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ABSTRACT

Gene set enrichment analysis (GSEA) is a widely

used technique in transcriptomic data analysis that

uses a database of predefined gene sets to rank

lists of genes from microarray studies to identify

significant and coordinated changes in gene ex-

pression data. While GSEA has been playing a sig-

nificant role in understanding transcriptomic data,

no similar tools are currently available for under-

standing metabolomic data. Here, we introduce

a web-based server, called Metabolite Set

Enrichment Analysis (MSEA), to help researchers

identify and interpret patterns of human or mamma-

lian metabolite concentration changes in a biologic-

ally meaningful context. Key to the development of

MSEA has been the creation of a library of �1000

predefined metabolite sets covering various meta-

bolic pathways, disease states, biofluids, and tissue

locations. MSEA also supports user-defined or

custom metabolite sets for more specialized

analysis. MSEA offers three different enrichment

analyses for metabolomic studies including

overrepresentation analysis (ORA), single sample

profiling (SSP) and quantitative enrichment

analysis (QEA). ORA requires only a list of

compound names, while SSP and QEA require

both compound names and compound concentra-

tions. MSEA generates easily understood graphs or

tables embedded with hyperlinks to relevant

pathway images and disease descriptors. For non-

mammalian or more specialized metabolomic

studies, MSEA allows users to provide their own

metabolite sets for enrichment analysis. The MSEA

server also supports conversion between metabol-

ite common names, synonyms, and major database

identifiers. MSEA has the potential to help users

identify obvious as well as ‘subtle but coordinated’

changes among a group of related metabolites that

may go undetected with conventional approaches.

MSEA is freely available at http://www.msea.ca.

INTRODUCTION

Metabolomics is a field of omics science concerned with
the comprehensive characterization of small molecule me-
tabolites found in cells, tissues, biofluids, and organisms.
It uses a combination of NMR spectroscopy, mass spec-
trometry, and/or liquid/gas chromatography to specifical-
ly identify metabolites or generate metabolic spectral
profiles. Because metabolomics is concerned with
looking at the small molecule products of gene, protein,
and environmental interactions, it provides complemen-
tary information to what is normally obtained via
genomics, transcriptomics, and proteomics. As a conse-
quence, metabolomics is playing an increasingly important
role in both systems biology and synthetic biology (1,2). It
is also finding wide applications in diagnostic biomarker
discovery, toxicological testing, food and beverage
analysis, plant and animal phenotyping as well as drug
discovery and development (1–4).
There are two routes to conducting a metabolomics

experiment. One is called quantitative (or targeted)
metabolomics and the other is called chemometric (or
untargeted) metabolomics. In chemometric metabolomics,
spectral patterns from two or more large sample sets are
processed chemometrically and significant peak differ-
ences are identified. The limited number of compounds
contributing to these differences is then (ideally) identified.
In quantitative metabolomics, large numbers of com-
pounds are first identified and quantified before the data
are further processed. In this regard, quantitative
metabolomics is more similar to a standard proteomics
or transcriptomics experiment. As with any ‘omics’ experi-
ment, a typical quantitative metabolomic study consists of
three stages: data collection, data analysis, and data
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interpretation. In the data collection stage, sample spectra
are first acquired using various analytical platforms
(NMR, GC-MS, LC-MS, HPLC). These spectra are
then processed by different software tools to facilitate
compound identification and quantification, thereby
generating metabolite lists. In the second (data analysis)
stage, various statistical methods are applied to identify
those metabolites that are changed significantly under the
given study conditions. Popular methods include t-tests,
principal component analysis (PCA), partial least square
(PLS) discriminant analysis, as well as a variety of other
methods. Compounds are first ranked using appropriate
importance measures such as P-values, loading scores or
variable importance in projection scores. A cut-off thresh-
old is then applied to select the top n metabolites from the
ranked list. In the final stage (data interpretation), the list
of significant metabolites is examined, often manually, to
see if any biological interesting patterns can be identified.
For example, if compounds involved in a certain metabol-
ic pathway appear to be more frequently observed than
would be anticipated by random chance, then it may be
reasonable to assume that this pathway is biologically or
metabolically important.
There are several potential problems associated with

this kind of analytical protocol, particularly with the
second and third stages. In the second stage, the threshold
used for selecting important metabolites is usually chosen
arbitrarily. Many moderate but meaningful changes may
be missed if an inappropriate threshold is chosen. Indeed,
compounds that are critical components of a particular
biological process may be left out and the resulting
patterns could become indiscernible in the third stage.
Choosing a different threshold value may, therefore, lead
to a different biological conclusion. In addition, most stat-
istical methods used in compound selection assume that
metabolites are being sampled independently, which is cer-
tainly not true given the intricate correlations and connec-
tions seen among metabolites in metabolic networks. In
the third stage, despite obvious differences in importance
measures, all selected compounds are treated equally, as
only their occurrences (and not their concentrations) are
considered in the analysis. This loss of information can
obviously reduce the accuracy of any subsequent inter-
pretations. In addition, since the identification of metabol-
ically meaningful patterns is usually performed manually,
this process can be very time consuming. Likewise, the
final interpretation is often subject to the background
knowledge or biases of individual researchers.
These data analysis/interpretation issues are not unique

to metabolomics. In fact, they have long been the subject
of intense debate among researchers involved in gene ex-
pression data analysis (5–8). This debate has inspired the
development of a new approach for gene expression
analysis, generally referred to as gene set enrichment
analysis (GSEA). The key idea behind GSEA is to
directly investigate the enrichment of pre-defined groups
of functionally related genes (or gene sets) instead of in-
dividual genes. This group-based approach does not
require pre-selection of genes with an arbitrary threshold.
Instead, functionally related genes are evaluated together
as gene sets, allowing additional biological information to

be incorporated into the analysis process. The GSEA
approach has proven to be remarkably successful in
deriving new information from genome-wide expression
studies, having been cited 10000s of times since its initial
description in 2005 (9). Its success has also inspired many
extensions, improvements and variations (8–16).

However, to our knowledge, no tools similar to GSEA
have been developed to support this group-based
approach for metabolomic data analysis. This is likely
because both enrichment analysis and quantitative
metabolomics are relatively new techniques. However, it
is also likely due to the fact that in order to use this
approach, one needs an extensive and biologically mean-
ingful metabolite set library. Such a library is very labori-
ous and time consuming to create. To address this issue,
we collected, both through text-mining and manual
curation, a large body of mammalian (primarily human)
metabolite and metabolic pathway information from the
literature and various public databases. Using this library
of metabolites and disease/pathway/tissue associations, we
have implemented a web-based application, named
MSEA, to support group-based enrichment analysis for
human and/or mammalian metabolomic studies. The
main features of MSEA include the following.

(i) A collection of five metabolite set libraries contain-
ing �1000 biologically meaningful groups of
metabolites.

(ii) Three enrichment analysis methods – overrepre-
sentation analysis (ORA), single sample profiling
(SPP), and quantitative enrichment analysis
(QEA), to support common data forms generated
in metabolomic studies;

(iii) Support for enrichment analysis with discrete and
continuous phenotypes.

(iv) Support for enrichment analysis using customized
(non-mammalian) metabolite sets.

(v) Support for conversions between metabolite
common names, synonyms, and identifiers (ID) of
nine major metabolomic databases.

(vi) Comprehensive analysis report generation.

In other words, with MSEA and its accompanying data-
bases it is possible to take a list of altered metabolites from
a biofluid or tissue sample and use it to suggest a biologic-
al pathway or disease condition that can be further
investigated. The MSEA server and all of its accompany-
ing databases are freely available at http://www.msea.ca.

METHODS

Creation of metabolite set libraries

A group of metabolites are considered to constitute a me-
tabolite set if they are known to be: (1) involved in the
same biological processes (i.e., metabolic pathways, sig-
naling pathways); (2) changed significantly under the
same pathological conditions (i.e., various metabolic
diseases); and (3) present in the same locations such as
organs, tissues, or cellular organelles. These data were col-
lected through manual curation from books and journals
as well as through text mining of public databases. The
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resulting metabolite sets were manually validated/edited
and then further organized into three categories:
pathway associated, disease associated, and location
based. MSEA’s pathway-associated metabolite library
contains 84 entries based on the 84 human metabolic
pathways found in the Small Molecular Pathway
Database (SMPDB) (17). MSEA’s disease-associated me-
tabolite sets were mainly collected from the literature.
Metabolites associated with different diseases were
manually identified, merged and subsequently refined by
reading the original publications listed in the Human
Metabolome Database (HMDB) (18), the Metabolic
Information Center (MIC), and SMPDB. Using these re-
sources, a total of 851 physiologically informative metab-
olite sets were created. These disease-associated
metabolite sets were further divided into three
subcategories based on the biofluids in which they were
measured: 398 metabolite sets in blood; 335 in urine; and
118 in cerebral–spinal fluid (CSF). MSEA’s location-
based library contains 57 metabolite sets based on the
‘Cellular Location’ and ‘Tissue Location’ listed in the
HMDB. A summary of these metabolite set libraries is
shown in Table 1.

Creation of a metabolite dictionary and concentration
database

In order for the MSEA server to accept a range of metab-
olite names, synonyms or ID as input, it was also neces-
sary to develop a local metabolite dictionary that could be
used to perform facile name conversion or ‘normaliza-
tion’. Information contained in the HMDB was used to
extract common names, synonyms, as well as ID used in
nine major metabolomic databases [HMDB, PubChem
(19), ChEBI (20), KEGG (21), BiGG (22), METLIN
(23), BioCyc (24), Reactome (25), and Wikipedia].
Examples of MSEA’s supported IDs are listed in
Table 2. In order for MSEA to perform single sample
profiling (SSP) analysis, it was also critical to obtain ref-
erence concentrations for as many metabolites as possible.
These concentration data were collected primarily from
the HMDB with additional values being added through
manual curation. MSEA’s reference concentrations are
organized based on the biofluids in which they were
measured. Concentrations are presented in the form of
mean (minimum – maximum). For concentrations
reported as mean and standard deviation (SD), their
95% confidence intervals (mean±2 SD) were used to

define the concentration ranges. One compound may
have multiple concentration values as reported from dif-
ferent studies.

Implementation of enrichment analysis programs

Over the past 5 years, many different algorithms have been
developed for group-based enrichment analysis, including
GSEA (9), GSEA-P (26), PAGE (27), globaltest (11),
SAFE (12), SAM-GS (13) and GSA (14). Based on a
thorough review of the literature, we decided to adopt
the globaltest algorithm as the backend for MSEA.
There were three main reasons: (1) recent publications
have indicated that globaltest exhibited similar or
superior performance when tested against several other
algorithms (28–30); (2) globaltest is very flexible and
supports binary, multiclass, and continuous phenotype
labels; and (3) globaltest is computationally efficient as
the P-values can be calculated based on the Q-stat’s
asymptotic distribution, which appears to work well
with both large and small sample sizes. The globaltest al-
gorithm was originally designed for testing associations
between gene sets and clinical outcomes (11). It uses a
generalized linear model to compute a ‘Q-stat’ for each
gene set. For a group of m genes, the Q-stat is calculated
as the average of the Q values (Q1. . .Qm) calculated for the
m single genes, where Qi is the average of the squared
covariance between the gene expression pattern and the
clinical outcome. Conventional ORA was implemented
based on a cumulative hypergeometric distribution.
Since many metabolite sets are tested simultaneously, we
also implemented methods to adjust for the multiple
testing problems that occur during enrichment analysis.

Table 1. Overview of MSEA’s metabolite set libraries

Category Total
number

Sources Web links

Pathway based 84 SMPDB http://www.smpdb.ca
Disease—associated 851

Blooda 398 HMDB http://www.hmdb.ca/disease_browse
Urinea 335 MIC http://www.metagene.de
CSFa 118 PubMed http://www.ncbi.nlm.nih.gov/pubmed

Location based 57 HMDB http://www.hmdb.ca/

aMetabolite sets were collected from multiple sources including HMDB, MIC, PubMed and SMPDB.

Table 2. Overview of compound labels currently supported by MSEA

Label type Examples

Common
Name

Adenosine, acetic acid, adenine, creatine

HMDB HMDB00050, HMDB00042, HMDB00034, HMDB0006
PubChem 60961, 176, 190, 586
ChEBI 16335, 15366, 16708, 16919
KEGG C00212, C00033, C00147, C00300
BiGG 34273, 33590, 34039, 34543
METLIN 86, 3206, 85, 7
BioCyc ADENOSINE, ACET, ADENINE, CREATINE
Reactome 114933, 114747, 114936, 114818
Wikipedia Adenosine, acetic acid, adenine, creatine
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In addition to the original P-values, MSEA also reports
Bonferroni corrected P-values and a false discovery rate
(FDR) according to Benjamini and Hochberg (31).

Web server characteristics

MSEA’s web interface was implemented using the JSF or
Java Server Faces (http://java.sun.com/javaee/java
serverfaces) framework. The enrichment analysis algo-
rithms were implemented in the R (version 2.10.0)
programming language (http://www.r-project.org/). The
communication between R and Java was established
through the Rserve TCP/IP server (http://www.rforge
.net/Rserve/). The web application is hosted on
GlassFish (version 3) using a Linux operating system
(Fedora Core 10). MSEA’s host server is equipped with
two Intel Quad Core 2 processors (3.0GHz each) and 8
GB of physical memory. The web application is platform
independent and has been tested successfully on Internet
Explorer 8.0, Mozilla Firefox 3.0, and Safari 4.0.

PROGRAM DESCRIPTION

MSEA’s workflow is illustrated in Figure 1. Briefly,
MSEA can be described in four steps – data input, data
processing, data analysis, and data download. In addition
to its analysis utilities, users can directly download,
browse or search MSEA’s metabolite set libraries, or
perform compound name and ID conversions. The
details of each step are discussed below.

Step 1. Data input

MSEA accepts data in three different formats: (i) a list of
compound names entered in a single-column format; (ii) a
list of compound concentrations entered as two-column
data with the first column corresponding to the
compound names/labels and the second corresponding
to the concentration values; or (iii) a concentration table
containing metabolite concentration data from multiple
samples. The table must contain comma-separated
values (.csv) with rows for samples and columns for me-
tabolites. The second column of the table is reserved for
phenotype labels (binary, multiclass, or continuous).
Examples of these input formats are provided on the
MSEA homepage.

Step 2. Data processing

In this step, both the compound labels and the concentra-
tion values are examined for their suitability for down-
stream analysis. It is critical that the compound labels
be recognized by the program in order to be compared
with MSEA’s collection of compound names in metabolite
sets. Therefore, a consistency check is done with the input
names or IDs against the names and IDs stored in
MSEA’s metabolite dictionary. Any nomenclature incon-
sistency is flagged and displayed to users for manual in-
spection and correction. For SSP, the concentrations must
be provided in a standard concentration unit (mmol for
blood and CSF and mmol mmol�1_creatinine for urine)
in order for the input data to be properly compared
with MSEA’s reference concentrations database. For

QEA, the concentration values can be normalized and
negative/missing values are allowed. Two widely used
chemometric methods—PCA and PLS analysis—are
available in MSEA to allow for data visualization,
pattern identification, and outlier detection. Note that
MSEA does not perform data normalization. Users are
advised to visit MSEA’s companion web site
MetaboAnalyst (32) to access a variety of data processing
and normalization options.

Step 3. Enrichment analysis

Depending on the type of user input, MSEA offers three
kinds of enrichment analysis: ORA; SSP, and QEA. These
analysis modules are described in more detail below.

ORA. ORA is used to evaluate whether a particular set of
metabolites is represented more than expected by chance
within a given compound list. ORA is performed when the
user provides only a list of compound names. Such a list
can be obtained using standard feature selection methods
that statistically rank all the compounds and select those
scoring above a certain threshold. ORA is also very useful
for analyzing a group of compounds exhibiting similar
concentration changes or patterns. Such a list can be
obtained from standard clustering analysis. Many
commonly used feature selection and feature clustering
methods are available from our companion web applica-
tion MetaboAnalyst (32). The P-value from ORA indi-
cates the probability of seeing at least a particular

Figure 1. MSEA workflow. MSEA consists of four steps—data input,
data processing, data analysis, and data download. Different analysis
procedures are performed for different input types. MSEA allows users
to directly browse and search its metabolite set libraries as well as to
perform metabolite name mapping between different names and
database ID.
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number of metabolites from a certain metabolite set in a
given compound list. The Bonferroni corrected P-value
and FDR are also presented to account for problems
associated with multiple comparisons. Users can click
the ‘View’ link in the Details column of any of MSEA’s
metabolite sets to see all its constituent metabolites with
matched ones highlighted in red, as well as pathway
images (when available).

SSP. For common human biofluids such as blood, urine,
or CSF, normal concentration ranges are known for many
metabolites. In clinical metabolomic studies, it is often
desirable to know whether certain metabolite concentra-
tions in a given sample are significantly higher or lower
than their normal ranges. MSEA’s SSP module is designed
to provide this kind of analysis. In particular, SSP is per-
formed when the user provides a two-column list of both
compounds and concentrations. When called, the SSP
module will compare the measured concentration values
of each compound to its recorded normal reference ranges
of the corresponding biofluid (Figure 2A). By default,
only compounds with concentrations above or below all
the reported normal ranges will be selected for further
investigation. Users can manually select or deselect com-
pounds to override this default selection by inspecting the
concentration comparison plots generated by this module
(Figure 2B).

QEA. QEA is performed when the user uploads a concen-
tration table containing metabolite concentration data
from multiple samples. QEA is based on the globaltest
algorithm to perform enrichment analysis directly from
raw concentration data and does not require a list of sig-
nificantly changed compounds. With QEA, enriched me-
tabolite sets can be identified when only a few compounds
are significantly changed or when many compounds are
only slightly (but consistently) changed. The QEA algo-
rithm uses a generalized linear model to estimate a ‘Q-stat’
for each metabolite set. The Q-stat describes the correl-
ation between compound concentration profiles, X, and
phenotype labels, Y. In addition to the Q-stat values,
the QEA module also provide P-values,
Bonferroni-corrected P-values, and estimates of FDR.
Figure 2C shows a screenshot of the output table from a
typical QAE. Users can click the image icon of any
matched metabolite set to view a detailed graphical
summary of the contributions of individual metabolites
(Figure 2D).

Step 4. Data download

When users finish an enrichment analysis, a comprehen-
sive report is generated with detailed descriptions of each
step performed, embedded with graphical and tabular
results. The processed data, images, R scripts, as well as
the R command history are also available for download.
Users familiar with R can easily reproduce the results on
their local machine after installing the R packages and the
corresponding metabolite set libraries (available on the
Resources Download page).

Other features

The MSEA web server also offers a number of other
features to facilitate metabolomic data analysis, including
(1) a compound name and ID mapping tool; (2) a browser
for metabolite sets; and (3) a facility for custom metabolite
set uploads. Given the fact that no consensus exists in
labeling compounds in current metabolomic studies, we
implemented a utility in MSEA to convert between
common compound names, synonyms and the ID codes
used in nine major metabolite databases (see Table 2 for
details). This converter can also deal with spelling errors
using an approximate text matching algorithm. In
addition to this name/ID converter, MSEA also
provides a browser to view MSEA’s collection of metab-
olite set libraries. These libraries can provide a valuable
source of information to investigate the biological impli-
cations of any metabolite sets identified after enrichment
analysis. The browser implemented in the MSEA web
server allows users to easily scan and search its metabolite
set libraries. Each entry contains the metabolite set name,
its constituent compounds, and links to original refer-
ences. Given the incompleteness of MSEA’s metabolite-set
libraries, researchers may want to perform enrichment
analysis using customized or self-defined metabolite sets
other than the ones provided by the server. MSEA
supports this option by allowing users to upload their
own metabolite set library. The library file should be in
a simple.csv file with the first column for metabolite set
names and the second for compound members.

Limitations

Unlike genomics or transcriptomics, metabolomics has
not yet achieved total metabolite coverage. Whereas
Next-Gen DNA sequencers and modern microarrays rou-
tinely cover entire genomes, most metabolomic
technologies only offer 5–10% coverage of a sample’s
metabolome (1–2). This makes many metabolomic
studies intrinsically biased. Since most of the metabolite
sets in MSEA’s libraries are also derived from experimen-
tal studies, they tend to suffer the same sampling bias.
Fortunately, these biases tend to cancel each other out,
as essentially the same metabolite population (the
fraction of the metabolome that are ‘detectable’ by
current analytical technologies) is probed to generate
both metabolite sets and user data. Nevertheless, users
should always take note of their experimental conditions
or technological limitations when interpreting the results
from enrichment analysis.
Another key limitation to MSEA is its bias to human

and/or mammalian metabolomics. This is a limitation that
we are working to overcome through the addition of other
metabolite sets from plants and microbes. However, until
these databases and data sets can be completed (likely in
two years time) we would encourage researchers who are
engaged in metabolomic studies of non-mammalian
species to create their own customized metabolite sets
for enrichment analysis and to contribute these sets to
the MSEA server for public use.
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CONCLUSIONS

Over the past few years, a number of software tools have
been developed to address the bioinformatic needs of
metabolomics. However, most of these programs were
designed for spectral data processing and compound iden-
tification. More recently, several freely available software
tools for the statistical analysis of metabolomic data have
started to appear, such as MetaboAnalyst (32) and
MeltDB (33). As yet, no publicly available tools have
been made available to assist in the functional or biologic-
al interpretation of metabolomic data. To address this
issue, we have developed a web server, named MSEA,
designed to help researchers identify and interpret
patterns of metabolite concentration changes in a bio-
logically meaningful context. MSEA performs three

kinds of enrichment analysis including ORA, SSP, and
QEA. When only a list of compounds is available ORA
is performed. When both compound names and concen-
trations are available the SSP module is called. When con-
centration data are available from multiple samples,
MSEA performs QEA. The enrichment analyses per-
formed by MSEA are based on five carefully compiled
metabolite libraries consisting of �1000 entries. In
addition to its enrichment analysis capabilities, MSEA
allows custom metabolite sets to be uploaded for more
specialized (non-mammalian) studies. MSEA also
supports conversion between metabolite common names,
synonyms and major database ID. We believe that, over
time, the MSEA approach will become more powerful as
analytical technologies for metabolomics continue to
improve their metabolite coverage and as the

Figure 2. Enrichment analysis and visualization. Results from MSEA’s enrichment analysis are presented both in tables as well as through graphical
summaries. (A) The comparison between the measured concentrations and reference concentrations using the SSP module. The top part of (B) shows
a graphical summary of the concentration comparison for a single compound when users click an image icon in Figure 2A. The bottom part of
Figure 2B shows all the corresponding publications that reported these concentrations. (C) The results generated by the QEA module. The top part
of (D) is a metabolite-set plot indicating the influence of an individual compound on each of the selected metabolite sets. The bottom part of Figure
2D shows all its constituent metabolites with matched ones highlighted in red.
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metabolomics community develops improved standards
and ontologies (34). In the long run, we would like to
turn the MSEA server into a resource for metabolomic
annotation, visualization, and integrated discovery much
as the DAVID server (35) has become just such a resource
for microarray data analysis.

FUNDING

Alberta Ingenuity Fund, the Alberta Advanced Education
and Technology; the Canadian Institutes for Health
Research; Genome Alberta, a division of Genome
Canada. Funding for open access charge: Canadian
Institutes for Health Research

Conflict of interest statement. None declared.

REFERENCES

1. Wishart,D.S. (2008) Quantitative metabolomics using NMR.
Trends Anal. Chem., 27, 228–237.

2. Hollywood,K., Brison,D.R. and Goodacre,R. (2006)
Metabolomics: current technologies and future trends. Proteomics,
6, 4716–4723.

3. Ewald,J.C., Heux,S. and Zamboni,N. (2009) High-throughput
quantitative metabolomics: workflow for cultivation, quenching,
and analysis of yeast in a multiwell format. Anal. Chem., 81,
3623–3629.

4. Gieger,C., Geistlinger,L., Altmaier,E., Hrabe de Angelis,M.,
Kronenberg,F., Meitinger,T., Mewes,H.W., Wichmann,H.E.,
Weinberger,K.M., Adamski,J. et al. (2008) Genetics meets
metabolomics: a genome-wide association study of metabolite
profiles in human serum. PLoS Genet., 4, e1000282.

5. Khatri,P. and Draghici,S. (2005) Ontological analysis of gene
expression data: current tools, limitations, and open problems.
Bioinformatics, 21, 3587–3595.

6. Pan,K.H., Lih,C.J. and Cohen,S.N. (2005) Effects of threshold
choice on biological conclusions reached during analysis of gene
expression by DNA microarrays. Proc. Natl Acad. Sci. USA, 102,
8961–8965.

7. Nam,D. and Kim,S.Y. (2008) Gene-set approach for expression
pattern analysis. Brief. Bioinform., 9, 189–197.

8. Mootha,V.K., Lindgren,C.M., Eriksson,K.F., Subramanian,A.,
Sihag,S., Lehar,J., Puigserver,P., Carlsson,E., Ridderstrale,M.,
Laurila,E. et al. (2003) PGC-1 alpha-responsive genes involved
in oxidative phosphorylation are coordinately downregulated in
human diabetes. Nat. Genet., 34, 267–273.

9. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L.,
Golub,T.R., Lander,E.S. et al. (2005) Gene set enrichment
analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl Acad. Sci. USA, 102,
15545–15550.

10. Lee,H.K., Braynen,W., Keshav,K. and Pavlidis,P. (2005) ErmineJ:
tool for functional analysis of gene expression data sets.
BMC Bioinformatics, 6, 269.

11. Goeman,J.J., van de Geer,S.A., de Kort,F. and van
Houwelingen,H.C. (2004) A global test for groups of genes:
testing association with a clinical outcome. Bioinformatics, 20,
93–99.

12. Barry,W.T., Nobel,A.B. and Wright,F.A. (2005) Significance
analysis of functional categories in gene expression studies: a
structured permutation approach. Bioinformatics, 21, 1943–1949.

13. Dinu,I., Potter,J.D., Mueller,T., Liu,Q., Adewale,A.J.,
Jhangri,G.S., Einecke,G., Famulski,K.S., Halloran,P. and
Yasui,Y. (2007) Improving gene set analysis of microarray data
by SAM-GS. BMC Bioinformatics, 8, 242.

14. Efron,B. and Tibshirani,R. (2007) On testing the significance of
sets of genes. Ann. Appl. Stat., 1.

15. Backes,C., Keller,A., Kuentzer,J., Kneissl,B., Comtesse,N.,
Elnakady,Y.A., Muller,R., Meese,E. and Lenhof,H.P. (2007)
GeneTrail–advanced gene set enrichment analysis. Nucleic Acids
Res., 35, W186–W192.

16. Zheng,Q. and Wang,X.J. (2008) GOEAST: a web-based software
toolkit for Gene Ontology enrichment analysis. Nucleic Acids
Res., 36, W358–W363.

17. Frolkis,A., Knox,C., Lim,E., Jewison,T., Law,V., Hau,D.D.,
Liu,P., Gautam,B., Ly,S., Guo,A.C. et al. (2010) SMPDB: The
Small Molecule Pathway Database. Nucleic Acids Res., 38,
D480–D487.

18. Wishart,D.S., Tzur,D., Knox,C., Eisner,R., Guo,A.C., Young,N.,
Cheng,D., Jewell,K., Arndt,D., Sawhney,S. et al. (2007) HMDB:
the human metabolome database. Nucleic Acids Res., 35,
D521–D526.

19. Austin,C.P., Brady,L.S., Insel,T.R. and Collins,F.S. (2004) NIH
Molecular Libraries Initiative. Science, 306, 1138–1139.

20. Degtyarenko,K., de Matos,P., Ennis,M., Hastings,J., Zbinden,M.,
McNaught,A., Alcantara,R., Darsow,M., Guedj,M. and
Ashburner,M. (2008) ChEBI: a database and ontology for
chemical entities of biological interest. Nucleic Acids Res., 36,
D344–D350.

21. Kanehisa,M., Goto,S., Kawashima,S., Okuno,Y. and Hattori,M.
(2004) The KEGG resource for deciphering the genome.
Nucleic Acids Res., 32, D277–280.

22. Feist,A.M., Herrgard,M.J., Thiele,I., Reed,J.L. and Palsson,B.O.
(2009) Reconstruction of biochemical networks in
microorganisms. Nat. Rev. Microbiol., 7, 129–143.

23. Smith,C.A., O’Maille,G., Want,E.J., Qin,C., Trauger,S.A.,
Brandon,T.R., Custodio,D.E., Abagyan,R. and Siuzdak,G. (2005)
METLIN – A metabolite mass spectral database. Ther. Drug
Monit., 27, 747–751.

24. Karp,P.D., Ouzounis,C.A., Moore-Kochlacs,C., Goldovsky,L.,
Kaipa,P., Ahren,D., Tsoka,S., Darzentas,N., Kunin,V. and
Lopez-Bigas,N. (2005) Expansion of the BioCyc collection of
pathway/genome databases to 160 genomes. Nucleic Acids Res.,
33, 6083–6089.

25. Matthews,L., Gopinath,G., Gillespie,M., Caudy,M., Croft,D., de
Bono,B., Garapati,P., Hemish,J., Hermjakob,H., Jassal,B. et al.
(2009) Reactome knowledgebase of human biological pathways
and processes. Nucleic Acids Res., 37, D619–D622.

26. Subramanian,A., Kuehn,H., Gould,J., Tamayo,P. and
Mesirov,J.P. (2007) GSEA-P: a desktop application for Gene Set
Enrichment Analysis. Bioinformatics, 23, 3251–3253.

27. Kim,S.Y. and Volsky,D.J. (2005) PAGE: parametric analysis of
gene set enrichment. BMC Bioinformatics, 6, 144.

28. Hulsegge,I., Kommadath,A. and Smits,M.A. (2009) Globaltest
and GOEAST: two different approaches for Gene Ontology
analysis. BMC Proc., 3(Suppl 4), S10.

29. Song,S. and Black,M.A. (2008) Microarray-based gene set
analysis: a comparison of current methods. BMC Bioinformatics,
9, 502.

30. Liu,Q., Dinu,I., Adewale,A.J., Potter,J.D. and Yasui,Y. (2007)
Comparative evaluation of gene-set analysis methods. BMC
Bioinformatics, 8, 431.

31. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false
discovery rate: a practical and powerful approach to multiple
testing. J. Royal Stat. Soc. B, 57, 289–300.

32. Xia,J., Psychogios,N., Young,N. and Wishart,D.S. (2009)
MetaboAnalyst: a web server for metabolomic data analysis and
interpretation. Nucleic Acids Res., 37, W652–W660.

33. Neuweger,H., Albaum,S.P., Dondrup,M., Persicke,M., Watt,T.,
Niehaus,K., Stoye,J. and Goesmann,A. (2008) MeltDB: a
software platform for the analysis and integration of
metabolomics experiment data. Bioinformatics, 24, 2726–2732.

34. Sansone,S.A., Fan,T., Goodacre,R., Griffin,J.L., Hardy,N.W.,
Kaddurah-Daouk,R., Kristal,B.S., Lindon,J., Mendes,P.,
Morrison,N. et al. (2007) The metabolomics standards initiative.
Nat. Biotechnol., 25, 846–848.

35. Dennis,G. Jr, Sherman,B.T., Hosack,D.A., Yang,J., Gao,W.,
Lane,H.C. and Lempicki,R.A. (2003) DAVID: Database for
Annotation, Visualization, and Integrated Discovery.
Genome Biol., 4, P3.

Nucleic Acids Research, 2010, Vol. 38,Web Server issue W77

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
8
/s

u
p
p
l_

2
/W

7
1
/1

1
0
1
3
1
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2


