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Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree

◮ nodes do not overlap, but reference duplication
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SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication

How to support motion blur?
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Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5

◮ acceptable memory overhead

◮ allows for very tight bounding boxes for every ray time t
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Interpolation and Spatial Splits

Can a kd-tree be interpolated?

◮ objects can move across split planes
◮ thus node references change!

◮ hierarchy over convex hulls is inefficient

◮ splitting along time-axis requires lots of memory
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Our Contribution

Extend the SBVH to handle motion blur (MSBVH)

◮ by computing multiple bounding volumes per node

◮ using classic bounding volume interpolation traversal
◮ which includes spatial splits

◮ memory-efficient (MSBVH)

◮ reduced bounding volume overlap (MSBVH)

Note: we assume the hierarchy is rebuilt per frame
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Algorithm

t=0 t=1
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes

3. Compute corresponding bounds for t = 0 and t = 1

4. Propagate bounds to the parent nodes

5. Interpolate these bounds during traversal
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Triangles and AABB-Hierarchies under Linear Motion

t=0 t=1t=0.5
1. Use Sutherland-Hodgman to clip against leaf AABB

2. Results in barycentric coordinates of polygon vertices

3. Compute transformed polygon for t = 0 and t = 1

4. Bound the transformed polygon

5. No extra storage necessary
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Clipping Displaced Subdivision Surfaces

1. Subdivide along surface parametrization

2. Bound individual elements, e.g. using interval arithmetic

3. Clip resulting bounding boxes

4. The union conservatively bounds the clipped primitive
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Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments
◮ restricted to powers of two for propagation up the hierarchy

◮ higher-order interpolation

◮ refitting over multiple frames



Results

BVH traversal with linear interpolation

◮ reduced SAH cost

◮ significantly less intersection tests

⇒ Video

http://gruenschloss.org/msbvh/hairball_hq.mp4


Results

BVH traversal with linear interpolation

◮ reduced SAH cost

◮ significantly less intersection tests

◮ often less traversal steps

◮ about 20% rendering speed-up for many scenes
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Summary

In practice, works well for single frames

◮ helps well whenever SBVH helps

◮ increased build times (between BVH and kd-tree)

◮ prototype implemention in OptiX

◮ spatial splits only avoid overlap for t = 0.5
◮ topology determined for t = 0.5

◮ problematic for incoherent motion



Weta Digital is hiring!

http://wetafx.co.nz/siggraph2011

http://wetafx.co.nz/siggraph2011

