
MSBVH: An Efficient Acceleration Data

Structure for Ray Traced Motion Blur

Leonhard Grünschloß Martin Stich
Sehera Nawaz Alexander Keller

August 6, 2011



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree



Principles of Accelerated Ray Tracing

Hierarchical culling

◮ object list partitioning ⇒ BVH

◮ bounded memory, but overlapping bounding volumes

◮ spatial partitioning ⇒ kd-tree

◮ nodes do not overlap, but reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication



SBVH

Best of both worlds

◮ object list partitioning whenever overlap is small

◮ spatial partitioning otherwise

◮ use spatial splits to build BVH with reference duplication

How to support motion blur?



Multiple BVHs Sharing Identical Topology

Convex combination of bounding boxes yields conservative BVH



Multiple BVHs Sharing Identical Topology

Convex combination of bounding boxes yields conservative BVH



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0

t=1

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0

t=1

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0

t=1

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5

◮ acceptable memory overhead



Multiple BVHs Sharing Identical Topology

Example: linear interpolation at leaf level

t=0.5

◮ acceptable memory overhead

◮ allows for very tight bounding boxes for every ray time t



Interpolation and Spatial Splits

Can a kd-tree be interpolated?



Interpolation and Spatial Splits

Can a kd-tree be interpolated?

◮ objects can move across split planes
◮ thus node references change!



Interpolation and Spatial Splits

Can a kd-tree be interpolated?

◮ objects can move across split planes
◮ thus node references change!

◮ hierarchy over convex hulls is inefficient



Interpolation and Spatial Splits

Can a kd-tree be interpolated?

◮ objects can move across split planes
◮ thus node references change!

◮ hierarchy over convex hulls is inefficient

◮ splitting along time-axis requires lots of memory



Our Contribution

Extend the SBVH to handle motion blur (MSBVH)

◮ by computing multiple bounding volumes per node

◮ using classic bounding volume interpolation traversal



Our Contribution

Extend the SBVH to handle motion blur (MSBVH)

◮ by computing multiple bounding volumes per node

◮ using classic bounding volume interpolation traversal
◮ which includes spatial splits



Our Contribution

Extend the SBVH to handle motion blur (MSBVH)

◮ by computing multiple bounding volumes per node

◮ using classic bounding volume interpolation traversal
◮ which includes spatial splits

◮ memory-efficient (MSBVH)

◮ reduced bounding volume overlap (MSBVH)

Note: we assume the hierarchy is rebuilt per frame



Algorithm

t=0 t=1



Algorithm

t=0 t=1t=0.5
1. Build the SBVH for t = 0.5 to determine topology



Algorithm

t=0 t=1t=0.5
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes



Algorithm

t=0 t=1t=0.5
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes



Algorithm

t=0 t=1t=0.5
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes

3. Compute corresponding bounds for t = 0 and t = 1



Algorithm

t=0 t=1t=0.5
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes

3. Compute corresponding bounds for t = 0 and t = 1



Algorithm

t=0 t=1
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes

3. Compute corresponding bounds for t = 0 and t = 1

4. Propagate bounds to the parent nodes



Algorithm

t=0 t=1
1. Build the SBVH for t = 0.5 to determine topology

2. Compute partial primitives in leaf nodes

3. Compute corresponding bounds for t = 0 and t = 1

4. Propagate bounds to the parent nodes

5. Interpolate these bounds during traversal



Triangles and AABB-Hierarchies under Linear Motion

t=0 t=1t=0.5
1. Use Sutherland-Hodgman to clip against leaf AABB

2. Results in barycentric coordinates of polygon vertices



Triangles and AABB-Hierarchies under Linear Motion

t=0 t=1t=0.5
1. Use Sutherland-Hodgman to clip against leaf AABB

2. Results in barycentric coordinates of polygon vertices

3. Compute transformed polygon for t = 0 and t = 1



Triangles and AABB-Hierarchies under Linear Motion

t=0 t=1t=0.5
1. Use Sutherland-Hodgman to clip against leaf AABB

2. Results in barycentric coordinates of polygon vertices

3. Compute transformed polygon for t = 0 and t = 1

4. Bound the transformed polygon



Triangles and AABB-Hierarchies under Linear Motion

t=0 t=1t=0.5
1. Use Sutherland-Hodgman to clip against leaf AABB

2. Results in barycentric coordinates of polygon vertices

3. Compute transformed polygon for t = 0 and t = 1

4. Bound the transformed polygon

5. No extra storage necessary



Clipping Displaced Subdivision Surfaces



Clipping Displaced Subdivision Surfaces

1. Subdivide along surface parametrization

2. Bound individual elements, e.g. using interval arithmetic



Clipping Displaced Subdivision Surfaces

1. Subdivide along surface parametrization

2. Bound individual elements, e.g. using interval arithmetic

3. Clip resulting bounding boxes

4. The union conservatively bounds the clipped primitive



Extensions

◮ two-level hierarchy: animated instances



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

A(t)



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

A(0)

A(1/3)

A(1)

A(2/3)



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments
◮ restricted to powers of two for propagation up the hierarchy

2 4 2 8
4 8

8



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments
◮ restricted to powers of two for propagation up the hierarchy

3 5 2 7
15 14

210



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments
◮ restricted to powers of two for propagation up the hierarchy

◮ higher-order interpolation



Extensions

◮ two-level hierarchy: animated instances

◮ interpolate transformation matrix elements to force linear
motion

◮ multiple motion segments
◮ restricted to powers of two for propagation up the hierarchy

◮ higher-order interpolation

◮ refitting over multiple frames



Results

BVH traversal with linear interpolation

◮ reduced SAH cost

◮ significantly less intersection tests

⇒ Video

http://gruenschloss.org/msbvh/hairball_hq.mp4


Results

BVH traversal with linear interpolation

◮ reduced SAH cost

◮ significantly less intersection tests

◮ often less traversal steps

◮ about 20% rendering speed-up for many scenes



Summary

In practice, works well for single frames

◮ helps well whenever SBVH helps

◮ increased build times (between BVH and kd-tree)

◮ prototype implemention in OptiX



Summary

In practice, works well for single frames

◮ helps well whenever SBVH helps

◮ increased build times (between BVH and kd-tree)

◮ prototype implemention in OptiX

◮ spatial splits only avoid overlap for t = 0.5
◮ topology determined for t = 0.5

◮ problematic for incoherent motion



Weta Digital is hiring!

http://wetafx.co.nz/siggraph2011

http://wetafx.co.nz/siggraph2011

