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ABSTRACT Where traditional genetic algorithms tend to prematurely converge on local optima,
adaptive strategies aim to maintain a healthy level of population diversity by introducing randomness
to the population. Often times this is done through adjusting control parameters according to diversity
measurements. While these approaches introduce diversity, they do not aid in focusing or directing the
search effort. Meanwhile, other works in the literature propose creating individuals designed to improve
the population’s health and quality but their effectiveness is limited outside of general problems. This paper
proposes novel sequence-wise approach to designing and editing genotypes for ordered problems. A Markov
model based similarity guide matrix (MSGM) is used to determine the relationships between gene nodes
in order to produce new genotypes that focus on improving fitness and increasing population diversity. The
proposed MSGM based approach is implemented in a balanced-evolution genetic algorithm framework in
order to investigate its characteristics with encouraging results demonstrating its effectiveness when solving
combinatorial ordered optimisation problems.

INDEX TERMS Adaptive Optimisation, Balanced-evolution Genetic Algorithms, Markov Model, Ordered
Problems

I. INTRODUCTION

In the field of biotechnology, genetic engineering is used
to directly manipulate an organism’s genes. This can be
done through isolating and copying genetic material or by
artificially synthesising the DNA itself. As genetic algorithms
(GAs) are inspired by natural evolution, many studies have
investigated concepts borrowed from biotechnology to im-
prove its various operators and strategies. One research prob-
lem that stands to gain from this is the ability to direct a GA’s
search in a direction to improve its diversity, solution quality,
or both. While a number of studies propose the creation of
individuals from known qualities, these studies are largely
limited to general optimisation problems [1]. Many of these
approaches are incompatible or inappropriate for optimising
ordered problems due to their constraints and their sequential
nature of the encoded solution [2]–[4].

Combinatorial optimisation problems are often gener-
alised forms of problems frequently encountered in the fields

of operations and manufacturing. The process of solving
these problems involves finding an optimal solution in a
countably infinite set of possible solutions. Problems such
as the Travelling Salesman Problem (TSP) and the Capac-

itated Vehicle Routing Problem (CVRP) are generalisations
of problems in operations and logistics where the order
in which the salesman visits the cities or a vehicle makes
deliveries directly impact the cost of the operation [5]. These
ordered problems are also often found in operations [6] and
robotics [7]. Given a combinatorial ordered optimisation
problem with N nodes, there are N ! solutions, thus finding
the sequences and the relationship between each node in the
different combinations is an NP-hard problem. Studies into
the fitness landscape of problems like the TSP highlight the
difficulties in solving these problems [8]–[10].

Given the difficulty of finding the optimal solution, heuris-
tic approaches are often used to find high quality solutions
within a reasonable time-frame. Innovations to adaptive GAs
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FIGURE 1. Generalised framework for adaptive genetic algorithms, where population is a set of solutions for a problem which evolves through crossover and

mutation. Common adaptive strategies include parameter tuning for the tournament size (tsize), crossover probability (pc) and mutation probability (pm)

have enabled GAs to introduce a sense of intelligence in
order to improve the efficiency and effectiveness of the search
process. Continual improvements to these techniques enable
GAs to further improve their abilities in finding optimal
solutions to NP-hard ordered problems. Originally theorised
as being a hill-valley landscape, recent studies into the fit-
ness landscape of combinatorial optimisation problems have
identified clusters or funnels in the fitness landscape [11],
[12]. These clusters of local optima can be found through-
out the fitness landscape with the difficulty of finding the
global optima being related to the number of clusters in the
fitness landscape and the size of the cluster that the global
optima resides in [13], [14]. As understanding of the fitness
landscape improves, more advanced techniques to direct the
search of GAs are introduced. While several frameworks
introduce techniques inspired by genetic engineering to help
direct an adaptive GA’s search pattern, the constraints and the
characteristics of ordered problems have not been taken into
consideration. In particular, the relationships between nodes,
how these relationships contribute to both fitness and diver-
sity, and the sequential nature of the problems themselves.
With existing works demonstrating how a Markov model can
effectively establish the relationships between gene nodes
[15], [16], the following research questions can be raised:

RQ1 How can we use Markov chains to introduce genome
editing to direct the search?

RQ2 What balance between fitness and diversity is needed
to maintain a healthy level of diversity?

With the success of driving genotype editing through the
similarity guide matrix (SGM) in existing works [1], RQ1
aims to investigate the appropriateness of a Markov model
in comparison to traditional approaches, such as measuring
the Hamming distance. By measuring the likelihood of a
node proceeding another node, a genotype can be generated
according to the likelihood of its sequence rather than the
likelihood of gene values appearing at each gene position.

However, when considering directing the GA’s search and
population diversity, a purely diversity focused approach may
not be the most appropriate. As the GA should aim to search
for the clusters of local optima, RQ2 aims to investigate
different strategies to discover and investigate the multiple
funnels of the fitness landscape.

In this paper, we present a method for generating new
genotype solutions that balance between introducing diver-
sity and improving fitness using a Markov model based

similarity guide matrix (MSGM). The proposed method is
implemented into an existing balanced-evolution genetic al-
gorithm (BEGA) framework to demonstrate its effectiveness
for optimising ordered problems and compared against the
original framework for a range of ordered problems from the
TSP and CVRP benchmark instances.

The remainder of this paper is organised as follows: Sec-
tion II highlights the existing works in the literature for adap-
tive GAs with Section III discussing the balanced-evolution
genetic algorithm (BEGA) framework and the limitations of
current methods. Section IV describes our proposed approach
to adapting the similarity guide matrix (SGM) to generate
new genotypes for the TSP and CVRP problems. A discus-
sion and analysis of the results are included in Section V with
concluding remarks in Section VI.

II. RELATED WORKS

Adaptive GAs aim to prevent premature convergence on sub-
optimal solutions by introducing a degree of intelligence to
the search process. These approaches often utilise feedback
from population diversity measurements to adjust parameters
in on online manner [17]. In doing so, adaptive GAs attempt
to manage their focus between exploring the solution space
and exploiting known solutions according to whether the
population has converged too much or has too much diversity.
A generalised approach to implementing an adaptive GA is
shown in Fig. 1. Adaptive tuning for the tournament size

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039190, IEEE Access

Ohira et al.: MSGM: A Markov Model based Similarity Guide Matrix for Optimising Ordered Problems by Balanced-Evolution Genetic Algorithms

1 63 45

3 14 6 5

2

2

(a) Hamming distance

1 63 45

3 14 6 5

2

2

(b) Contiguous subsequence

1 63 45

3 14 6 5

2

2

(c) Non-contiguous subse-
quence

1 63 45

3 14 6 5

2

2

(d) Broken Pairs

FIGURE 2. Different approaches to measuring the genotypic similarity between a pair of genotypes

(tsize) enables the GA to apply an appropriate amount of
selective pressure while the crossover (pc) and mutation
(pm) probabilities enable adaptive GAs to manage a balance
between local (exploitation) and global (exploration) search.
The works in adaptive GAs can be classified as techniques
and strategies for measuring the similarity between individ-
uals, measuring the diversity of the population and mecha-
nisms for controlling the amount of diversity [17]–[19].

A. GENOTYPIC SIMILARITY

Gene-wise measures generally consider the similarities and
differences between genotypes according to the absolute
positions of the genes. The two most common approaches
are the Euclidean and Hamming distances [18], [19]. While
several works have applied these to solving ordered problems
[20], [21], they do not consider the relationship between
genes when measuring population diversity. The limitations
of these approaches are further highlighted by works imple-
menting approaches that focus on these relationship between
nodes as shown in Fig. 2a.

The broken pairs [22] approach (Fig. 2d) considers the
relationships between each pair of neighbouring genes and
measures the differences between two genotypes as the
number of pairs that have been separated. Numerous works
[23], [24] demonstrate the effectiveness and improvements
that this approach introduces in comparison to a gene-wise
approach. However, the considerations of the sequence-wise
nature of the problem is limited to pairs of genes.

In order to consider the relationship between a wider range
of genes, Nagata et al [25] proposed the use of a Markov
model to measure the similarity between genotypes in the
population and demonstrates how increasing the scope of the
relationship between genes can improve on a GA’s ability
to maintain diversity. This is further demonstrated with the
variable-order Marokov model [15], [16]. Another method
for measuring the sequence-wise diversity of a population is
the use of the longest common subsequence length (LCS)
distance [2]–[4]. Similar to the Hamming distance, it mea-
sures the number of gene nodes that share a common non-
contiguous subsequence between two genotypes as shown in
Fig. 2c. This is more effective than measuring the contiguous
subsequence (Fig. 2b) as a non-contiguous measurement
would also include contiguous subsequences [2].

While there are different approaches to measuring the
similarities and differences between two genotypes, each
one has different costs and benefits when applied to ordered
problems. How they are applied to measuring population

diversity greatly affects their contribution to an adaptive GA’s
overall performance.

B. POPULATION DIVERSITY MEASUREMENTS

While research into determining the similarities and differ-
ences between genotypes is an active and ongoing field, a
wide range of strategies for applying these measurements
to maintain population diversity exists in the literature [17].
Early works aimed to measure the Hamming best and worst
performing solutions [26] in order to minimise the compu-
tational costs. However, it was limited in that it could not
provide feedback on the state of the population.

While hardware was a limiting factor to the practicality in
measuring the diversity from all individuals in the population,
Shimodaira [27] proposed a compromise by measuring the
Hamming distance between the best, worst and a selection
of the population. While this increased its scope, it was still
limited by design with later works [28], [29] measuring the
distance between all individuals. Another common strategy
is to measure the distance between a reference individual and
the population. These methods would compute a solution that
represents a central point in the code space. While this often
leads to solutions that are not valid within the solution space,
they still demonstrate a utility in measuring diversity.

McGinley et al. [30] uses a genotype consisting of average
values at each position as a reference point to measure the
Euclidean distance of the population. As this results in a
non-integer value, approaches that measure the Hamming
distances [1] or LCS distance [2]–[4] must come up with
other methods such as the use of a mode or median genotype.
Another method includes measuring the entropy rate of the
population [15] that measured the probability of a sequence
of nodes occurring in the population. With many strategies
available for measuring population diversity, how diversity
is introduced into the population is an active and on-going
research area.

C. DIVERSITY CONTROL MECHANISMS

Once feedback on the amount of diversity has been received,
an adaptive GA must then activate its mechanisms for intro-
ducing and controlling diversity. Early methods included re-
initialising the population [31] to reboot the population as
well as adaptive parameter controls [32]–[34].

Other approaches included adaptive population sizes [35],
[36] and fixed populations with dynamic subpopulations
[30]. The latter allowed for an adaptive GA to balance its
focus between exploration and exploitation without increas-
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(a) Building the SGM from the
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FIGURE 3. BEGA process for generating new candidate individuals from the SGM with duplicated genes in the candidate solutions being highlighted

ing the computational effort. Where these works focused on
general, unordered problems, their performance was limited
when applied to solving within the constraints of ordered
problems [2], [3].

Zhang et al [1] proposed a method for generating new
individuals that either converged or diverged from the cur-
rent population in their Balanced-Evolution Genetic Algo-
rithm (BEGA) framework. Using the Hamming distance
to measure the population’s diversity allows for BEGA to
determine how much the population needs to converge or
diverge. Positive and negative perturbations of the similarity

guide matrix (SGM) were used to generate individuals for
exploitation and exploration subpopulations. This approach
was novel in that it influenced the direction of the search
area but was limited in its application due to its gene-wise
approach to both measuring and maintaining diversity. While
works have demonstrated how adaptive GAs can improve
their performance by adapting to sequence-based approaches
to diversity maintenance [2], [4], developing sequence-based
approaches to directing the search using sequence-based
genetic engineering approaches is an open research problem.

III. THE BEGA FRAMEWORK

The balanced-evolution genetic algorithm (BEGA) frame-
work [1] was originally proposed for solving unordered
problems such as the Knapsack problem and general math-
ematical problems. The framework balances the exploration
and exploitation responsibilities of its search through two
subpopulations. These subpopulations follow similar me-
chanics to one another but with one crucial difference. Unlike
traditional GAs, the BEGA framework does not select two
individuals for crossover but creates a temporary population

TABLE 1. Symbols and their meaning

Symbol Meaning

CA Control amplitude
Dl Linear diversity measurement
Dp Genotype distance
Dsl Diversity shift limit
f Fitness
M Perturbation matrix
md Minimum distance between individuals
ms Multiplier factor for the mutation operator
N Genotype length
O Child genotype
P Population of individuals
Pe Population of elite individuals
Pr Transition probability
Q Candidate genotype
S Similarity guide matrix
SM Markov model based similarity guide matrix
SF Fitness based similarity guide matrix
SB Balanced similarity guide matrix
SF Fitness sum matrix
SC Transition count matrix
T Threshold matrix
X Genotype

of candidate individuals that are used to crossover with the
real population. These candidate individuals are designed
specifically to either encourage convergence or introduce di-
versity depending on which subpopulation they are designed
for. This mechanism is controlled by the similarity guide

matrix (SGM) and the linear diversity index (LDI).
Table 1 summarises the symbols used in the paper.
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A. SIMILARITY GUIDE MATRIX AND LINEAR DIVERSITY

INDEX

The SGM creates a two dimensional matrix that expresses
the probability distribution of the gene values at each gene
position. This can be seen in Fig. 3a. In the case of an ordered
problem such as the TSP, the matrix is a size of N2 and can
be expressed as Eqs. 1-2.

S = {Sv1, . . . , Svj , . . . , SvN} 1 ≤ j ≤ N (1)

Svj = [s1j , . . . , sij , . . . , sNj ] 1 ≤ i ≤ N (2)

The two axis of the SGM (S) corresponds to the gene posi-
tions (Eq. 1) and gene values or nodes (Eq. 2). Each element
in the matrix (sij) represents the proportion of individuals in
the population that has the node value i in the jth position.

From the SGM, negative and positive perturbations are
computed for the exploitation and exploration subpopula-
tions. The differences in these perturbations are demonstrated
in Fig. 3b. The control amplitude (CA) determines the degree
of change in the perturbations. This is calculated using the
LDI which is calculated as the average Hamming distance
between a mode genotype and the rest of the population.
This mode genotype can be computed from the SGM as the
gene values at each position with the highest probability. The
process for calculating the LDI is demonstrated in Eqs. 3-4.

Dl =

|P|
∑

p=1

Dp

|P|
(3)

Dp =
Hamdis(Xp, Xr)

N
(4)

The normalised diversity of each individual (Dp) is calcu-
lated as the Hamming distance between individuals in the
population (Xp) and the mode geneotype reference point
(Xr) normalised against the genotype length (N ). The LDI
(Dl) is then calculated as the average, normalised Hamming
distance of the population (P). The Dl is used in conjunction
with the diversity shift limit (Dsl) to determine what stage
of the evolution BEGA is in and the level of diversity that to
be injected into the population. During the first stage where
Dl > Dsl, Dl is used as the CA value as shown in Eq. 5.

CA =

{

Dl Dl > Dsl

Dsl Dsl ≥ Dl

(5)

However, as BEGA converges on a optima, the popula-
tion’s diversity (Dl) can become a very small value which
prevents the GA from being able to effectively maintain
diversity. Dsl is designed to provide a minimum degree
of diversity maintenance even in a maximally converged
population with the authors recommending a value of 0.075.

B. COMPUTATION OF PERTURBATIONS

With both S and Dl, the perturbations for the exploration and
exploitation subpopulations can be computed. The process
for computing the negative perturbation is demonstrated in
Algorithm 1. After the control amplitude (CA) is calculated,

Algorithm 1: Computing negative perturbation
Input: S: SGM, N : Genotype length, CA: Control

amplitude
Output: M : Perturbation matrix
Initialization: M [N ][N ];
foreach j ∈ 1, . . . , N do

if rand() < CA then
k ← max(Svj) ; // Index of maximum

vector

l← rand(1, N) ; // Random index number

while l = k do
l← rand(1, N) ; // l 6= k

r ← CA× rand()× Skj ; // Perturbation

value

M [k][j]← S[k][j]− r;
M [l][j]← S[l][j] + r;
foreach i ∈ 1, . . . , N do

if i 6= k & i 6= j then
M [i][j]← S[i][j];

else
M [j]← S[j];

return M ;

Algorithm 2: Generating new individuals based on
SGM

Input: M : Perturbation matrix, N : Genotype length
Output: Q: Candidate genotype
Initialization: Q[N ], T [N ][N ]: Threshold matrix
foreach i ∈ 1, . . . , N do

foreach j ∈ 1, . . . , N do

T [i][j]←

{

M [i][j] i = 0

T [i− 1][j] +M [i][j] i 6= 0

foreach i ∈ 1, . . . , N do
foreach j ∈ 1, . . . , N do

Q[j]←

{

0 rand() ≤ T [0][j]

i T [i− 1][j] < rand() ≤ T [i][j]

return Q;

the new perturbation matrix (M ) must be populated with new
values. For each vector (j) in S, the vector has a chance to
be inherited directly from S without any changes. This is
dependent on the state of the population’s search process. If
vector j is selected to undergo changes in its perturbation,
then the index (k) of the maximum value (skj) of the vector
Svj is selected. A randomly selected index (l) from Svj is
selected as a pair for the the perturbation where k 6= l.
The negative perturbation of S reduces the maximum Svj

value by r and increases the value of the randomly selected
member by the same amount with all other members of Svj

are directly inherited by M . This spreads the probability
distribution for values at each gene position to decrease the
likelihood of a common genotype being generated.

The positive perturbation for exploitation works similarly
but with k being the index of the minimum value of the vector
Svj . Once the positive and negative perturbations of S are
computed, candidate individuals can be generated according
to the probability of values at each gene position (Fig. 3c).
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Compute diversity Dl (Eq. 3), CA (Eq. 5) and SGM

Current Population

Next Population

Compute positive perturbation matrix Mpositive

Exploration method
pm = 1 / N

Compute negative perturbation matrix Mnegative

Exploitation method
pm = (1.0 + ms x CA) / N

Yes No

FIGURE 4. The BEGA framework for balancing exploration and exploitation searches of the fitness landscape. This component replaces the highlighted “Adaptive

Evolution" component of adaptive genetic algorithms illustrated in Fig. 1

C. EXPLORATION AND EXPLOITATION

The first step in generating new individuals is to produce
a set of candidate individuals for both the exploration and
exploitation subpopulations. Candidates for both methods are
generated from their respective perturbation matrix and is
demonstrated in Alg. 2. M is the SGM with negative or
positive perturbations applied. T is the computed threshold
matrix that allows for a uniformly random number (rand())
between 0 and 1 to select node i for the jth position in the
candidate genotype Q.

The goal of the exploration subpopulation is to inject diver-
sity into the population in order to explore new areas of the
fitness landscape. Creating new genotypes for the exploration
subpopulation is outlined in Alg. 3. The SGM with negative
perturbations (M ) is used to generate a new candidate geno-
type Q. For crossover, the original BEGA framework uses
uniform crossover between the candidate genotype and the
reference genotype. Uniform mutation is applied to the new
genotype with a probability pm = (1.0 + ms × CA)/N .
The exploitation method is similar to the exploration method
except the positive perturbation matrix is used to generate Q
and constant mutation probability is used (pm = 1/N ).

D. THE FRAMEWORK: PUTTING IT ALL TOGETHER

The BEGA framework manages two sub-populations in or-
der to balance between exploration and exploitation and is
demonstrated in Fig. 4. A sub-population of elite individuals
(Pe) is selected with a minimum Hamming distance (md)
between each individual as the exploitation sub-population.
Individuals that are not selected for the exploitation sub-
population become part of the exploration sub-population.
The positive and negative perturbations of the SGM are

Algorithm 3: Exploration method
Input: M : Perturbation matrix, X: Reference genotype,

CA: Control amplitude, ms: Mutation multiplier
Output: O: New genotype
Initialization: O[N ]: New genotype
Q← NewGenotype(M); // Candidate genotype

(Alg. 2)

O ← Crossover(Q,X);
pm ← (1.0 +ms × CA)/N ; // Mutation

probability

O ← Mutate(O, pm);
return O;

computed (Alg. 1) which is then used in the exploration and
exploitation methods (Alg. 3).

E. LIMITATIONS

As BEGA relies on a gene-wise approaches for the SGM,
LDI, the positive and negative perturbations, and generating
the candidate individuals, there are significant limitations
when applied to ordered problems such as the TSP. This can
immediately be seen in the candidate individuals themselves
where the perturbation matrices can result in solutions that
do not adhere to the problems’ constraints.

While duplicate gene values can be replaced with miss-
ing gene values after the individuals are created, this can
reduce the effectiveness of the diversity balance mechanisms
introduced by BEGA [2]. Another limitation is its focus on
absolute gene positions rather than the relationships between
gene values and their positions in the sequence. This limits
the ability of both the SGM and LDI to express the diversity
to a position-by-position approach. Without being able to
accurately measure and monitor the state of the population
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in its evolutionary process, BEGA is unable to effectively
determine when diversity is needed or by how much. These
two limitations results in BEGA having difficulty both mon-
itoring and maintaining population diversity in an effective
manner when solving ordered problems.

IV. OUR APPROACH

To generate effective candidate genotypes for ordered prob-
lems, the following constraints must be maintained:

C1 Each node in the problem must appear in the sequence
and cannot be repeated, and

C2 A route can start at any node but must return to its orig-
inal node or depot for the TSP and CVRP respectively.

C1 requires genotypes to be generated where there are N
unique nodes in the sequence where the values range from
[1, . . . , N ], inclusively. The similarity guide matrix used by
the BEGA framework can result in invalid genotypes where
the duplicated nodes must be replaced with missing nodes
retrospectively. A strategy for producing genotypes for these
ordered problems must prevent duplicated or missing nodes
in order to produce meaningful sequence-based genotypes.
C2 describes the cyclical nature of ordered problems where
the sequence of nodes is more important than their absolute
positions. Thus, a method for designing and producing new
genotypes must consider the ordered nature of sequence-
based problems.

To model the above constraints of the ordered problems
in the similarity guide matrix (SGM), we propose three new
approaches to compute the SGM based on the Markov model,
called the Markov model based Similarity Guide Matrix

(MSGM). The first method uses the Markov model’s tran-
sition matrix as the MSGM. The second method measures
the average fitness of the subsequence of genes and can be
considered as the contribution of a subsequence of nodes to a
genotype’s fitness. The final method is a hybrid approach that
considers both the probability of a subsequence occurring
and its contribution to a genotype’s fitness.

Where the original BEGA framework uses a gene-wise
approach (Hamming distance) to measure diversity in Eq.
4, in our approach we use the LCS distance based geno-
typic similarity measurement explored in our previous works
[2]–[4] to measure diversity as shown in Eq. 6.

Dp =
LCS(Xp, Xr)

N
(6)

A. MARKOV MODEL BASED SGM

The BEGA framework utilises the SGM to express the dis-
tribution of a population or subpopulation in the solution
space. This is then used as a reference point in the coding
space order to measure the density of the solutions around
that point and to produce candidate individuals. However, as
highlighted in Fig. 3, this gene-wise approach can result in in-
dividuals being produced that do not consider the constraints
and characteristics of ordered problems.

To address the aforementioned issues, we propose the use
of a Markov model’s transition matrix as the Markov model
based SGM (MSGM). Where the original SGM had axes
of coding position and value, a sequence-based approach
considers the matrix axes as nodes from and to. If we consider
the likelihood of a node preceding another node in a solution
as a Markov chain with one order, the relationship can be
modelled as in Eq. 7.

Pr(q1, q2, ..., qN ) = Pr(q1)× Pr(q2|q1)× ...× Pr(qN |qq−1)

(7)

= Pr(q1)×

N
∏

i=2

Pr(qi|aq−1) (8)

Pr denotes the probability of the nodes appearing in a
given sequence. However, this does not accurately portray
the relationships between solution sequences and the fitness
landscape in ordered problems. As a population begins to
converge on clusters of optima, each cluster will being to
show characteristics in its genotype sequence that are shared
with nearby solutions.

When computing the MSGM, we can calculate the proba-
bility of a node proceeding another node to build a sequence-
wise similarity guide matrix. We can express the MSGM
(SM ) as a two dimensional matrix shown in Eq. 9. However,
each member of SM

vj represents the probability of node i
following node j as shown in Eq. 10.

SM = {SM
v1 , . . . , S

M
vj , . . . , S

M
vN} 1 < j < N (9)

SM
vj = [Pr(1, j), . . . , Pr(i, j), . . . , Pr(N, j)] 1 < (10)

Where the original SGM expresses on the absolute posi-
tions of each gene node, the MSGM expresses on the prob-
ability of transition between nodes. This allows the MSGM
to describe the sequence of nodes rather than their positions.
The sum for each SM

vj will always be 1 in ordered problems
like the TSP and CVRP as each node must appear once in the
sequence. Furthermore, for these problems, sequences can
wrap around the genotype and remain similar to one another.
For example, a sequence of [1, 2, 3, 4] should be considered
similar to [3, 4, 1, 2] where both have the same Pr(4, 1) and
Pr(2, 3). Thus SM = {sMij } where sMij is defined in Eq. 11.

sMij = Pr(qt = SM
j |qt−1 = SM

i ) 1 ≤ i, j ≤ N, i 6= j
(11)

aij represents the probability that node i follows node j
given the assumptions that the i and j are the values from
N nodes and that it is a steady state system. Further more,
as sMij ≥ 0 and the genotype cannot repeat nodes in its
sequence, it must eliminate the probability of j following i if
j already appears in the genotype sequence. This can result in
cases where the only options available for j are cases where
sMij = 0. The sum of all the probabilities of nodes proceeding
i must be

∑N

j=1
sMij = 1.
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FIGURE 5. Process for creating a genotype from the MSGM involves eliminating the possibility of the sequence transitioning to a node that already exists in its
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FIGURE 6. Expressing the transition probability of a sequence using a Markov model

Algorithm 4: Computing MSGM
Input: P: current population, N : genotype length
Output: SM : Markov based SGM
Initialization: SM [N ][N ]; SC [N ][N ];
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array

foreach k ∈ 2, . . . , N do
j ← Xk−1 ; // From node

i← Xk ; // To node

SC [i][j]← SC [i][j] + 1 ; // Transition

count matrix

foreach i ∈ 1, . . . , N do
foreach j ∈ 1, . . . , N do

SM [i][j]← SC [i][j]
N

;
return SM

SM can be considered as a two dimensional matrix that
expresses the distribution of the sequence of gene nodes. This
can be seen in Fig. 6 where a first order Markov model can
be used to calculate the subsequences of the population in
Fig. 6a into the SM (Fig. 6b). The vertical axis represents
the current gene node while the horizontal axis represents
the probabilities of the nodes that follow. The process of
creating a new genotype from the SM is demonstrated in
Fig. 5. An initial gene node can be selected according to
its probability as a starting point with the proceeding node

being selected according to its probability. Once a node has
been added to the genotype, it is removed from the possible
options in the vertical axis. This ensures that the constraints
of the ordered problem are maintained. With the MSGM, the
transition matrix can be used as the similarity guide and is
shown in Algorithm 4.

For each individual in the population P , the integer geno-
type sequence is expressed as vector X . SC is the transition
count matrix to store the number of genotypes in P where
node i following node j. Thus, for each node in X , we
increment the count at SC [i][j]. Once the sum of transitions
between all nodes for all individuals in P have been added
to SC , each value in the matrix is normalised by N to give a
value ranging from 0 to 1. This is stored in the Markov Guide
matrix (SM ) and returned as the transition matrix.

As the transition matrix describes the probabilities of
one node following another, producing new genotypes is a
stochastic process. As the population converges on a set of
solutions, common subsequences in the population increases
the probability of these subsequences appearing in genotypes
produced by the MSGM. However, the stochastic nature of
the Markov chains allows for the MSGM to introduce minor
mutations to the overall sequence and can assist in the process
for local search.
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Algorithm 5: Computing fitness based MSGM
Input: P: current population, N : genotype length
Output: SF : Fitness based MSGM
Initialization: SF [N ][N ]; SF [N ][N ]; f ← 0
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array

f ← f + fitness(X) ; // Fitness sum

foreach k ∈ 2, . . . , N do
j ← Xk−1 ; // From node

i← Xk ; // To node

SF [i][j]← SF [i][j] + fitness(X); // Fitness

sum matrix

foreach i ∈ 1, . . . , N do
foreach j ∈ 1, . . . , N do

SF [i][j]← SF [i][j]
f

;
return SF

B. FITNESS BASED MSGM

Where the MSGM approach considers areas of interests in
the solution space as where the solutions are converging, it
does not directly consider the fitness of the solutions. This
is particularly important when taking into consideration the
complexities in navigating a fitness landscape with many
clusters of local optima.

The fitness-based MSGM computes the average fitness
contribution of the gene sequence [i, j] from the population
which results in candidate genotypes more likely to inherit
the fittest subsequences instead of the most common. This
process is demonstrated in Algorithm 5 where SF is a two
dimensional matrix which contains the fitness distribution
of node i following node j as opposed to the transition
probabilities in SM .

Similar to Algorithm 4, for each solution in P , the geno-
type sequence is stored as X . As this is a fitness based
transition matrix, the summation of the fitness is required
later and is stored in f . For each node in the genotype X ,
the fitness of X is added to the matrix SF [i][j] where the
sequence transitions from node j to i. Where the SM in
Algorithm 4 is the summation of transitions between nodes,
SF is the summation of the fitness of genotypes where a
transition between nodes j and i exists. The fitness guide
matrix (SF ) consists of the values of SF normalised against
the fitness sum of the individuals in P to give a value between
0 and 1 and illustrates the contribution of each pair of nodes
to the average fitness.

C. BALANCED MSGM

A limitation of SF is that it considers a lower fitness indi-
vidual as being more diverse than an individual with a higher
fitness and can be considered as being similar to a phenotypic
approach to measuring diversity. Where as the limitation of
SM is its difficulty in conducting intensive search in multiple
areas of interest. This highlights the necessity for a strat-
egy that balances both converging towards good solutions
and exploring new areas of the solution space. We propose
a hybrid approach, called balanced MSGM that balances

Algorithm 6: Computing balanced MSGM
Input: P: current population, N : genotype length
Output: SB : Balanced MSGM
Initialization: SB [N ][N ]; SF [N ][N ]; SC [N ][N ];
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array

f ← f + fitness(X) ; // Fitness sum

foreach k ∈ 2, . . . , N do
j ← Xk−1 ; // From node

i← Xk ; // To node

SF [i][j]← SF [i][j] + fitness(X); // Fitness

sum matrix

SC [i][j]← SC [i][j] + 1; // Transition

count matrix

foreach i ∈ 1, . . . , N do
foreach j ∈ 1, . . . , N do

SB [i][j]← 1
2
× (SF [i][j]

f
+ SC [i][j]

N
) ;

return SB

between genotypic diversity and fitness contribution. This
allows BEGA to quickly converge on areas where known,
highly fit solutions exists while also explore new areas of the
solution space.

The balanced MSGM is given in Algorithm 6. Similar to
Algorithms 4 and 5, the process iterates for all individuals
x in P with the genotype sequence of x being expressed as
X . For each node in the genotype, the transition from node
j to i is added to the count matrix SC [i][j] while the fitness
of the individual is added to the fitness sum matrix SF [i][j].
Once SF has accounted for all individuals in the population,
the balanced guide matrix (SB) is calculated as the average
value of the normalised SF and SM values.

V. EXPERIMENTS

Here, we evaluate the effectiveness of our proposed Markov
model based similarity guide matrix (MSGM) in optimising
ordered problems by balanced-evolution genetic algorithms.

A. SETUP, ALGORITHMS AND PARAMETERS

This section describes the setup, algorithms, their parameters
and evaluation metrics used in our experiments.

1) Environmental Setup

All algorithms are implemented using C#/.NET Core with
experiments run on Windows 10 machines with AMD Ryzen
2600x CPU and 32GB of main memory. Each framework
algorithm ran each instance until 20,000 generations with
no improvements in the solution quality was reached. This
was repeated for 20 runs. The C# implementations of the
algorithms are made available online [37].

2) Benchmark Ordered Problems and Operators

Instances of ordered problems were selected from the TSP
benchmark library1 according to their range in problem size.
The new set of benchmark instances2 proposed by Uchoa et

1http://www.math.uwaterloo.ca/tsp/data/index.html
2http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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al. [5] were selected for the CVRP tests. Due to the ordered
nature of these problems, the modified ordered crossover op-
erator and partially shuffled mutation operator were selected
for their performance demonstrated in empirical tests [38].

3) Algorithms and their Parameters

The following algorithms have been implemented to conduct
experiments in this paper.

• GA: This is a standard genetic algorithm with no adap-
tive features.

• BEGA: The original BEGA framework (as described in
Section III) is implemented in C# according to the au-
thors’ work [1]. This ensures for consistent comparisons
between each implementation.

• BEGA MSGM: BEGA framework with LCS distance
being used to calculate population diversity (Dp) as in
Eq. 6. We also use MSGM (Alg. 4) instead of SGM.

• BEGA MSGM Fitness: BEGA framework with LCS
distance being used to calculate population diversity
(Dp) as in Eq. 6. We also use MSGM Fitness (Alg. 5)
instead of SGM.

• BEGA MSGM Balanced: BEGA framework with LCS
distance being used to calculate population diversity
(Dp) as in Eq. 6. We also use the MSGM Balanced (Alg.
6) instead of SGM.

The BEGA framework parameter settings were kept con-
sistent between each variant as recommended by Zhang et al.
[1]. The original BEGA framework was implemented with its
original operators. The GA, BEGA MSGM, BEGA MSGM
Fitness and BEGA MSGM Balanced were implemented with
the Modified Ordered Crossover (MOX) operator and the
Partially Shuffled Mutation (PSM) operator due to their per-
formance in ordered problems [38].

Population size (|P|) for each algorithm is set to 90. The
size of the elite sub-population |Pe| = 15 with a minimum
Hamming distance between individuals being md = 3 for
the original BEGA. The BEGA MSGM variants require a
minimum LCS distance md = 3, shift limit of diversity
Dsl = 0.075. For BEGA and all of its variants, the multiplier
factor for the mutation operator ms = 5.

4) Evaluation Metrics

To evaluate the algorithms, the best known solution (BKS)
and problem size (N ) has been included in the problem
instance descriptions. To indicate the relative difference be-
tween each GA approach, the average error (Avg. Err) be-
tween the BKS and the solution found is reported with the
coefficient of variation (Cv) demonstrating its consistency.
BKS Found is reported to indicate the number of runs in
which the GA approach found the BKS (out of 20 runs). The
average diversity (Avg. Diversity) is reported as the average
of the diversity of the last generation for each run. The
diversity of the final population is measured as the average
LCS distance normalised against the length of the genotype.

B. PERFORMANCE EVALUATION

Tables 2-3 demonstrate the abilities of each of the GAs. The
fitness is represented as the cost of the solutions where a
lower value indicates a higher quality solution.

1) Effect of Problem Size

While the benchmark GA performs well on smaller prob-
lems, it can be seen to quickly converge on local optima
as the problem size increases. The original BEGA imple-
mentation, while a significant improvement over the GA,
also prematurely converges. However, applying a sequence-
wise MSGM greatly improves the performance of BEGA in
its ability to find better quality solutions for both smaller
and larger problems. This improvement is also demonstrated
when more constraints are introduced as the CVRP (Table
3). The fitness based MSGM (BEGA MSGM Fitness) ap-
pears perform worse than BEGA MSGM in both solution
quality and consistency. While MSGM Fitness is effective
at exploiting its found solutions, it can be seen to struggle
with effectively searching the solution space for other peaks
in the fitness landscape. However, by combining both of
these approaches, the hybrid approach (MSGM Balanced)
increases BEGA’s ability to find better quality solutions and
improve on its consistency in finding these solutions.

2) Exploration vs Exploitation

The three BEGA variants with sequence-wise approaches
offer very significant improvements over the GA and many
improvements over the original BEGA. However, the im-
provements of the MSGM Balanced approach over both the
BEGA MSGM and BEGA MSGM Fitness offer more insight
into the contributions of the two. The characteristics of each
of the BEGA MSGM variants can be seen in Fig. 7.

While BEGA MSGM Fitness variant performs better in
earlier generations, BEGA MSGM is capable of finding
better solutions for more generations. This pattern is made
clearer in the Figs. 7c-7d with the CVRP instance X-n10001-
k43. With further constraints added by the CVRP, both
BEGA MSGM Fitness and BEGA MSGM Balanced reach
their completion criteria before BEGA MSGM. While BEGA
MSGM can be seen to evolve for longer than BEGA MSGM
Fitness, Tables 2-3 demonstrate that having the highest di-
versity does not directly result in the best solution. BEGA
MSGM Balanced maintains a healthy level of diversity to
evolve for longer and produces better solution quality.

C. DIVERSITY MAINTENANCE

In Tables 2-3, the average diversity highlights each GA
framework’s ability to maintain sequence-wise diversity. It is
measured as the average LCS distance of the population at the
completion of the run. As the value is normalised against the
genotype length, a maximally diverse population approaches
a value of 1 while 0 indicates maximal convergence. The
capabilities for each GA framework in maintaining sequence-
wise diversity is further highlighted in Fig. 8.
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TABLE 2. Performance for TSP instances highlighting the average error, coefficient of variation (Cv) in solution quality, the number of runs a GA framework found

the best known solution, and the average diversity of the last population of each run

Instance Algorithm
Solution Quality

Avg. Diversity
Avg. Err Cv BKS Found

fnl4461 GA 0.12906 0.00930 0 0.061
BKS = 182,566 BEGA 0.08901 0.00820 0 0.026

N = 14,461 BEGA MSGM 0.00296 0.00140 18 0.881

BEGA MSGM Fit. 0.00174 0.00310 15 0.635
BEGA MSGM Bal. 0.000000 0.00000 20 0.793

fi10639 GA 0.12524 0.00120 0 0.045
BKS = 520,527 BEGA 0.11996 0.00107 0 0.109

N = 10,639 BEGA MSGM 0.00234 0.00025 9 0.893

BEGA MSGM Fit. 0.00882 0.00019 6 0.632
BEGA MSGM Bal. 0.00070 0.00030 11 0.874

usa13509 GA 0.03619 0.00091 0 0.042
BKS = 19,982,859 BEGA 0.07786 0.00072 0 0.081

N = 13,509 BEGA MSGM 0.00325 0.00033 9 0.872

BEGA MSGM Fit. 0.00251 0.00040 2 0.534
BEGA MSGM Bal. 0.00062 0.00028 11 0.846

xvb13584 GA 0.04948 0.00153 0 0.022
BKS = 37,083 BEGA 0.14440 0.00126 0 0.035

N = 13,584 BEGA MSGM 0.00253 0.00032 11 0.863

BEGA MSGM Fit. 0.00313 0.00034 8 0.637
BEGA MSGM Bal. 0.00073 0.00030 14 0.785

d15112 GA 0.18114 0.00135 0 0.018
BKS = 1,573,084 BEGA 0.14068 0.00123 0 0.062

N = 15,112 BEGA MSGM 0.00500 0.00010 0 0.819
BEGA MSGM Fit. 0.01249 0.00003 0 0.593
BEGA MSGM Bal. 0.00140 0.00017 13 0.832

it16862 GA 0.16727 0.00131 0 0.024
BKS = 557,315 BEGA 0.13543 0.00119 0 0.032

N = 16,862 BEGA MSGM 0.00660 0.00033 0 0.900

BEGA MSGM Fit. 0.01115 0.00031 0 0.648
BEGA MSGM Bal. 0.00510 0.00035 2 0.817

pjh17845 GA 0.18106 0.00125 0 0.032
BKS = 48,092 BEGA 0.13465 0.00119 0 0.034

N = 17,845 BEGA MSGM 0.00178 0.00025 3 0.797
BEGA MSGM Fit. 0.01183 0.00014 0 0.635
BEGA MSGM Bal. 0.00110 0.00037 6 0.808

d18512 GA 0.11345 0.00136 0 0.024
BKS = 645,238 BEGA 0.20134 0.00111 0 0.042

N = 18,512 BEGA MSGM 0.00910 0.00029 6 0.832
BEGA MSGM Fit. 0.00167 0.00033 2 0.595
BEGA MSGM Bal. 0.00100 0.00025 11 0.839

ido21215 GA 0.23140 0.00113 0 0.029
BKS = 63,517 BEGA 0.13257 0.00108 0 0.027

N = 21,215 BEGA MSGM 0.00117 0.00024 10 0.795
BEGA MSGM Fit. 0.00112 0.00028 6 0.534
BEGA MSGM Bal. 0.00112 0.00020 11 0.816

vm22775 GA 0.20397 0.00128 0 0.035
BKS = 569,288 BEGA 0.19367 0.00112 0 0.041

N = 22,775 BEGA MSGM 0.00125 0.00030 1 0.857

BEGA MSGM Fit. 0.00130 0.00031 0 0.648
BEGA MSGM Bal. 0.00121 0.00028 4 0.814

xrh24104 GA 0.19001 0.00138 0 0.021
BKS = 69,294 BEGA 0.16349 0.00114 0 0.033

N = 24,104 BEGA MSGM 0.00159 0.00022 12 0.870

BEGA MSGM Fit. 0.01004 0.00028 0 0.612
BEGA MSGM Bal. 0.00160 0.00016 15 0.802

sw24978 GA 0.21972 0.00134 0 0.026
BKS = 855,597 BEGA 0.11233 0.00120 0 0.031

N = 24,978 BEGA MSGM 0.00406 0.00032 4 0.880

BEGA MSGM Fit. 0.00900 0.00028 0 0.601
BEGA MSGM Bal. 0.00055 0.00025 7 0.822

1) Effect of Problem Size and Constraints

In the TSP instances, the basic GA and original BEGA
implementations can be seen to struggle to maintain a di-
verse population with a trend towards greater convergence
with larger problem sizes. This suggests that while BEGA
focuses on maintaining gene-wise diversity, almost half the
sequences are common to all the solutions in the population.

BEGA MSGM maintains a higher level of diversity regard-
less of the problem size. The BEGA framework supports ex-

ploitation and exploration subpopulations where the exploita-
tion subpopulation naturally converges on similar solutions.
The higher levels of diversity in the BEGA MSGM Balanced
variant suggests that while the exploration subpopulation is
sufficiently diverse, the exploitation subpopulation also has a
higher level of diversity allowing it to exploit multiple known
peaks in the fitness landscape.

In Table 3, the effects of the additional constraints of the
CVRP can be seen on the diminished population diversity.
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TABLE 3. Performance of Uchoa et al. [5] set from CVRP-Lib with instances grouped by N size highlighting the average error, average coefficient of variation

(Cv), number of instances where the GA framework found the best known solution in its run and the average diversity of the final population for each run

Instance Algorithm
Solution Quality

Avg. Diversity
Avg. Err Avg. Cv BKS Found

100 ≤ N ≤ 249 GA 0.0890 0.00030 1 0.061
Instances: 32 BEGA 0.0174 0.00031 3 0.080

BEGA MSGM 0.0001 0.000020 30 0.722

BEGA MSGM Fit 0.0101 0.00024 17 0.613
BEGA MSGM Bal 0.0000 0.00000 32 0.686

250 ≤ N ≤ 499 GA 0.1090 0.00030 1 0.012
Instances: 36 BEGA 0.0729 0.00041 1 0.030

BEGA MSGM 0.0025 0.00002 17 0.700

BEGA MSGM Fit 0.0031 0.00029 9 0.580
BEGA MSGM Bal 0.0011 0.00008 20 0.665

500 ≤ N ≤ 749 GA 0.1420 0.00037 0 0.056
Instances: 19 BEGA 0.0815 0.00048 0 0.035

BEGA MSGM 0.0037 0.00025 9 0.682
BEGA MSGM Fit 0.0053 0.00041 1 0.562
BEGA MSGM Bal 0.0016 0.00010 16 0.686

750 ≤ N GA 0.1346 0.00008 0 0.012
Instances: 13 BEGA 0.1183 0.00015 0 0.030

BEGA MSGM 0.0049 0.00037 1 0.678

BEGA MSGM Fit 0.0068 0.00038 0 0.513
BEGA MSGM Bal 0.0025 0.00014 9 0.663
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FIGURE 7. The performance of each GA framework as demonstrated on the TSP sw24978 and CVRP X-n1001-k43 instances

In particular, the ability to maintain population diversity is
reduced in the BEGA MSGM Fitness variant as the problem
size increases while both the BEGA MSGM and BEGA
MSGM Balanced variant are able to maintain a more con-
sistent level of population diversity.

2) Exploration vs Exploitation

In Fig. 8a both the basic GA and BEGA can be seen to
converge very early in the search process. While the basic
GA has no diversity maintenance processes, the original
BEGA framework uses a gene-wise approach to measuring
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FIGURE 8. The relative sequence-wise population diversity of each GA framework as demonstrated with a typical run of the TSP sw24978 and CVRP

X-n1001-k43 instances

and maintaining diversity. This can result in a higher level of
sequence-wise similarity in the population.

BEGA MSGM has the highest level of overall diversity
due to its bias towards exploration as seen in Fig. 8b. As
the framework aims to generate sequences that maximises
the differences in sequences, this can naturally lead to an
effective exploration process. The BEGA MSGM Fitness
approach focuses on the exploitation of the fittest individuals.
This is done through the fitness based guide matrix where
the fitness of each sequence influences the likelihood of a
subsequence appearing in a genotype. This results in the
population converging on certain subsequences and lowering
the overall sequence-wise diversity. Furthermore, the three
BEGA MSGM variants can be seen to have a high level
of fluctuation in population diversity in the early stages of
their evolution. As the population begins to converge, the
fluctuations in diversity significantly reduces. This can be
seen as the second stage where the shift limit (Dsl) is used to
maintain diversity as the LDI (Dl) is too small due to the level
of convergence. What should be noted here is the degree of
the fluctuations in diversity, particularly with the constraints
of the CVRP in Figs. 8c-8d. BEGA MSGM and BEGA
MSGM Balanced both display similar fluctuations between
the peaks and valleys in diversity that suggests that diversity

is introduced in a very acute and effective manner. However,
the BEGA MSGM Fitness variant is not as effective.

While the BEGA MSGM Balanced variant has less di-
versity than the BEGA MSGM, it maintains diversity levels
closer to that of the BEGA MSGM. This suggests that
the mechanisms for managing the subpopulations are better
equipped to maintain a high level of diversity for exploration
but a smaller, more intense subpopulation for exploitation.
When this is applied to solving ordered problems, BEGA
MSGM Balanced is able to maintain a healthy level of
diversity while also being able to effectively find good quality
solutions. These characteristics are what likely enable the
BEGA MSGM Balanced variant to outperform the other
benchmark GAs.

D. DISCUSSION

The main objective of the BEGA framework is to balance
between intensive local search (exploitation) and diverse
global search (exploration). By a novel implementation of
the similarity guide matrix, BEGA designs and produces
genotypes to encourage convergence for the local search
subpopulation and introduces diversity to the global search
to improve coverage of the fitness landscape.

In order to determine the statistical significance of any

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039190, IEEE Access

Ohira et al.: MSGM: A Markov Model based Similarity Guide Matrix for Optimising Ordered Problems by Balanced-Evolution Genetic Algorithms

TABLE 4. Statistical significance of solution quality of BEGA MSGM Balanced. “++” and “+” indicates a very significant improvement and significant improvement

while “*” indicates no statistically significant difference

Instance
BEGA MSGM-Balanced

GA BEGA BEGA MSGM BEGA MSGM-F
fnl4461 ++ ++ ++ ++
fi10639 ++ ++ ++ ++

usa13509 ++ ++ ++ ++
xvb13584 ++ ++ ++ ++
d15112 ++ ++ * ++
it16862 ++ ++ ++ ++

pjh17845 ++ ++ ++ ++
d18512 ++ ++ ++ ++

ido21215 ++ ++ + +
vm22775 ++ ++ + +
xrh24104 ++ ++ * *
sw24978 ++ ++ ++ ++

X-n101-k14 - X-n247-k50 ++ ++ ++ ++
X-n251-k28 - X-n491-k59 ++ ++ ++ ++
X-n502-k39 - X-n749-k98 ++ ++ ++ ++
X-n766-k71 - X-n1001-k43 ++ ++ ++ ++

improvements demonstrated by the proposed methods, two-
sample z-tests were conducted between a benchmark GA,
the original BEGA implementation, as well as the MSGM,
MSGM Fitness and MSGM Balanced implementations. The
p values for the z-tests were 0.05 or less being considered
a significant difference and 0.01 or less indicating a very
significant difference. Table 4 highlights the statistical sig-
nificance of the solutions found by BEGA MSGM Balanced.

In general, the MSGM approaches demonstrate a signifi-
cant improvement in the BEGA framework’s ability to find
good quality solutions by adapting the gene-wise approaches
to sequence-wise approaches. By implementing a Markov
model to measure the probability of node transitions, BEGA
is able to produce genotypes that better reflect the solution
space and also reflect the ordered nature of the problems.
By balancing between sequence-wise diversity and fitness
contribution, our experiments demonstrate how our MSGM
approaches are able to engineer genotypes for ordered prob-
lems and outperform the original BEGA framework.

VI. CONCLUSION AND FUTURE WORK

In this study we propose three methods for computing a
Markov model based similarity guide matrix (MSGM) that
takes into consideration the sequence of nodes for opti-
mising ordered problems by the balanced-evolution genetic
algorithms (BEGAs). We demonstrate how the MSGM can
be used to genetically design and engineer genotypes to
encourage convergence on good performing subsequences
or encourage search in unexplored areas of the fitness land-
scape when implemented in an existing BEGA framework.
Our experimental results highlights how a sequence based
MSGM can introduce bias towards exploration while a fitness
based MSGM biases towards exploitation. A balance be-
tween these two MSGM approaches demonstrated the ability
to produce the best candidates for maintaining a healthy
level of population diversity. Future research into improving
the balance between exploration and exploitation for new
genotypes should consider monitoring and maintaining this
balance in an online manner.
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