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ABSTRACT

Microsatellites (MSs) are DNA regions consisting of

repeated short motif(s). MSs are linked to several

diseases and have important biomedical applica-

tions. Thus, researchers have developed several

computational tools to detect MSs. However, the

currently available tools require adjusting many par-

ameters, or depend on a list of motifs or on a library

of known MSs. Therefore, two laboratories

analyzing the same sequence with the same com-

putational tool may obtain different results due to

the user-adjustable parameters. Recent studies

have indicated the need for a standard computa-

tional tool for detecting MSs. To this end, we

applied machine-learning algorithms to develop a

tool called MsDetector. The system is based on a

hidden Markov model and a general linear model.

The user is not obligated to optimize the parameters

of MsDetector. Neither a list of motifs nor a library of

known MSs is required. MsDetector is memory- and

time-efficient. We applied MsDetector to several

species. MsDetector located the majority of MSs

found by other widely used tools. In addition,

MsDetector identified novel MSs. Furthermore, the

system has a very low false-positive rate resulting in

a precision of up to 99%. MsDetector is expected to

produce consistent results across studies analyzing

the same sequence.

INTRODUCTION

Genomes contain a considerable number of repetitive
elements known as repeats. These elements fall into two
broad categories: (i) interspersed repeats or transposable
elements and (ii) tandem repeats (TRs) (1). In this study,
we focus on the detection of TRs. TRs occur as a result of
replication slippage or DNA repair (2). Consecutive
copies of a DNA motif comprise TRs. These copies can

be exact copies in the case of perfect TRs or can be inexact
copies in the case of approximate TRs. Depending on the
length of the repeated motif, TRs can be classified as
microsatellites (MSs) (the motif length is 1–6 bp) or
minisatellites (the motif length is 10–60 bp).
MSs are important due to their documented functions

and association with cancer and other diseases. In 2005, it
was demonstrated that MSs polymorphism, which is due
to copy number variability, can enhance the virulence of
pathogens and their adaptability to the environment (2).
In addition, MSs can be involved in gene regulation (3–5).
Moreover, Kolpakov et al. (6) have highlighted
several reported functions of MSs. Recombination en-
hancement has been linked to MSs consisting of a
repeated GT motif (7). Further, alterations in dinucleotide
MSs have been shown to be associated with cancer in the
proximal colon (8). Trinucleotide MSs consisting of
repeated CCG or AGC are associated with Fragile X
syndrome, myotonic dystrophy, Kennedy’s disease and
Huntington’s disease (9,10). Finally, several human
triplet-repeat expansion diseases have been reported
(11,12).
Furthermore, MSs have several biomedical applica-

tions. Ellegren (13) listed several applications of MSs in
linkage mapping, population genetics studies, paternity
testing and instances in forensic medicine. In the compu-
tational biology field, it is known that masking TRs in
sequences improve the performance of sequence alignment
methods (14).
Several computational tools have been developed

to detect and discover repeats in DNA sequences.
RepeatMasker (http://repeatmasker.org/) is a widely
used detection tool, which searches a DNA sequence for
instances of known repeats that have been previously
identified. REPuter (15), PILER (16) and Repseek (17)
are examples for ab initio discovery tools, which discover
repeats classes in the input sequence without relying on a
library of known repeats. In addition, special-purpose
tools are available for the discovery and the detection of
TRs/MSs in particular. STAR (18), Mreps (6) and
Sputnik (http://espressosoftware.com/sputnik/index.html)
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are well-known MSs discovery tools. Hereafter, we use
detection and discovery interchangeably. Several other
tools are currently available (5,19–26). Additional tools
are reviewed in (27,28).
However, these tools have the following limitations:

(i) they require the user to adjust several parameters;
(ii) the user may have to provide the filtering threshold(s)
to remove spurious detections; (iii) some of the tools
require a list of motifs or a library of known repeats and
(iv) they may not be efficient in terms of memory or time.
Two recent studies (28,29) have suggested that parameter
tuning and the user-defined filtering threshold(s) result in
varying the performance of these tools. Thus, based on the
conclusions of these two studies, the need for a standard
MSs detection tool is evident.
The goal of our study is to develop just such a tool to

detect MSs in DNA sequences. To this end, we have
designed software called MsDetector that attempts to
remedy the limitations of the currently available tools.
The parameters of our software tool were optimized
using machine-learning algorithms. MsDetector does not
require a library of known MSs or a list of motifs.
Therefore, we expect MsDetector to produce consistent
results across studies. In addition, MsDetector can
process a whole human chromosome in a few minutes
on a regular personal computer.
We incorporated a supervised-learning approach into

our design. Labeled data are required for supervised-
learning algorithms. For example, the labeled data
required in our study to train a tool to detectMSs consisted
of two sets of sequences: (i) DNA sequences that are known
to include MSs and (ii) DNA sequences that are not likely
to include MSs. To obtain such data, we used
RepeatMasker to obtain MS sequences. Genomic
sequences that did not overlap with MSs located by
RepeatMasker comprised the other set unlikely to include
MSs. Then, we trained a hiddenMarkov model (HMM) on
these two sets to detect MSs. To reduce the false detection
rate, the HMM detections were processed by a filter
to remove spurious detections. Again, we applied a
supervised-learning algorithm to obtain such a filter. We
regarded the filtering problem as a classification problem
where we distinguished between true and false detections.
Therefore, we trained a general linear model (GLM) to
obtain a classifier that functioned as the filter. As before,
two sets of labeled data are required to train the filter.
HMM detections that overlapped with MSs located by
RepeatMasker comprised one of the two sets. The other
set consisted of HMM detections found in shuffled DNA
sequences. The human chromosome 20 and its shuffled
version were divided into three segments to train, validate
and test MsDetector. We followed the train–validate–test
approach to make sure that MsDetector performance
during training is very similar to its performance on
unseen data, i.e. to avoid over-fitting.
MsDetector is both memory- and time-efficient. The

memory requirement and the run time are linear with
respect to the length of the input sequence. Due to the
advantages of the supervised-learning algorithms, the
user is not required to adjust any parameters or provide
any filtering criteria. In sum, the contribution of our study

comprises a software tool called MsDetector. The tool can
locate perfect and approximate MSs. The advantages of
MsDetector are as follows:

. The user is not required to optimize the parameters.

. There is no need to provide a library of known MSs.

. There is no need to specify motif patterns.

. It is efficient in terms of memory and time and

. It produces consistent results across studies.

MATERIALS AND METHODS

Overview

The goal of our work is to develop an easy-to-use compu-
tational tool that frees the user from optimizing several
parameters. Therefore, we designed and developed a
system we call MsDetector pronounced as m-s-detector.
We assembled a pipeline of programs based on machine-
learning algorithms to optimize the parameters of the tool
automatically. The tool and the automated pipeline are
available to the users (Supplementary Datasets 1–5).
MsDetector consists of the following three components:

. Scoring component—a scheme to convert a series of
nucleotides to a series of scores.

. Detection component—a two-stateHMMtodetectMSs.

. Filtering component—a GLM to remove false-positive
detections.

We start by first defining the measures that were instru-
mental in the development of the tool. Then, we give the
details of each of the three components.

Evaluation measures

We used a collection of evaluation methods during the
development of MsDetector. The sensitivity of tool a to
MSs detected by tool b is measured as the percentage of
the nucleotides located by tool b and also found by tool a.
This measure is defined in Equation (1).

Sensitivityb ¼ 100�
Oa, b

Lb

, ð1Þ

where Oa,b is the length in base pairs (bp) of the
overlapping segments of MSs detected by tool a and
those detected by tool b. Lb is the length of MSs
detected by tool b.

To estimate the false-positive rate (FPR) of a tool, we
run it on a shuffled version of the same sequence scanned
by the tool. Nucleotides are shuffled independent of each
other, i.e. a zero-order Markov model is assumed. The
FPR measures the length of the false-positive detections
in 1Mbp of a shuffled DNA sequence. Equation (2)
defines the FPR.

FPR ¼
La

S� 10�6
, ð2Þ

where La is the length of MSs detected by tool a in a
shuffled sequence. S is the length of the shuffled
sequence. We estimated the FPR on a whole chromosome.
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A chromosome sequence usually includes the ‘N’ charac-
ter. We shuffled the non-N regions only.

The precision measure tends to be used to calculate the
ratio of true positives to false positives. However, since not
all true positives are known, the standard precision defin-
ition has to be modified. We regard an MS detected by
MsDetector as a true positive if it overlaps with an MS
located by RepeatMasker. The rest of the MSs located by
MsDetector are not necessarily false positives. However, we
do not include them while calculating the precision. False-
positive detections are those found by MsDetector in a
shuffled version of the same sequence. Both the real and
the shuffled sequences have the same length. The modified
precision measure is defined according to Equation (3).

Precision ¼ 100�
Oa, rm

Oa, rm+La

, ð3Þ

where Oa, rm is the length (in bp) of the overlapping
segments of MSs detected by RepeatMasker and MSs
found by tool a. La is defined as before.

The measures sensitivityb, the FPR and the precision
depend on the detections of tool a. We do not add a as
a subscript to simplify the notation.

In the rest of this section, we first discuss the data used
to train the system. We then illustrate each of the three
components in detail.

Data

MsDetector is based on supervised-learning methods.
Supervised-learning algorithms require examples and
their labels. Therefore, to train MsDetector, we provided
the algorithms with annotated sequences. Each nucleotide
of these sequences was labeled according to its association
with an MS region or a non-MS region. To obtain
these labels, we used RepeatMasker to detect MSs in
the training chromosome. A stand-alone version of
RepeatMasker was used with the ‘-int -s -div -GC -species’
options. The -int parameter resulted in the extraction of
simple repeats and low-complexity regions; other classes
of repeats were not extracted. The value of the -GC par-
ameter, which represents the GC content of the genome,
was assigned 40 (different values were used according to
the species). Only MSs that were deviated by at most 20%
from the consensus sequence were reported. Detections
that were deviated by >20% tended to be very degenerate.
Hence, these detections could be a source of noise; there-
fore, they were not considered. Detections labeled as
‘simple repeats’ were extracted.

Three sets (training, validation and testing) were formed
from the annotated chromosome. Using such sets while
optimizing the parameters of a machine-learning algo-
rithm is a classical approach to guard against over-fitting
(30). Over-fitting occurs when the performance on the
training set is excellent while the performance on unseen
data is poor. Similar performances on the three sets
indicate that there is no over-fitting. Traditionally, the
algorithm is trained on one set, and the algorithm param-
eters are adjusted on the second set. Finally, the perform-
ance of the algorithm is tested on the third set. The
performance on the testing set is a predictor of the

future performance on new data. Each set included
positive and negative sequences that were gathered from
approximately one-third of the chromosome.
Next, we give the details of the scoring, the detection

and the filtering components of MsDetector. We start with
the scoring component.

The scoring component

MSs are DNA sequences that are made of repeated
words consisting of 1–6 nt. Given the nature of MSs, the
flanking sequences of a certain word should include
copies of this word. For example, the following sequence
consists of 11 repeated ‘AT’ words, ATATATATATATA
TATATATAT. The flanking sequences of the middle
word, the italicized ATATAT, include several copies of
the same word. This concept comprises the underlying
principle of the scoring component of MsDetector.
The input of the scoring component is a series of nu-

cleotides. It outputs a series of scores. To generate such a
series, every nucleotide is considered to be the beginning
of a word of length n. If an exact copy of the word is found
in any of the two flanking windows, the score of this nu-
cleotide is n. In other cases, the score of the best approxi-
mate match is assigned to this nucleotide. Specifically, to
calculate the score of the ith nucleotide of a sequence, the
word of length n starting at i, Wi, is aligned, without gaps,
against the two sequences flanking the ith nucleotide
(Figure 1). Let the length of each of the flanking sequences
be m. We calculate the identity score of Wi and the
word Fj starting at nucleotide j of one of the flanking
sequences, j ¼ 1 . . .m� n+1. The score of nucleotide
i is the best identity score of Wi and all Fj. Next, we
define the identity score of two words. Let X and Y be
two subsequences representing two words of the same
length: Xj j ¼ Yj j ¼ n,X ¼ fx1, . . . , xng,Y ¼ fy1, . . . , yng.
We define the identity score of X and Y as

sðX,YÞ ¼
X

n

i¼1

�ðxi, yiÞ; ð4Þ

where

�ðx, yÞ ¼
1 if x ¼ y

0 if x 6¼ y:

�

ð5Þ

The running time of the scoring component is linear with
respect to the length of the input sequence. Specifically, if
the length of the input sequence is h, then the scoring
component performs at most n� 2� ðm� n+1Þ � h com-
parisons. Given that m and n are constants, the upper
bound of the algorithm running time is O(h). The
memory usage is also O(h).
The length of the word, n, is set to 6 bp. The maximum

length of the repeated word, according to the definition of
MSs, is 6 nt. This word length should be appropriate even
if the repeated word is shorter or longer than 6 bp. In the
case of a short motif, two or more repeated words should
include a 6-bp repeated word. In the previous example, the
length of the repeated word, AT, is 2 bp. Three subsequent
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ATs form a 6-bp word, ATATAT, which is also repeated
several times in the sequence.
At this point, we have discussed the scoring component.

We proceed by elaborating the detection component.

The detection component

We developed a machine-learning approach to detect
MSs. Our approach is based on a two-state HMM. The
HMM was trained on a dataset which included sequences
found in approximately one-third of the human chromo-
some 20. The scoring component was used to generate a
series of scores representing the training portion of the
chromosome. Then, this training portion was divided
into 500-bp non-overlapping segments. HMMs are
widely applied to time-series data. A series of scores can
be considered as time-series data if we assume that a score

depends on a few of the preceding scores in the series. We
considered a DNA sequence to be made of MS regions
and non-MS regions. Therefore, this two-state structure
can represent a DNA sequence. The first state, S0, gener-
ates scores associated with non-MS regions which have
lower scores, whereas the second state, S1, generates
scores associated with MS regions which have higher
scores. Generally, an HMM is described by three types
of probabilities: prior, transition and emission
probabilities (31). The priors are the probabilities that
the series starts at one of the two states. The transition
from one state to the next is described by the transition
probabilities. State outputs, which are scores from 0 to 6,
are represented by the emission probabilities. We used the
training set to calculate the three types of probabilities.
Figure 2 shows the HMM structure, the three types of

Figure 1. Converting a series of nucleotides to a series of scores. To score the nucleotide ‘A’ (surrounded by a gray box), we search for an exact copy
or the best inexact copy of the word starting at ‘A’ within the flanking sequences (red with dashed underlines). Thus, we calculate the identity scores
(Equation 4) of this word and every word in the left and the right flanking sequences. The score of the nucleotide ‘A’ is the best identity score. For
example, the identity score of this word and the first word of the left flanking sequence is 3. The identity score of this word and the second word of
the right flanking sequence is 6 which is the best possible score. Therefore, the score of the nucleotide ‘A’ is 6 (surrounded by a gray box). The score
series, which is the output of the scoring component, is shown at the lower part of the figure. Notice the correspondence between the repeated ‘AT’
motif and the part of the output consisting of consecutive 6s.

Figure 2. (A) The HMM structure. (B) The prior probabilities. (C) The transition probabilities. (D) The emission probabilities. (E) A series of states
that likely generated a series of scores. S0 and S1 represent the non-MS and the MS states.
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probabilities and an example series of states that likely
generated a series of scores.

Once the model is trained, the Viterbi algorithm can be
used to find a series of states that likely generated the
observed sequence of scores. Consequently, we applied
the Viterbi algorithm to detect MS regions in DNA. We
used the HMMlib (32) which provides a C++ implemen-
tation of the Viterbi algorithm. The run time of the Viterbi
algorithm is linear with respect to the length of the input
sequence.

One parameter that is likely to affect the HMM per-
formance is the size of the search window. We varied
the window size and studied the detections made by the
HMM. The HMM was evaluated in terms of: (i) the sen-
sitivity to MSs detected by RepeatMasker as defined by
sensitivityrm (Equation 1), (ii) the FPR (Equation 2) and
(iii) the precision (Equation 3). To calculate the FPR and
the precision of MsDetector, we used a shuffled version of
the human chromosome 20. We shuffled the chromosome
except the regions consisting of the ‘N’ character. Table 1
shows the performance of the HMM on the three sets.
Using a window of size 24 bp resulted in slight over-fitting.
The sensitivityrm on the training set reached 88.9%,
whereas the testing sensitivityrm was 85.7%. In contrast,
using longer windows resulted in more consistent
performances across the training, the validation and the

testing sets. As the window size increased, the FPR
decreased. Next, we scrutinized the HMM to explain its
behavior.
The score of a nucleotide in a sequence depends on the

length of the search window. When the window length
increases, the probability of finding an exact or a better
approximate copy of the word also increases. We studied
the emission probabilities obtained by using several
window lengths. Figures 3A and 3B show the emission
probabilities of the MS state and the non-MS state.
From Figure 3B, it is possible to conclude that the
window size has a minimal effect on the scores of
the MS sequences, specifically if the length of each of
the two flanking sequences is 24 bp or longer. In
contrast, in the case of the non-MS sequences, when the
window size increases, the probability of outputting higher
scores also increases. Using a larger window complicates
the detection of MSs because the scores of MSs may be
similar to the scores of non-MS sequences. In addition, it
is known that MSs cover a small percentage of the human
genome, previously estimated as 3% (13). The small per-
centage of MSs in the human genome is captured by the
prior probabilities of the HMM. The prior probabilities of
a series of states to start in the non-MS state or the MS
state are 0.9892 and 0.0108, respectively. Therefore, if the
scores of the MSs and the non-MS sequences are similar

Table 1. The HMM performance on the three sets

Window Training
sensitivity (%)

Validation
sensitivity (%)

Testing
sensitivity (%)

Mean FPR
(bp/Mbp)

Mean
precision (%)

12� 2 88.9 88.4 85.7 3827 70.8
24� 2 84.7 84.6 84.7 1481 85.7
48� 2 84.3 84.6 85.4 1324 87.0
72� 2 84.2 84.9 85.9 922 90.6
96� 2 83.7 84.5 85.7 733 92.3

Sensitivity (Equation 1) is the percentage of the nucleotides of MSs detected by RepeatMasker and were also
found by MsDetector. The mean of the FPRs (Equation 2) and the mean of the precisions (Equation 3) of
MsDetector on the three sets are also shown.
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Figure 3. The effect of the length of the flanking sequences on the emission probabilities. We report the length of one of the two flanking sequences.
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due to a large search window, the HMM is more likely to
be in the non-MS state than in the MS state. In other
words, as the window size increases, the HMM becomes
less sensitive for detecting MSs resulting in lower FPR.
Recall that MsDetector consists of three components.

We have discussed the scoring and the detection compo-
nents. We continue by giving the details of the filtering
component.

The filtering component

The purpose of this component is to remove detections
that are similar to those found in random sequences. To
this end, we designed a machine-learning approach to
process the detections of the HMM. We represented a
detection, consisting of a series of scores, in terms of
two features: the length of the detection and its average
score. The average score is the sum of the scores in the
series divided by the length of the series. Long detections
that have high average scores are likely to be true MSs.
Short detections that have low average scores are likely to
be false positives. Combining these two features can
provide a powerful method to remove undesired detec-
tions. The two features are not equal in terms of their ef-
fectiveness in removing erroneous detections. Therefore,
we needed to determine the weight associated with each
of the two features. The task at hand can be formulated as
a classification problem where the goal is to find the best
weights that can separate the positive detections from the
negative ones. To this end, we trained a GLM (33) on a
labeled dataset to find the optimal weights of the two
features. Positive and negative labels were assigned as
follows: (i) HMM detections that overlapped with
RepeatMasker MSs were considered positives (labeled
by 1) and (ii) detections that were detected in the
shuffled sequence were considered negatives (labeled by
�1). To generate the shuffled sequence, the independence
of the nucleotides was assumed. Therefore, the shuffled
sequence had the same mono-nucleotide composition as
the original sequence. Similar to the dataset used to
develop the detection component, this labeled dataset
was divided into three sections for training, validation
and testing.
Normalizing the data is usually recommended before

applying the optimization algorithm, i.e. before fitting
the model (30). There are several methods to normalize
the data. In this work, we applied the optimization algo-
rithm to the z-scores of the features instead of the features

themselves. Equation (6) illustrates the normalization
step.

�xi, j ¼
xi, j �mi

si
, ð6Þ

where xi, j is the ith feature of an HMM detection j
(i=1, 2); mi and si are the mean and the standard
deviation of the ith feature of HMM detections in the
training set. The mean and the standard deviation of the
lengths were 25.537 and 35.802. The mean and the
standard deviation of the average scores were 5.7773
and 0.23168.

Equation (7) gives the form of the solution found by the
GLM.

yj ¼ w1 �x1, j+w2 �x2, j+b, ð7Þ

here, �x1, j and �x2, j are the z-scores of the features of an
HMM detection j; w1 and w2 are the weights associated
with the z-scores of the two features of j; b is the error; yj is
the label; We used a Matlab implementation of the GLM
with a logistic activation function (33). The optimization
algorithm converged in 10 iterations at most. The logistic
function (Equation 8) was applied to the linear combin-
ation as defined by Equation (7). Detections with logistic
values � 0:5 are considered MSs.

logisticðyjÞ ¼
1

1+e�yj
: ð8Þ

We varied the window size while evaluating the HMM
combined with the GLM-based filter. Table 2 shows the
results on the three sets. By comparing these results to the
ones obtained without the filter (Table 1), the effectiveness
of the GLM-based filter was proven. The GLM-based
filter was able to reduce the FPR dramatically, while
maintaining high sensitivityrm. Consequently, the
precision of the system approached 100% compared
with a precision of 71–92% obtained without the filter.
These results show that the size of the window has a
minimal effect on the performance of the full system.
However, the performance based on a half window size
of 12 bp indicated slight over-fitting manifested by higher
training sensitivityrm of 87.3% and lower testing
sensitivityrm of 83.2%. We decided to use a half window
size of 24 bp as the default of the distribution version of
MsDetector due to two factors. First, a smaller window

Table 2. The performance of the HMM combined with a GLM-based filter

Window Training
sensitivity (%)

Validation
sensitivity (%)

Testing
sensitivity (%)

Mean FPR
(bp/Mbp)

Mean
precision (%)

12� 2 87.3 86.5 83.2 43 99.5
24� 2 83.4 83.4 83.4 40 99.5
48� 2 83.0 83.6 84.1 36 99.6
72� 2 83.0 83.8 84.7 39 99.6
96� 2 82.5 83.4 84.6 41 99.5

The size of the window is shown under column ‘Window.’ The sensitivity, FPR and precision are defined in
Equations (1–3). The sensitivity is calculated with respect to the detections by RepeatMasker. The average FPR
and the average precision of MsDetector on the three datasets are reported in the last two columns.
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size leads to a better execution time. Second, this window
size resulted in consistent sensitivities across the three sets.

The final MsDetector filter is based on the solution
found by the optimization algorithm. Equation (9)
shows the weights associated with the z-scores of the
features.

yj ¼ 21:631 �x1, j+2:7629 �x2, j+6:4758, ð9Þ

where �x1, j is the z-score of the length of detection j; �x2, j is
the z-score of the average score of detection j. The weight
associated with the length is greater than the weight
associated with the average score indicating that the
length is a more important filtering criterion. Figure 4
shows a line specifying the filtering function.

In sum, we developed MsDetector to locate MSs in
DNA sequences. The parameters of MsDetector were
optimized on the human chromosome 20. MsDetector is
easy to use, only requiring an input sequence(s) in FASTA
format. The output of MsDetector can be in two formats.
The first format is the masked sequence in FASTA
format. The detected MSs are marked by lower case
letters and the rest of the sequence is written in upper
case letters. The second format is the genomic locations
of the detected MSs and their logistic values.

In the next section, we evaluate MsDetector on
chromosomes from the human and other five species. We
also compare the performance of MsDetector with the
performances of three related and widely used tools.

RESULTS

Our study resulted in the software that we call
MsDetector. The user is not burdened by having to
optimize the parameters of the software; we optimized
the parameters by applying machine-learning algorithms
to one of the human chromosomes. MsDetector, although
optimized on the human chromosome, can be applied to

genomes of other species successfully. In addition, we
provide a pipeline to automatically optimize the param-
eters on a chromosome of a species of interest to the user.
The pipeline requires the sequence of the chromosome and
a list of MSs detected by RepeatMasker. MsDetector is
easy to use: the user only needs to provide MsDetector
with the input sequence(s) in FASTA format.

Software availability

The software is available as Supplementary Datasets 1–3.
The C++source code is included in SupplementaryDataset
4. Supplementary Dataset 5 includes the automated
training pipeline. MsDetector and the training pipeline can
be found at http://www.ncbi.nlm.nih.gov/CBBresearch/
Spouge/html_ncbi/html/index/software.html.

Evaluation

In addition to the three measures explained in the
‘Materials and Methods’ section, we used two additional
criteria to evaluate MsDetector and the other tools. These
criteria comprise the percentage predicted (PP) and the
execution time. The PP is the percentage of the length of
the chromosome predicted as MSs. Equation (10) defines
the PP:

PP ¼ 100�
La

T
, ð10Þ

where La is the length of MSs detected by tool a. T is the
length of the scanned chromosome. We consistently used
computers with the same specifications to measure the
execution time of the tools. Specifically, all tests were per-
formed on computers with 2 Intel Xeon 6 cores 2.93GHz
CPUs and 48 G RAM. CentOS 5.6 x86_64 is the operating
system installed on all the computers.
In sum, the evaluations were conducted to focus on

(i) the sensitivity to MSs detected by widely used
methods such as RepeatMasker and STAR, as per
Equation (1); (ii) the FPR, as per Equation (2); (iii) the
precision, as per Equation (3); (iv) the PP, as per Equation
(10) and (v) the execution time of the tools.
As noted in (29), the outputs of MSs detection/discov-

ery tools vary considerably due to the user-adjustable par-
ameters. The available computational tools have the
potential to detect MSs accurately; however, only
experienced users can obtain such results. For example,
the methodologies of TRF (34) and Tantan (14) are
similar to that of MsDetector. Given a set of parameters,
the performance of TRF and Tantan can be very compar-
able to that of MsDetector. However, the user is required
to adjust several parameters and to develop evaluation
measures to find the set of parameters that result in the
best performance of TRF or Tantan. These two tasks can
be too difficult for a novice user. The main goal of our
study is to produce an easy-to-use software with optimized
parameters. Consequently, the user does not need to cali-
brate the tool. To evaluate the success of our efforts, we
compared MsDetector with other tools that can be
executed in the default mode, i.e. a non-expert user can
run the tool without adjusting the parameters. Similar
evaluation method was used in (35).
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Figure 4. The linear function representing the GLM-based filter.
HMM detections that have lengths and average scores below the line
are considered negatives. On the other hand, detections that have
lengths and average scores on or above the line are considered
positives.
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Results on chromosomes from the human, Drosophila
melanogaster, Arabidopsis thaliana and Saccharomyces
cerevisiae

We trained, validated and tested MsDetector on sequences
from or based on the human chromosome 20. MsDetector
was compared with STAR, Mreps and Tantan on four
chromosomes from the human, D. melanogaster,
A. thaliana and S. cerevisiae. STAR does not require ad-
justable parameters; however, it requires a set of motifs.
As recommended by the inventors of STAR, we used a set
of 964 Lyndon motifs which are 1–6 bp long. If the
chromosome was large, we ran STAR on 1-Mbp-long
fragments due to the long processing time STAR
required. We used the Mreps software in the default
mode, i.e. we did not provide the value of the resolution
parameter. Similarly, the default options of Tantan were
used. Table 3 shows the performances of the four tools.

The performance patterns of the tools were very similar on
the different chromosomes. In sum, we made the following
five observations:

. Tantan achieved very high sensitivity to MSs detected
by RepeatMasker. However, it has the highest FPR
resulting in the lowest precision.

. The performance of Mreps was moderate in general.

. STAR consistently achieved high sensitivity to MSs
detected by RepeatMasker, the lowest FPR and the
highest precision. This excellent performance came at
the price of long execution time.

. MsDetector achieved high sensitivity to MSs located
by RepeatMasker. Its FPR and precision were consist-
ently the second best after those achieved by STAR.
MsDetector is time-efficient in comparison to STAR.

. The results on the non-human chromosomes show that
the performance of the default version of MsDetector,

Table 3. Tools performance on different species

Tool Sensitivityrm (%) FPR (bp/Mbp) Precision (%) PP (%) Time (s)

Human chromosome 19 (59.1-Mbp long)
MsDetectorh 83.3 34 99.7 3.0 29
STAR 94.7 10 99.9 3.1 49 588
Mreps 70.8 346 97.0 2.1 15
Tantan 92.8 2842 83.6 8.4 43

D. melanogaster chromosome 4 (1.4-Mbp long)
MsDetectorh 89.0 161 98.2 2.6 1
MsDetectordm 93.6 520 94.7 3.7 1
STAR 92.6 7 99.9 1.6 1284
Mreps 71.7 860 89.2 2.1 1
Tantan 94.0 9538 49.4 7.6 2

A. thaliana chromosome 3 (23.5-Mbp long)
MsDetectorh 74.9 214 90.8 1.4 12
MsDetectorath 73.8 67 96.8 1.1 13
STAR 87.6 48 98.1 0.7 21 793
Mreps 67.7 817 70.0 1.30 7
Tantan 90.7 8479 23.1 7.30 17

S. cerevisiae chromosome 7 (1.1-Mbp long)
MsDetectorh 74.1 174 92.5 0.8 1
MsDetectorsc 81.7 130 94.8 1.0 1
STAR 88.4 6 99.8 0.7 1019
Mreps 67.3 741 72.5 0.9 1
Tantan 90.0 6922 27.4 3.6 1

P. falciparum chromosome 7 (1.5-Mbp long)
MsDetectorh 81.7 2945 97.2 21.9 2
MsDetectorh, 0:99 78.0 965 99.0 19.6 2
MsDetectorpf 75.2 896 99.0 17.0 2
STAR 96.5 64 99.9 28.3 2025
Mreps 63.3 3518 96.4 13.6 1
TantanAT 67.4 1434 98.6 15.9 3

M. tuberculosis circular chromosome (4.4-Mbp long)
MsDetectorh 54.7 250 70.0 0.8 3
MsDetectormt 76.6 39 95.4 2.0 3
STAR 88.8 4 99.6 1.0 2959
Mreps 21.9 961 19.7 0.7 1
Tantan 88.1 10 270 8.4 5.7 4

Column ‘Sensitivityrm’ displays the percentage of the nucleotides that were detected by RepeatMasker as MSs and were also detected by one of the
four tools (Equation 1). FPR is the false-positive rate (Equation 2). Precision is defined by Equation (3). PP is the percentage of the chromosome
predicted as MSs (Equation 10). The time that a tool took to process the chromosome is reported under ‘Time.’ MsDetectorh was trained on the
human chromosome 20; the threshold of the GLM was 0.5. MsDetectorh, 0:99 was trained on the same chromosome; however, the threshold of the
GLM was 0.99. MsDetectordm, MsDetectorpf, MsDetectorath, MsDetectorsc and MsDetectormt were trained on one-third of the D. melanogaster
chromosome 3R, P. falciparum chromosome 14, A. thaliana chromosome 5, S. cerevisiae chromosome 4 and M. tuberculosis circular chromosome,
respectively. We used a half window of size 24 bp for all models except the model of MsDetectormt, for which we used a half window of size 48 bp.
The parameters of TantanAT were the ones recommended by the author for AT-rich genomes. Specifically, we used the ‘atMask’ scoring matrix and
the value of the parameter ‘r’ was assigned 0.01. All other parameters were the defaults.
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trained on the human chromosome 20, is comparable
to that of a version trained on a chromosome of the
same non-human species. The species-specific HMMs
and GLMs are available as Supplementary Dataset 6.

These results demonstrate the capability of MsDetector
to mine for MSs in the human genome in addition to
genomes of other species including insects, plants and
yeast.

Results on the human genome

MsDetector was used to locate MSs in the human genome.
The genomic locations of the detected MSs are available
as Supplementary Dataset 7. MSs found by MsDetector
comprised �1.6–3.0% of each chromosome. The sensitiv-
ity to RepeatMasker detections ranged from 80.3 to
83.7%. MsDetector achieved a consistently low FPR of
22–136 bp/Mbp. The precision of MsDetector reached
99.7%. Overall, the total length of MSs located by
MsDetector represented 1.95% of the human genome.
The FPR of MsDetector on the human genome was
81 bp/Mbp. These results demonstrate the success of
MsDetector to detect MSs in the human genome.

Results on the Plasmodium falciparum chromosome 7

The P. falciparum (malaria) has the most AT-rich known
genome (�80%). Detecting MSs in such a genome is a
challenge. Further, evaluating a computational tool on
this genome represents another challenge, specifically,
evaluating its FPR. Due to the high AT content of this
genome, shuffling one of its chromosomes is likely to
result accidentally in repetitive sequences resembling
MSs. To circumvent this problem, we used
RepeatMasker to search for MSs and low-complexity
regions in the shuffled chromosome. While calculating
the FPR of a tool, detections that were included in the
MSs or in the low-complexity regions were not considered
false positives. Recall that the FPR is calculated on the
shuffled chromosome.

We started by evaluating the default version,
MsDetectorh, trained on one-third of the human chromo-
some 20, on the malaria chromosome 7. MsDetectorh
attained high sensitivity to RepeatMasker detections
(81.7%) and high precision (97.2%) while the FPR
reached 2945 bp/Mbp and the percentage of the chromo-
some predicted as MSs (PP) reached 21.9%. Although the
precision of MsDetectorh was very high, it did not result in
similar FPR or PP on the chromosomes tested from other
species. Similarly, the PP obtained by RepeatMasker on
this chromosome (12.3%) was much higher than what was
observed in other species (0.1–1.6%). Given the unusual
nucleotide composition of this genome, we decided to
consider MsDetector detections that are more likely to
be true positives. To this end, we increased the threshold
of the filter to 0.99 which is nearly the maximum output of
the logistic function. We call this version MsDetectorh, 0:99.
Recall that the default threshold of the filter is 0.5, i.e. if
the output of the logistic function is �0.5, the detection is
considered positive. Similarly, the author of Tantan

designed a special scoring matrix to handle the AT-rich
genomes.
The performance of MsDetectorh, 0:99 on the malaria

chromosome confirmed the previous results on the other
species (Table 3). MsDetectorh, 0:99 achieved the second
highest sensitivity to RepeatMasker detections, the
second lowest FPR and the second best precision. In
contrast, STAR attained the highest sensitivity, the
lowest FPR and the best precision. However,
MsDetector is much faster than STAR. The performance
of MsDetectorh, 0:99 and the performance of a version
trained on another malaria chromosome were similar. In
sum, these results demonstrate that MsDetector can locate
MSs in genomes with unusual nucleotide composition.

Results on the Mycobacterium tuberculosis genome

The genome of the M. tuberculosis CDC1551 strain
(a pathogenic bacteria) consists of one circular chromo-
some. Repbase, the library used by RepeatMakser, does
not include simple repeats specific to bacteria or to pro-
karyotes in general. To calculate the sensitivity to MSs
located by RepeatMasker, we specified the ‘species’
option of RepeatMasker as eukaryota. Therefore, we
should consider this fact as well as the small number of
MS loci detected by RepeatMasker (67 loci) while
analyzing the sensitivity. Again, the default version of
MsDetector came second after STAR in terms of the sen-
sitivity to RepeatMasker detections, the FPR and the pre-
cision (Table 3). However, MsDetector was much faster
than STAR. Even though MsDetector achieved the
second best sensitivity, its sensitivity was low (�55%) in
comparison to its performance on the chromosomes of the
other five species. A version of MsDetector that is trained
on one-third of the M. tuberculosis chromosome attained
higher sensitivity, �77%. The overall performance of this
version was comparable to that of STAR. Based on these
results, MsDetector can be used to detect MSs efficiently
and accurately in bacterial genomes.

MsDetector sensitivity to STAR detections

We have reported the sensitivities of MsDetector to MSs
located by RepeatMasker in the previous experiments. As
MsDetector was trained on MSs found by RepeatMasker,
the high sensitivity of MsDetector to RepeatMasker de-
tections is expected. The excellent precision of STAR
motivated us to analyze the sensitivity of MsDetector to
MSs identified by STAR, sensitivitystar (Equation 1). We
found that MsDetector achieved high sensitivitystar.
Specifically, the sensitivitystar of MsDetector on the
human chromosome 19, the fruit fly chromosome 4,
the A. thaliana chromosome 3, the yeast chromosome 7,
the malaria chromosome 7 and the genome of M. tuber-
culosis were 70.7, 80.1, 56.2, 63.1, 63.6 and 47.2%, respect-
ively. These results show that MsDetector is sensitive to
MSs found by STAR, even though MsDetector was
trained on MSs located by RepeatMasker.
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Identification of new MSs by MsDetector

The ability of a tool to detect new repeats is one of the
criteria Lerat (1) has used to evaluate several
repeats-finding programs. Consequently, we evaluated
the ability of MsDetector to locate new MSs that were
not identified by either RepeatMasker or STAR. We
studied the MSs identified by MsDetector in the human
chromosome 19. Approximately 75% of the MSs located
by MsDetector overlapped with MSs found by
RepeatMasker or STAR or both. These results show
that 25% of the MS loci detected by MsDetector were
uniquely identified by MsDetector. Table 4 provides
examples of these MSs. Strand slippage, one of the mech-
anisms responsible for generating MSs, is likely to occur in
the sequences shown in the table due to their repetitive
structure. In general, we observed that approximate
copies, rather than exact copies, of a motif(s) comprised
these sequences. The long repeated motifs (�20 bp) of the
last two sequences in Table 4 suggest that these sequences
are minisatellites.
We also studied the properties of the MSs that were

newly identified by MsDetector in comparison to those
of the MSs overlapping with detections by
RepeatMasker or STAR. We asked two questions: Did
the newly identified MSs have different length distribu-
tion? How different were their average scores from those
of the MSs overlapping with the MSs located by
RepeatMasker or STAR? Recall that MsDetector
converts a nucleotide sequence to a series of scores.
Here, the average score refers to the mean of the scores
representing an MS detected by MsDetector. Figures 5A
and 5B show the length and the average score distribu-
tions of the two groups. The Kullback–Leibler divergence
(KLD) measure was applied to quantify the divergence of
the two group distributions from each other. The KLD of
a distribution from itself is zero. The smaller the value of
the KLD is, the similar the two distributions are. The
distribution of the lengths of the new MSs diverged
slightly from that of the MSs also detected by
RepeatMasker or by STAR (KLD: 0.09, KLD of a
uniform distribution from that of the overlapping group:
1.35). The distribution of the average scores of the new
MSs diverged more noticeably from that of the other
group (KLD: 0.46, KLD of a uniform distribution from
that of the overlapping group: 1.74). The average score
distribution of the new MSs had two peaks at 5.4–5.5
and 5.9–6.0. In contrast, the distribution peak of the
other group was at average scores of 5.9–6.0. These
results show that (i) MsDetector has the ability to
identify new MSs; (ii) the distribution of the length of
the new MSs is very similar to that of MSs also detected
by RepeatMasker or by STAR and (iii) the new MSs are
assortments of perfect and approximate MSs.

Analysis of MSs detected by RepeatMasker but not by
MsDetector

MsDetector missed 356 (2%) loci detected by
RepeatMasker. These loci have almost identical length
distribution to those that overlapped with the MSs
detected by MsDetector (KLD: 0.09). However, these

356 loci have lower average scores in general. The distri-
bution of the average scores of the missed loci is evidently
different from that of the MSs that were missed by
MsDetector (Figure 6). Therefore, MsDetector missed
RepeatMasker detections that were severely degenerate.

DISCUSSION

In this section, we compare MsDetector with another
HMM-based tool for MSs detection. Then, we discuss
future research directions.

Comparison to closely related work

Tantan is another HMM-based tool to detect MSs.
MsDetector differs from Tantan in three main aspects.
First, the parameters of the default version of
MsDetector were optimized on a human chromosome.
We demonstrated the applicability of the default version
to other species. In additions, the users can apply the auto-
mated pipeline to generate parameters specific to a species
of interest. On the other hand, Tantan requires several
parameters that the user needs to adjust. Second, the
HMM of MsDetector consists of two states, whereas the
HMM of Tantan consists of eight states. Third, Tantan
does not have an independent filtering component. It uses
the HMM to obtain a posterior probability of each nu-
cleotide to belong to an MS segment. Nucleotides that
have posterior probabilities of 0.5 or greater are con-
sidered MSs. In comparison, MsDetector has a
GLM-based filter which is independent of the HMM.

Future directions

We will consider extending the scoring component by
allowing gapped-alignment between words. The current
version of MsDetector does not allow gaps while
searching for a copy of the word in the flanking sequences.
Even though, MsDetector is time-efficient, its running
time can be reduced; the algorithm to search for a copy
of a word in its vicinity can be further optimized.

CONCLUSION

We developed a computational tool, MsDetector, to
locate perfect and approximate MSs. Our design relies
on machine-learning algorithms, specifically HMM and
GLM. The main advantage of MsDetector is that all its
parameters were optimized. In addition, we provide an
automated pipeline to generate parameters specific to a
given species. In either case, the user is not obligated to
tweak the parameters manually. The results of our evalu-
ations show the following. First, MsDetector located the
majority of those MSs found by RepeatMasker as well as
STAR in the human chromosome 19 and chromosomes of
other five species. Second, MsDetector is time-efficient.
Third, MsDetector has a very low FPR. Fourth, our
tool is capable of locating new MSs. These four features
demonstrate that MsDetector can detect MSs accurately
and efficiently in several species advancing the state-of-
the-art toward a standard tool.
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