6×10−8 <10−10 (0.81) <10−10 3.7×10−4

MUSCLE 5.3×10−7∗ (0.07) 6.3×10−9∗ 8.9×10−3∗ (0.84)
MAFFT <10−10∗ 0.01∗ <10−10∗ 4.9×10−6∗ 0.03∗
Probalign (0.42) 5.7×10−8 <10−10 5.4×10−6 4.9×10−4

ProbCons 1.8×10−10∗ 0.03 5.8×10−6 3.4×10−7∗ (0.27)
ClustalW 3.2×10−6∗ (0.88) 4.7×10−2 1.4×10−5∗ (5.4×10−2)

Details are same as in Table 4.

On OXBENCH, MSAProbs achieves the highest overall
mean SPS and CS scores, as shown in Table 9. From the
statistical perspective, the accuracy improvement of MSAProbs is
statistically significant compared to MUSCLE, MAFFT, ProbCons
and ClustalW, but has low significance compared to Probalign
(Table 10). Nevertheless, MSAProbs yields the statistically highest
SPS and CS scores on OXBENCH, even though its performance
is indistinguishable from Probalign due to the lack of statistical
significance.

While demonstrating dramatic improvement on alignment
accuracy, MSAProbs still maintains competitive execution time
(Tables 3, 5 and 9). On the two large benchmarks: BAliBASE
and PREFAB, MSAProbs takes far shorter time than Probalign and
ProbCons, even though it takes slightly longer time than MUSCLE,
MAFFT and ClustalW. In particular, on PREFAB, ProbCons takes
about 15.5 hours and Probalign takes about 24 h to complete the
alignments, whereas MSAProbs only takes about 3.5 h on the same
platform.

3.3 Comparison of MSAProbs variants
To understand how the various features of MSAProbs affect the
alignment accuracy, some variants of MSAProbs are evaluated
based on two algorithmic changes: (i) combining the pair-HMM and
partition function posterior probabilities using weighted arithmetic
mean, instead of root mean square; (ii) introducing un-weighted
approaches for probabilistic consistency transformation and profile–
profile alignment. The first algorithmic change is used for two
purposes: one is to compare the performance difference between
conventional arithmetic mean and root mean square for posterior
probabilities calculation; and the other is to evaluate how the relative
contributions of the two probabilistic models affect alignment
accuracy. Using weighted arithmetic mean, the combined posterior
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Fig. 1. Performance of the variants using representative α-values for
weighted arithmetic mean calculation.

Table 11. Performance comparison of the variants using different weighting
approaches

Scores WPCT&WPPA WPCT&PPA PCT&WPPA PCT&PPA

BAliBASE SPS 89.09 89.14 89.28 89.23
BAliBASE CS 64.51 64.47 64.51 64.28
PREFAB Q 70.43 70.08 69.72 69.36

WPCT (PCT) indicates the weighted (un-weighted) probabilistic consistency
transformation, and WPPA (PPA) indicates the weighted (un-weighted) profile–profile
alignment. The best scores in each row are shown in bold and the worst in italic.

probability is calculated as Pxy(xi ∼yj)=α×Pa
xy(xi ∼yj)+(1−α)×

Pb
xy(xi ∼yj), where 0≤α≤1. The relative contributions of the two

probabilistic models can be changed by adjusting the value of α.
In particular, only the pair-HMM posterior probabilities are used
for α=1, and only the partition function posterior probabilities
for α=0. The second algorithmic change is used to evaluate how
weighting affects alignment accuracy.

We examined the performance of the variants that use weighted
arithmetic mean on the BAliBASE 3.0 benchmark. In these tests,
the SPS and CS scores of the resulting alignment are calculated for
representative α values (Fig. 1). Figure 1 shows that both the SPS and
CS scores increase from α=0, achieve the highest scores when α is
around 0.6 and 0.7, and then decrease until α=1. This plot indicates
that the single use of either probabilistic model is not able to give
a strong increase in alignment accuracy. It further suggests that our
combination of the two probabilistic models is a powerful approach
for improving alignment accuracy. After comparing the scores in
Fig. 1 and Table 3, it is obvious that the alignment accuracy using
weighted arithmetic mean is inferior to that using root mean square.
That is the underlying motivation of using root mean square instead
of conventional arithmetic mean.

The effects of different weighting approaches on the alignment
accuracy are examined on the BAliBASE 3.0 and PREFAB 4.0
benchmarks. We use root mean square for posterior probabilities
calculation and keep all other conditions unchanged except for
weighting approaches. The results of these tests are shown in
Table 11. Define WPCT (PCT) to denote the weighted (un-weighted)
probabilistic consistency transformation, and WPPA (PPA) to
denote the weighted (un-weighted) profile–profile alignment. The
four combinations of the weighting approaches lead to different
alignment results on the two benchmarks (Table 11).

After comparing the scores of every combination, we can see
that our weighted approaches do contribute to the whole accuracy
improvement, but only by a small margin. From the table, it can be
seen that the use of PCT and PPA (column 5) results in the lowest CS
score for BAliBASE and the lowest Q score for PREFAB, and the use
of WPCT and WPPA (default options, column 2) gives the highest
CS score for BAliBASE and the highest Q score for PREFAB. Based
on this observation, the use of the two weighted approaches can be
considered superior to that of the un-weighted ones, even though it
gives a smaller SPS score for BAliBASE. In column 4, the use of
PCT and WPPA gives the highest SPS and CS scores for BAliBASE,
but produces a poorer Q score for PREFAB. Considering all these
observations, our selection of default options is a trade-off between
different benchmarks. To obtain high accuracy for PREFAB without
significantly reducing the accuracy for BAliBASE is the main
reason for using the two weighted approaches as default options.
When comparing columns 3 and 4, for BAliBASE, WPPA seems
to contribute more to the gain of accuracy improvement, but for
PREFAB, WPCT seems to be better. Hence, we can say that the
contribution of either WPCT or WPPA is dependent on the specific
datasets. From the above observations and discussions, we can
conclude that our combination of the two probabilistic models is
a powerful approach to alignment accuracy improvement, and the
two weighted approaches, as auxiliary features, contribute to the
performance maximization as well.

4 DISCUSSION
We have presented MSAProbs, a new and practical algorithm for
multiple protein sequence alignment designed based on pair-HMM
and partition function posterior probabilities. On the four popular
benchmark data sets including BAliBASE, PREFAB, SABmark and
OXBENCH, MSAProbs demonstrates dramatic alignment accuracy
improvements over several top performing aligners: ClustalW,
MAFFT, MUSCLE, ProbCons and Probalign. Three strategies
contribute most to accuracy improvement: the posterior probability
matrix computation using pair-HMM and partition function
posterior probabilities, the weighted probabilistic consistency
transformation and the weighted profile–profile alignment. To
reduce execution time, MSAProbs is further optimized for multi-
core CPUs, as multi-core CPUs have become commonplace, by
employing a multi-threaded design using OpenMP.

In addition to multiple protein sequence alignment, other issues
in bioinformatics and computational biology, such as motif finding,
RNA or protein structural prediction, might be able to benefit from
our approaches.
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