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ABSTRACT:Markov state models provide a framework for understanding the fundamental states and rates in the conformational
dynamics of biomolecules. We describe an improved protocol for constructing Markov state models from molecular dynamics
simulations. The new protocol includes advances in clustering, data preparation, and model estimation; these improvements lead to
significant increases in model accuracy, as assessed by the ability to recapitulate equilibrium and kinetic properties of reference
systems. A high-performance implementation of this protocol, provided in MSMBuilder2, is validated on dynamics ranging from
picoseconds to milliseconds.

1. INTRODUCTION

Conformational changes such as myosin procession,1 protein
folding,2 and ligand binding3 have long occupied the attention of
biophysicists. A predictive, first-principles understanding of
conformational dynamics could elucidate these processes in
atomic detail, with broad applications in engineering andmedicine.
Many biophysical experiments probe the fundamental states and
rates of a system. For example, the dominant conformational
state of a biomolecule can be determined experimentally by NMR
spectroscopy4 or X-ray crystallography,5 while the existence of
intermediate states can be demonstrated by kinetic studies.6,7

Even at the single-molecule level, dynamics between multiple
conformational states can be tracked by monitoring observables
(e.g., FRET)8 that report on the conformational details of a
molecule. Conformational states and their rates of interconver-
sion remain a unifying paradigm of biophysical studies.

Discrete-time master equations, or Markov state models,9�11

formalize this paradigm. In aMarkov state model, one defines a set
of conformational states and models the dynamics between them
as a Markov jump process on that state space. Predicted con-
formational states and rates can be extracted from atomistic
molecular dynamics simulations of biomolecular dynamics under
ambient conditions.12�14Here, we describe an improved protocol
for constructing Markov state models from an ensemble of
molecular dynamics simulations. This enhanced protocol has been
implemented as version 2.0 of the freely available MSMBuilder
software package, available at https://simtk.org/home/msmbuilder.
The improvements in MSMBuilder2 include a more accurate
state definition through hybrid k-centers k-medoids clustering,
improved estimates of kinetic and equilibrium properties via a
reversible maximum likelihood estimator,9,11 and an extensible
Python implementation allowing facile customization. We vali-
date and benchmark the protocol on proteins spanning a range of
time scales and sizes.

2. THEORY

A Markov state model9,10,15�17 consists of a set of state
definitions and a transition probability matrix characteriz-
ing the kinetics on this state space. In this work, we adopt the

following conventions. States are labeled integers {1, 2, ..., n}.
Transition matrix entry ij gives the conditional probability of
jumping from state i to state j during a time interval (lagtime) τ:

TijðτÞ ¼ PðσðxðτÞÞ ¼ jjσðxð0ÞÞ ¼ iÞ ð1Þ

where σ(x) is a function mapping the conformation x onto the
state space. Equilibrium conformational dynamics are expected
to satisfy detailed balance: that is, πiTij = πjTji, where πi is the
equilibrium population of state i. Because of the symmetry of the
detailed balance equation, we define a symmetric matrix Xij = Xji =
πiTij. This matrix gives the counts between states i and j at
equilibrium, normalized such that ∑ijXij = 1. With this definition,
the transition matrix can be expressed as T = D�1X, where D =
diag(π) is a diagonal matrix of equilibrium populations.

The eigenvalues and eigenvectors of a transition matrix have
special significance. Let (λi, vi) be an eigenvalue�eigenvector
pair forT (e.g.,Tvi= λivi). By comparison to the eigenvalues (1/τi)
of a continuous-time master equation rate matrix K, one can
show that the eigenvalues of a transition matrix are related to the
relaxation time scales (τi) of amaster equation viaλi= exp(�τ/τi),
where τ is the lagtime used to estimate the transition matrix.15,18

For systems satisfying detailed balance, the eigenvalues λi must
be real, as the eigenvalue equation can be written as a symmetric
generalized eigenproblem:Xvi = λiDvi. We point out that a recent
work9 provides an excellent review of the theory of MSMs;
another review covers both theoretical and experimental aspects
as applied to protein folding.19

To estimate a transition matrix, one must fix a lagtime, which
we signify by writing transition matrices with explicit lagtime
dependence T(τ). Because they describe physical observables,
relaxation time scales should be insensitive to changes in lagtime.
However, projecting dynamics onto a finite state space results
in dynamics that are only approximately Markovian. Thus, a
common test of model consistency is to calculate the relaxation
time scales for a sequence of lagtimes.9,10,18 In practice, discre-
tization error manifests itself as erroneously fast time scales for
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short lagtimes. Indeed, it has been shown9,20 that increasing
either the number of states or the lagtime will lead to more
accurate models; however, finite sampling and computational
resources place limits on the number of states and lagtime.

3. METHODS

This paper presents the recent advances in MSMBuilder2.
Below, we discuss these advances, in terms of both the nature of
the improvement as well as its motivation. We propose the
following new protocol for MSM construction, which shares
some characteristics with ones previously developed by ourselves
and others.9,11,21

1. Cluster molecular dynamics trajectories using a hybrid
k-centers k-medoids algorithm.

2. Restrict data to its maximal ergodic subgraph.
3. Estimate transition and count matrices (T(τ), C(τ)) using

a maximum likelihood reversible estimator.
While this protocol is similar to previous approaches in broad

strokes, these key refinements make the approach more quanti-
tative without increasing computational cost. We note that
MSMBuilder2 also allows nonreversible maximum likelihood
estimation for systems where reversibility is not desired.
3.1. Hybrid k-Centers k-Medoids Clustering. The first step

in MSM construction is to identify conformational states.
Because MSM accuracy depends on the quality of state decom-
position, enhanced clustering is a natural way to improve MSM
methods. In MSMBuilder2, as in other MSM methods, it is vital
to achieve kinetic clustering—that is, states sufficiently fine so as
to be free from internal kinetic barriers.
Previous work9,11 used an O(kN) approximate k-centers

clustering,22 where k denotes the desired number of clusters and
N denotes the number of conformations. That algorithm can be
viewed as an approximate solution to the problem:

min
σ

max
i

dðxi, σðxiÞÞ ð2Þ

Here, σ(x) is the “assignment” function that maps a confor-
mation to the nearest cluster center. d(x,y) is the distance
between two conformations x and y, measured via the RMSD
metric.23 The minimization occurs over all clusterings (σ) with k
states, subject to some choice of initial center. Finally, the max is
taken over all conformations in the data set.
The k-centers approach minimizes the worst-case clustering

error, as quantified by the objective function fmax(σ) = maxi
d(xi,σ(xi)). Considering only the worst-case clustering error is
problematic for conformational dynamics, particularly in protein
folding, as the worst-case error is often determined by extended
(unfolded) conformations with very small populations. Further-
more, cluster centers generated by this algorithm are often
noncentral; that is, they often do not represent the geometric
center of their associated data.
Alternatively, k-medoids clustering24 approximately mini-

mizes fmed(σ) = (1/N) ∑i d(xi,σ(xi))
2. With sufficient sampling,

constant temperature molecular dynamics draws Boltzmann-
weighted conformations; thus, by averaging over all confor-
mations, fmed(σ) is an objective function that penalizes the
(approximately) ensemble-averaged deviation from cluster cen-
ters. The resulting clusters tend to be centrally located within
their respective data—i.e., they are medoids.25 However, for
folded proteins, strict Boltzmann weighting yields few unfolded
states, often leaving unfolded conformations assigned to folded

states. This deficiency can be explained in terms of fmax(σ). A
clustering that minimizes fmed(σ) may in fact be worse when
evaluated by fmax(σ); conversely, minimizing fmax(σ) could in-
crease fmed(σ). For accurate kinetic clustering of biomolecule
dynamics, one should consider both the worst case (fmax) and
average case (fmed) clustering error.
Simultaneously optimizing both the average and worst-case

error can be achieved by combining the k-centers and k-medoid
algorithms. Let ε be some desired worst-case clustering error.
Define the set

SðεÞ ¼ fσ : fmaxðσÞ e εg ð3Þ

Thus, S(ε) is the set of all clusterings that have worst-case
errors of ε (or better). We now apply a k-medoids clustering
algorithm, but restricted to the set S(ε). In practice, we use a two
step approach:
1. Apply approximate k-centers to return initial clusters gi,

terminating when fmax(σ) e ε.
2. Apply approximate k-medoids to the result, but rejecting all

moves that increase fmax(σ).
For step 2, we employ a modification of the partitioning across

medoids algorithm.24 For each cluster gi, we randomly select a
conformation xi assigned to that state. The clustering errors
(fmed, fmax) are calculated and compared to the values that would
be obtained were xi instead the cluster center of that state. If fmed
is improved and fmax is improved (or unchanged), the move is
accepted. In practice, fmax decreases insignificantly during this
process, but fmed decreases dramatically over a handful of
iterations. As described, the hybrid algorithm tends to preserve
the overall distribution of clusters, essentially refining k-centers
to be more “central”; this is desirable because k-centers is
known22 to provide a reasonable partition of conformation space.
3.2. Improved Estimators for Reversible Transition and

Count Matrices. Since equilibrium conformational dynamics
obeys detailed balance, it is important for MSMs to satisfy
detailed balance (also called reversibility). A positive reversible
MSM guarantees positive real eigenvalues λ, which can be
interpreted as relaxation time scales through the relation τrel =
�τlag/log(λ). Previous work

11 has used the symmetrized counts—
so-called because the count matrix is symmetrized via the
equation C0 = 1/2(C + CT)—to estimate a reversible count
matrix. Though the resulting MSMs satisfy detailed balance, this
estimator can introduce artifacts in both equilibrium and kinetic
properties;15,21 this error is pronounced for short trajectories
started from a distribution far from the system’s equilibrium. A
recent work21 recommends estimating a transition matrix using
the unsymmetrized counts after restricting the data to its max-
imal ergodic subgraph. Thus, after clustering, one must first
identify themaximal ergodic (i.e., strongly connected) subgraph—
that is, a (maximal) set of states M such that if i ∈M and j ∈M,
then there exists a path from if j and from jf i. That approach
eliminates artifacts in equilibrium estimates but yields transition
matrices that may not satisfy detailed balance. To enforce
detailed balance while preserving accurate estimation of equilib-
rium properties, we have implemented the following protocol:
1. Apply Tarjan’s algorithm,26 restricting data to the maximal

ergodic subgraph.
2. Estimate a reversible count matrix using a maximum

likelihood estimator.
The theory of reversible estimation has been discussed previ-

ously;9,11,16,27,28 however, several implementation issues
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have limited its general use. First, the reversible MLE estimator is
only well-defined for ergodicMSMs, so the trimming procedure is
critical. Second, the iterative procedure sometimes converges
slowly for many-state models; in Appendix 2, we discuss an
efficient implementation that allows scaling to biological systems
with tens of thousands of states.

4. RESULTS

We now validate the revised MSM protocol. First, we show
that improved clustering results in more self-consistent models,
as measured by either relaxation time scales or correlation
function analysis. Second, we show that improved transition
matrix estimators result in an improved ability to recapitulate
kinetic and equilibrium properties of a known reference model.
4.1. Hybrid k-Centers k-Medoids Clustering Improves

State Definitions. Projecting onto a finite state space results
in dynamics that are only approximately Markovian. One way to
evaluate model consistency is by calculating the relaxation time
scales for a sequence of lagtimes; as observables, these time scales
should be approximately lagtime-independent. As compared to
models constructed with k-centers clustering, hybrid clustering
yields relaxation time scales that are slower (Figure 1a) and less
lagtime-dependent. For models with few states (fmax = 5.5�7.5
Å; Table 1), hybrid clustering performs considerably better than
k-centers. In particular, a hybrid model with a fixed number of
states (e.g., 176 states, or fmax = 7.5 Å) performs comparably with
a k-centers model with considerably more states (e.g., 806 states,
or fmax = 6.5 Å). In the limit of many states, hybrid and k-centers
perform comparably, as eventually both k-centers and the hybrid
yield one state per sampled conformation; however, statistically
accurate estimation is impossible when the number of states
approaches the total number of available conformations. For this
reason, it is desirable to achieve accurate models with as few
states as possible.
The lack of a true reference value makes relaxation time scales

an incomplete validation of MSM kinetics. Correlation function
analysis offers an orthogonal check with a known reference value.

The RMSD correlation function is given by y(t) = (Æs(t)s(0)æ)/
(Æs(t)2æ), where s(t) = r(t) �Ær(t)æ and r(t) is the RMSD to a
reference structure, here taken to be the native conformation. For
the MSM calculation, the transition matrix was used to first
calculate a pseudotrajectory of 100 000 lagtimes (9 000 000 ns).
For each frame in the pseudotrajectory, a RMSD value was
randomly selected from the collection of RMSD values observed
for that state. This approach models intrastate dynamics by the
random selection of each RMSD value.
As compared to the reference (calculated from the raw data),

MSMswith few states show erroneously fast kinetics (Figure 1b);
hybrid clustering partially mitigates this error.With sufficiently many
states (e.g., fmaxe 4.5), the dynamics are accurately captured by the
MSM. Both raw and MSM RMSD correlation functions decay on a
time scale comparable to the folding�unfolding dynamics of the
protein. Further increasing the number of states is not feasible due to
increased statistical uncertainty (Appendix 5). We observe similar
results for alanine dipeptide (Appendix 6).

Figure 1. (a) Relaxation time scales of models constructed with k-centers and hybrid clustering. (b) RMSD correlation functions as calculated by
different clusterings. MSMs in b constructed with 90 ns lagtime. MSMs constructed from simulations of the WW protein; see Appendix 1.

Table 1. Models Constructed fromWWDomain Simulations
Were Used to Compare Structural Properties of k-Centers
and Hybrid Clusteringsa

model # states fmax (Å) fmed (Å)

k-centers 26104 4.5 2.97

hybrid 26104 4.5 2.21

k-centers 5135 5.50 4.21

hybrid 5135 5.50 2.97

k-centers 806 6.50 4.76

hybrid 806 6.48 3.60

k-centers 175 7.48 6.03

hybrid 175 7.47 3.97
aThe number of states for each model was determined by k-centers
convergence based on a prespecified fmax; hybrid clusterings use the
same k-centers clusters and iteratively improve them by the algorithm
described above.
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In addition to enabling kinetic calculations, clustering provides
an important tool for exploratory data analysis, which benefits
from cluster centers that are representative of their associated
data. Yet, with k-centers clustering, the fmax objective function is
inherently insensitive to local or average structural properties.
This leads to state definitions that tend to be useful only as
partitions of conformation space—in particular, minimizing fmax

does not ensure that cluster centers are central within their
associated data. When applied to simulations of theWW protein,
hybrid clustering decreases the average clustering error signifi-
cantly, as quantified by the fmed objective function (Table 1). The
hybrid clusters show less structural heterogeneity (Figure 2).
Furthermore, the k-centers cluster center lacks a critical proline
contact (sticks) that defines the native fold; the hybrid cluster
center retains this key structural feature.
4.2. Improved Estimators for Reversible Transition and

Count Matrices. The reversible MLE yields improved estimates
of equilibrium and kinetic properties. As a preliminary control,
the MLE and symmetrized estimators are compared on a data set
consisting of two trajectories that are long (100 μs) relative to the
folding and unfolding time scales (≈ 10 μs); as expected, the
resulting free energies show good agreement (Figure 3).
In a more demanding test, we generate an ensemble of two-

state folding trajectories from amodel with a folding time scale of
100 steps and an unfolding time scale of 1000 steps (see Appendix 4).
This approximates the scenario of running MD simulations from
an ensemble of unfolded conformations. Because the trajectory
length is comparable to the folding time scale, the symmetrized
estimator biases results toward the starting distribution of
conformations, which in this case is entirely unfolded.
Using the model data, transition and count matrices were

estimated using theMLE and symmetrized procedures (Figure 4).
The reversible MLE accurately estimates the kinetic (a,b) and
equilibrium (d) properties of the reference model. However, the
symmetrized estimator shows equilibrium properties that are
biased toward the unfolded state (d). Furthermore, the symme-
trized unfolding time scale is erroneously high (c). This symme-
trization bias reduced the accuracy of some previous MSMs, as
pointed out in ref 29; reversible estimation eliminates this bias.
4.3. Improved Scaling and Performance. MSM construc-

tion relies on the clustering and analysis of vast simulation data
sets. For the clustering algorithms in this work, RMSD evalua-
tions are rate limiting; further inspection shows that RMSD is
bottlenecked by a matrix multiplication involving an m� 3 matrix
of atomic coordinates, where m is the number of atoms in each
conformation. Using an SSE3-optimized matrix multiply routine30

with OpenMP parallelization, we have accelerated RMSD and
clustering calculations by 20� over the previous versions of
MSMBuilder. MSMBuilder2 has been successfully applied to
systems spanning a broad range of time scales and sizes; Table 2
reports the computational cost of MSM construction for various
protein systems. In all cases, the cost of the MD simulations is
considerably greater than the cost of MSM analysis.

5. DISCUSSION

5.1. MSMBuilder2 Protocol. As shown above, the protocol
validated in this work presents several clear advantages over
previous methods. These advances are evolutionary in nature,
building upon previous work. The overall MSM construction
protocol has retained the following key steps: perform molecular
dynamics simulations, cluster data, and estimate a transition
matrix. We continue to work with the RMSDmetric, as its simple
distance interpretation provides a physically motived state de-
composition. RMSD is a widely used distance metric for compar-
ing biomolecular conformations;23,31,32 this common use allows
biophysical intuition for RMSD, which is one reason for our
choice of this metric. Furthermore, previous work found that,
for alanine dipeptide, RMSD-based state decompositions
yielded models that paralleled ones based on manual state
decompositions.10 We note that some systems may benefit
from other metrics; the MSMBuilder2 framework is extensible
to such situations.
The procedure of kinetic clustering, whereby one leverages

fine structural clustering to produce states free from kinetic
barriers,9,10,15 benefits from the improved clustering algorithm.
In kinetic clustering, it is critical to validate state decompositions

Figure 2. Cluster centers (opaque) and randomly sampled conforma-
tions (transparent) are displayed for the most populated state from
models based on the k-centers and hybrid clustering algorithms. Both
models are based on simulations of theWWdomain. The hybrid clusters
(b) were constructed by improving the initial k-centers clustering in a.
Both clusterings have 806 states (fmax = 6.5 Å).

Figure 3. Simulations of the WW protein12 were used to compare the
performance of the symmetrized and MLE protocols. Folding free
energies calculated using a two-state approximation (�RT log(πfolded/
πunfolded)), show good agreement (Δe 0.03 kcal/mol) betweenmodels
constructed using the symmetrized and MLE protocols, as expected for
long trajectories. The near-zero folding free energy is expected, as the
simulations were performed near the melting temperature;12 the exact
free energy depends weakly on how one defines the folded state. Here,
the folded state is defined as all states with a RMSD (to crystal structure)
below some cutoff value; the unfolded state is defined as the remaining
states. The large RMSD values observed are due to the large con-
formational fluctuations observed in the high temperature (393 K)
simulations.
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using kinetic metrics; here, we have applied tests based on both
relaxation time scales and correlation functions. Another key
motivation for the hybrid algorithm is performance. Hybrid

clustering achieves improved clusters with only 10� worse
computational cost than the simple k-centers algorithm; this
cost is more than offset by the accelerated RMSD calculation.

Figure 4. Simulated two-state folding simulations generated from a reference transition matrix (a) were used to estimate transition matrices. The MLE
reversible procedure (b) shows good agreement with the reference transition matrix, while the symmetrized procedure (c) shows poor agreement with
the reference. Furthermore, as compared to the symmetrized estimate, the MLE estimate better recapitulates the reference equilibrium properties (d).

Table 2. Computational Cost of MSM Construction for Various Protein Systemsa

system # atoms # frames walltime cluster size (fmax) nstates τlag τslow

ALA 22 250000 1.0m 0.35 Å 82 10 ps 202 ps

WW 562 200000 11.6 h 5.50 Å 26104 90 ns 5.9μs

HP35 (300 K) 576 109674 2.25 h 4.00 Å 9328 10 ns 7.6μs

λ 1258 700133 1.80d 4.00 Å 20599 20 ns 2.0ms
aMSMBuilder2 was applied to various protein systems, ranging from alanine dipeptide to the λ-repressor protein. Walltimes include the cost of reading
all conformations into memory, applying k-centers until convergence, and applying 10 iterations of hybrid k-medoids. The number of states is
determined by applying k-centers clustering until the desired maximum cluster size fmax is achieved; the hybrid step typically produces little change in fmax.
The slowest observed relaxation τslow is calculated by� τlag/log(λ), where λ is the largest nonstationary eigenvalue of themodel. τlag gives a lower bound
on the time scales accessible to a given model; τslow gives an upper bound on the time scales observed in a given data set. These data suggest that the
present methods can successfully model conformational dynamics from the picosecond to millisecond time scales.
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The reversible MLE protocol builds upon previous work9,11,21

to build accurate reversible models. Besides enforcing reversi-
bility, the reversible MLE has other subtle benefits. First,
reversibility improves statistics; because a reversible MSM is
defined by a symmetric matrix Xij, the number of possible
parameters drops from n2 to (n(n � 1))/2. Second, the counts
matrix X can be visualized to gain intuition on the connectivity
properties of a system. Previously, this has typically been done
using transition path theory (TPT).33 However, TPT requires
a priori definition of initial and final states, while visualizing the
counts matrix can be done in a hypothesis-free manner.
5.2. MSMBuilder2 Implementation.MSMBuilder2 is imple-

mented as a library using the Python34 language and achieves
high performance by using optimized libraries (Numpy,35 Scipy,
Pytables36) whenever possible. The rate-limiting step in clustering,
the 3� nmatrixmultiply, is written as a small C librarywith Python
wrappings. This design framework allows both flexibility and
performance; indeed, benchmarks30 suggest that the clustering
code approaches the published peak efficiency of the benchmark
machines.We suspect that theMSMBuilder2 library will be a useful
starting point for other researchers interested in methods develop-
ment. For researchers interested in applying MSMBuilder2 to
analyze their simulations, the current protocol is captured by a
set of command-line scripts and a tutorial at https://simtk.org/
home/msmbuilder/.
5.3. Future Challenges. The advances in MSMBuilder2 re-

present significant advantages over previous methods; however,
future work will likely lead to further improvements. Clustering
remains a compromise between accuracy and speed. For full
protein data sets (g100 000 conformations), performance worse
thanO(kN) will generally be unacceptable, but other methodsmay
further improve the results shown here. Estimation of reversible
transition matrices may benefit from a Bayesian framework;16,27,28

accelerating such schemes for use in biological systems remains a
key challenge. In addition to incremental improvements in the
current protocol, more drastic changes have also been explored. In
particular, other groups have shown some success working with
incomplete partitions of conformation space and continuous time
(master equation) modeling.15,18 Finally, existing frameworks
consider clustering, ergodic trimming, and model estimation as
three distinct steps. However, these steps are coupled and jointly
contribute to modeling uncertainty. Methods that consider model
accuracy and finite sampling statistics during all stages of model
construction may further reduce modeling error.

6. CONCLUSION

Although modeling conformational change at atomic resolution
remains challenging, the MSMBuilder2 protocol yields significant
improvements in model accuracy, structural insight, and computa-
tional performance. With system sizes ranging from 22 atoms to
1258 atoms and time scales ranging from 10 ps to 2 ms, the model
systems considered here suggest that MSMBuilder2 may facilitate
simulation studies of previously inaccessible biomolecular systems.

’APPENDICES

1. Simulation Details. Alanine dipeptide was simulated using
using Gromacs 4.5.337 with the AMBER96 force field and GBSA
implicit solvent. One trajectory of length 50 ns was analyzed;
snapshots were stored every 200 fs.
The WW domain38,39 simulations were described previously;12

the authors of that work have graciously provided the trajectories

on their Web site. Simulations were performed using the AM-
BER99sb-ILDN40 force field at 395K. ForMSMconstruction, data
were stored at every 1 ns; two trajectories of length 100 μs were
analyzed.
The HP35 data set includes more than 600 simulations

(minimum length 700 ns) at 300 K. Simulations were performed
using Gromacs 4.5.3 with the Amber99sb-ILDN force field and
TIP3P water. Conformations were stored at 1 ns intervals.
Conformations were started frommore than 600 different folded
and unfolded conformations.
The λ-repressor simulations have been described previously.41

More than 700 simulations of minimum length 600 ns were
analyzed; conformations were stored at 1 ns intervals. Simula-
tions were performed at 370 K, using the ff03 force field with
TIP3P water.

2. Maximum Likelihood Estimator for Reversible MSMs.
Suppose one has observed a matrix of counts Cij; this is typically
output from the clustering and assignment stages of model
construction. To estimate a general (possibly non-reversible)
transition matrix T, one formulates the log-likelihood function

f ðTÞ ¼ ∑
ij

Cij logðTijÞ ð4Þ

Maximizing this likelihood (e.g., ref 9) leads to the following
MLE estimator of the transition matrix:

Tij ¼
Cij

∑
j

Cij

ð5Þ

Suppose one knows that the underlying data are reversible. In
that case, there exists a symmetric count matrix Xij = Xji such that

Tij ¼
Xij

∑
j

Xij

ð6Þ

Inserting this equation into f(T) yields a likelihood function
for X, where the row sums of X are defined as Xi = ∑jXij and the
row sums of C are defined as Ni = ∑jCij:

f ðXÞ ¼ ∑
ij

Cij logðXijÞ � ∑
i

Ni logðXiÞ ð7Þ

To maximize this function, one requires the partial derivatives
with respect to parameters Xij, which are given by a 6¼ b

∂f

∂xab
¼

Cab þ Cba

Xab

�
Na

Xa

�
Nb

Xb

ð8Þ

∂f

∂xaa
¼

Caa

Xaa

�
Na

Xa

ð9Þ

Setting partial derivatives to zero:

Xaa ¼ Caa
Xa

Na

ð10Þ

Xab ¼ ðCab þ CbaÞ
Na

Xa

þ
Nb

Xb

� ��1

ð11Þ

This expression can be used in an iterative update proce-
dure. While others9 have suggested an approach using the
quadratic formula, we find that the current formula is effec-
tive because it can be expressed entirely as simple vector
and (sparse) matrix operations. In practice, we typically see
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convergence within 100 000 iterations; we terminate iteration
when ||π k+1 � π k|| e 10�10.
For situations with limited data, MLE estimation may require

some regularization or prior to avoid overpopulating states that
are strongly metastable but have been inadequately sampled.
Methods to achieve regularization are discussed in the following
section.

3. Incorporating Prior Pseudocounts into the Reversible
MLE. It is sometimes useful to perform estimation with some
nonzero prior; in practice, this involves adding a uniform matrix
of pseudocounts to the observed count matrix: C0

ab = Cab + α.
This procedure generally destroys sparsity structure, preventing
its use for large systems. Below, we show a method to maintain
sparsity while incorporating prior pseudocounts.
The update equation can be expressed in terms of the observed

counts Cab, the observed row sums Na, the prior pseudocount
(α) added at each matrix position, and the number of states n.

Xaa ¼ ðCaa þ αÞ
Xa

nα þ Na

ð12Þ

Xab ¼ ð2α þ Cab þ CbaÞ
nα þ Na

Xa
þ

nα þ Nb

Xb

� ��1

ð13Þ

To simplify the computation, define two intermediate vari-
ables Qab and Rab:

Q ab ¼ ðCab þ CbaÞ
nα þ Na

Xa

þ
nα þ Nb

Xb

� ��1

ð14Þ

R ab ¼ ð2αÞ
nα þ Na

Xa

þ
nα þ Nb

Xb

� ��1

ð15Þ

The update formula is now

Xab ¼ Q ab þ R ab ð16Þ

The key is that Qab is sparse, and Rab has a simple functional
form that is the result of vector operations. Furthermore, the
iterative update does not require each Rab, but rather ∑iRib.
In practice, we find that this protocol remains limited by

computational performance. As an alternative, the following
regularization scheme appears to work well in practice.
Starting with the matrix Cij of counts, we construct a matrix Sij

such that Sij = 1 if Cij > 0 or Cji > 0. Thus, S is a sparse matrix with
ones for every count that was observed in either the forward or
reverse direction.When performing theMLE estimation, we use the
matrix C0 = C + αS. The effect of this is to prevent transitions with
limited statistics from being too strongly favored in one direction. In
practice,αmust be chosen such thatα∑ijSije ∑ijCij; for the data sets
in this work, α ≈ 0.1 leads to α(∑ijSij)/(∑ijCij) ≈ 0.01. The
advantages of this regularization are threefold. First, the data remain
sparse, which allows scaling up to hundreds of thousands of states.
Second, transitions that are nearly irreversible but inadequately
sampled are smoothed. Third, this method adds pseudocounts only
to transitions that were observed in the data (albeit in either the
forward or reverse directions); thus, this method cannot introduce
artifactual pathways.

4. Two State Model for Comparing Transition Matrix Estima-
tors.The two state model in Figure 4 is based on the transitionmatrix

T ¼
p 1� q

1� p q

 !

ð17Þ

where p = 0.99 and q = 0.999. Thus, folding (100 timesteps) is
approximately 10� faster than unfolding (1000 timesteps); this is
similar to the fast-folding variants of HP3542 under mildly denatur-
ing conditions (with one timestep corresponding to 10 ns). Using
this transitionmatrix, 100 trajectories of length 200 were generated
and used to estimate transition and count matrices using either the
symmetrized or reversible MLE protocols.

5. Balancing Kinetic Accuracy and Statistical Reliability.
Discretization error in MSM construction is reduced by increas-
ing either the number of states or the lagtime.9 However, these
solutions lead to statistical uncertainty due to increasing the
number of model parameters or decreasing the amount of
independent data, respectively. Thus, accurate model construc-
tion requires a careful balance between discretization and sta-
tistical error. A useful test is to consider the equilibrium proper-
ties of a sequence of models (Figure 5). We have calculated the
ensemble average RMSD to native, which gives a smooth
estimate of the stability of the folded state. For the WW protein,
well-folded conformations typically show RMSD values of 0�4
Å, with unfolded conformations ranging from 5 to 10 Å. Models
with few states (fmax g 4.5 Å) appear near the folding midpoint,
with an ensemble average RMSD of 5.54( 0.05 Å; models with
more states (fmax = 3.5, 4.0) appear considerably less folded, with a
RMSDof 6.98( 0.1Å. In general, state decompositions that are too
fine will lead to spurious irreversible transitions and inaccurate
equilibrium estimates. For the present data set (200 000 con-
formations), the 3.5 Å model has 47 684 states and lies well-within
the data-poor regime. The lack of agreement with coarser models
leads us to reject the 3.5 and 4.0 Å models. The 4.5 Å model is the
best model for the WW data, as measured by relaxation time scale
consistency (Figure 1a), correlation function analysis (Figure 1b),
and equilibrium robustness (Figure 5). Constructing a sequence of
models with increasingly many states helps identify models that
minimize both discretization and statistical error.

6. Relaxation Time Scale Analysis of Alanine Dipeptide.
We present a relaxation time scale analysis (Figure 6) of a single

Figure 5. Ensemble average RMSD to native calculated for a sequence
of models constructed from WW simulations.
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(50 ns) alanine dipeptide simulation at 300 K in GBSA implicit
solvent. In this example, the hybrid clustering provides improved
performance for all choices of clustering diameter. Furthermore,
the high-resolution models (ε e 0.45 Å) converge to a slowest
relaxation of 200 ps. The hybrid clusterings approach this value
at shorter lagtimes, particularly for the lower-resolution models
(ε ≈ 0.65 Å). The second-slowest time scale also suggests im-
proved performance by the hybrid clustering.
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Figure 6. The two slowest relaxation time scales for alanine dipeptide
are plotted as a function of lagtime.


