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ABSTRACT Rapid advances in high-throughput sequencing technology have led to the generation of a large

number of multi-omics biological datasets. Integrating data from different omics provides an unprecedented

opportunity to gain insight into disease mechanisms from different perspectives. However, integrative

analysis and predictive modeling from multi-omics data are facing three major challenges: i) heavy noises;

ii) the high dimensions compared to the small samples; iii) data heterogeneity. Current multi-omics data

integration approaches have some limitations and are susceptible to heavy noise. In this paper, we present

MSPL, a robust supervised multi-omics data integration method that simultaneously identifies significant

multi-omics signatures during the integration process and predicts the cancer subtypes. The proposedmethod

not only inherits the generalization performance of self-paced learning but also leverages the properties of

multi-omics data containing correlated information to interactively recommend high-confidence samples

for model training. We demonstrate the capabilities of MSPL using simulated data and five multi-omics

biological datasets, integrating up three omics to identify potential biological signatures, and evaluating the

performance compared to state-of-the-art methods in binary and multi-class classification problems. Our

proposed model makes multi-omics data integration more systematic and expands its range of applications.

INDEX TERMS Multi-omics data integration, self-paced learning, multimodal data analysis, feature

selection, classification.

I. INTRODUCTION

Driven by the development of new high-throughput sequenc-

ing techniques, various types of biological data with differ-

ent formats, sizes, and structures have been increasing at

an unprecedented rate. Gene expression, miRNA expression,

proteins, DNA methylation and metabolites are some exam-

ples of biological data produced by using high-throughput

techniques such as microarray [1] and mass spectrometry [2].

Generally, each of these distinct biological data types pro-

vides different, partially independent and complementary

information of the entire genome [3]. Therefore, deciphering

complex human genomes and gene functions may require

more complete and complementary information than those

are provided by single type of data. The integration of

multi-omics data (e.g. genomics, transcriptomics, proteomics

and metabolomics, etc.) provides an unprecedented opportu-
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nity to gain insight into complex disease mechanisms from

different views and levels, predict the subtype of the tar-

get disease, and discover potential multi-omics biological

signatures [4]–[6].

Effective methods to integrative analysis and predictive

modeling from multi-omics data have to overcome at least

three computational challenges. i) High levels of noise and

collection bias present in each type of biological data. Ran-

dom noise and system/collection bias exist in distinct bio-

logical data types not only impact the cost and effectiveness

of scientific research, but also disrupt precise prediction of

disease subtypes that may ultimately impact patients [7].

Moreover, different noise and bias across distinct data types

may result in reduced classifier performance and finding

unreliable potential biological signatures [8]. ii) The high

dimensions compared to the small samples. The biological

data generally contains a large number of features p and small

size of samples n, which is called large p and small n prob-

lem [9]. From the biological perspective, only a small fraction
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of features that are highly correlated to the target disease

and most of the features are irrelevant. From the machine

learning perspective, numerous irrelevant features may prone

to overfitting issue and negatively impact the performance of

the classifier [10], [11]. iii)Data heterogeneity.Distinct types

of biological data generated from different omics platforms

possess heterogeneous information, such as following dif-

ferent statistical distributions, suffering from different levels

of imprecisions and containing different kinds of uncertain-

ties [12]. Unfortunately, current multi-omics data integration

approaches have yet to address all of these computational

challenges together [5]. Therefore, there is an urgent need for

a robust method for integrative analysis multi-omics data.

The problem of learning predictive models from multi-

omics data can be naturally considered a multimodal learning

problem [13], [14]. Commonly, data frommultiple modalities

contain more complete and complementary information of

the object than that is provided by the single modality only.

Multi-omics data provides multiple modalities with distinct

feature sets in the same set of samples. Current supervised

multimodal data integration approaches for predicting cancer

subtypes and identifying significant multi-omics signatures

can be classified as concatenation-based, ensemble-based,

and knowledge-driven approaches [15].

The concatenation-based approach simply combines all

features from different types of data into a single large dataset

before. And after that, prediction and feature selection are

based on a single statistical model [5], [16]. The ensemble-

based approach constructs a prediction model on each omics

dataset separately and utilizes an average/majority voting

scheme to combine the results of prediction [17]. These

approaches can be biased towards certain omics data types,

and do not consider interactions between omic layers [18],

[19]. Recently, classification methods such as Generalized

Elastic Net (EN) [20], [21], adaptive Group-Regularized

ridge regression [22], and sparse Partial Least Squares Dis-

criminant Analysis (sPLSDA) [23] have incorporated curated

biological data such as genetic pathway data, methylation

data, and gene expression data. These methods are still lim-

ited to single omics data such that, either the concatenation-

based or ensemble-based strategy needs to be applied to

incorporate additional omics data types. However, neither

of these two types of data integration approaches considers

the interaction between multiple data types, which limits the

understanding of the relationship between different levels of

biological function.

Knowledge-driven multimodal data integration considers

the relationships between different modalities based on prior

knowledge. Very recently, Singh et al. [15] proposed Data

Integration Analysis for Biomarker discovery using Latent

cOmponents (DIABLO), which is dedicated to maximizing

the correlated information betweenmultiple omics data. DIA-

BLO actually extends the sparse generalized canonical corre-

lation analysis (SGCCA) [24] to the supervised classification

model. It is a multivariate dimension reduction approach that

maximizes the covariance between linear combinations of

variables from multiple omics according to the given design

matrix and combines all potential components for prediction.

However, the assumption of a linear relationship between

selected significant omics features may not be applicable

to some biological research areas. In addition, DIABLO is

susceptible to heavy noise, resulting in poor generalization

performance.

In this paper, we present MSPL, a robust supervised

multimodal method that simultaneously identifies significant

multi-omics signatures during the integration process and

predicts the cancer subtypes. MSPL (Multimodal Self-Paced

Learning) adopts a sample reweighting strategy to improve

the robustness of the learning process in heavy noise situa-

tions. The core idea of MSPL is to interactively recommend

high-confidence samples with smaller loss values between

multiple omic data types, and automatically select samples

from easy to complex to train themodel for eachmodality in a

purely self-paced way. Our method is actually established on

the self-paced learning (SPL) regime [25], and is a variant of

it. Furthermore, to overcome the overfitting issue caused by

large p and small n problem, MSPL embeds a regularization

method to perform feature selection during the learning pro-

cess. A series of regularization methods for feature selection

have been proposed [26]–[30]. Here, MSPL is performed via

L1 regularization [26]. In the proposed method, MSPL strives

to address the three above-mentioned computational chal-

lenges faced by integrative analysis and predictive modeling

from multi-omics data.

We demonstrate the capability of MSPL and compare its

prediction and feature selection performance with other state-

of-the-art methods using simulated data and five publicly

available multi-omics datasets, including four benchmark

cancer datasets and one breast cancer multi-omics dataset.

In particular, breast cancer multi-omics dataset has approx-

imately 1000 samples, including four breast cancer subtypes.

In these experiments, we integrate up to three omics datasets

and evaluate the performance of all competing methods in

binary and multi-class classification problems. The results

show that MSPL presents competitive performance with

existing methods, especially robust in the presence of heavy

noises.

The rest of this paper is organized as follows. Section II

introduces the related work of self-paced learning, while

Section III presents the proposed MSPL algorithm. Experi-

mental results of several competingmethods and brief biolog-

ical analysis are shown in Section IV. A conclusion is given in

Section V. Finally, the linkage of this paper code is provided

in Section V.

II. RELATED WORK

This section introduces the fundamental concepts of curricu-

lum learning and self-paced learning.

A. CURRICULUM LEARNING

The fundamental definition of Curriculum Learning (CL)

was first proposed by [31]. Inspired by human and animal
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learning mechanism, learning is better when the samples are

organized in a meaningful order, that is start with easier

concepts to progressively more complex ones. This learning

mechanism gradually included samples from easy to complex

correspond to courses that are studied at different stages

of the human or animals. CL can accelerate convergence

to the global minimum and has been proven by empirical

evaluation to help alleviate local optimal problems in non-

convex optimization [32], [33]. The main challenge for CL is

to identify the easy and complex samples during the learning

process. However, providing the ranking of samples may be

conceptually difficult for human in many real-world appli-

cations. Moreover, what is intuitively ‘‘easy’’ for a human

may not be in accordance with what is easy for the algorithm

in the feature and hypothesis space applied in the given

application [25].

B. SELF-PACED LEARNING

To alleviate the deficiency of CL, Kumar et al. [25] first

proposed Self-Paced Learning (SPL). SPL embeds CL (from

easy to progressively more complex samples) as a regular-

ization term into the model learning process. Formally, sup-

pose given a dataset D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)},

where xi =
(

xi1, xi2, . . . , xip
)

is the i-th input sample with

p features and yi is the i-th sample with the value 0 or 1 in

the classification model. Let L(yi, f (xi, β)) denotes the loss

function, which calculates the loss between the real label yi
and the estimated value f (xi, β). The β represents the model

parameter inside the decision function f (xi, β). The purpose

of the SPL is to jointly learn the model parameter β and the

latent weight variable v = [v1, v2, . . . , vn] by minimizing:

min
β,v∈[0,1]n

E(β, v; γ ) =

n
∑

i=1

viL (yi, f (xi, β))

+λ||β||1 + g(v, γ ) (1)

where γ is an age parameter for controlling the learning pace,

λ is the L1 regularizer parameter and g(v, γ ) represents the

self-paced regularizer (SP-regularizer). The traditional objec-

tive of SPL is to simultaneously minimize the weighted loss

function and the negative L1−norm regularizer (g(vi, γ ) =

−γ
∑n

i=1 vi, vi ≥ 0).

The Alternative Optimization Strategy (AOS) algorithm

can effectively solve the SPL problem. It is a biconvex opti-

mization iterative algorithm that divides features used for

optimization into two disjoint blocks. The basic procedure

of AOS algorithm can be described as: in each iteration,

to optimize the target block of features while keeping the

other block fixed. For the traditional SPL problem, when

latent weight variable v is fixed, the optimal model parameter

β can be obtained by the state-of-the-art supervised learning

approaches. When β is fixed, the optimal weight variable

v∗ = [v∗1, v
∗
2, . . . , v

∗
n] can be calculated by [25]:

v∗i =

{

1 , L (yi, f (xi, β)) < γ

0 , otherwise
(2)

This alternative search strategy implies an intuitive explana-

tion: (1) When updating v with a fixed β, if the loss value

of the sample is smaller than the age parameter γ , then the

sample is selected as an easy sample (vi = 1) for the classifier

training, otherwise, do not select (vi = 0). (2) When updating

β with a fixed v, the classifier is trained only on the selected

easy samples (vi = 1). (3) Before starting the next iteration,

increase the age parameter γ to control the learning pace,

which allows more samples to be used for model training.

When γ is small, only easy sample with smaller loss will be

selected. With the increase of age parameter γ , more samples

with larger loss will be gradually selected to train a more

‘‘mature’’ model.

By jointly learning the model parameters β and the latent

weight variable v = [v1, v2, . . . , vn], gradually increas-

ing the age parameter γ , SPL can automatically include

more samples (from easy to progressively more complex)

in the training process with a purely self-paced way. Vari-

ous machine learning applications provide empirical valida-

tion that SPL can be performed robustly in the presence of

heavy noises [34]–[36]. Moreover, SPL is also widely used

in softmax regression [37], multi-view learning [38], multi-

task learning [39], etc. In addition, [40] proved the intrin-

sic working mechanism of SPL, which naturally explains

the effectiveness of SPL, especially its robustness in heavy

noises.

III. PROPOSED METHOD

This section presents the proposed Multimodal Self-paced

Learning (MSPL). The objective of MSPL is first formally

defined, and then we present an efficient algorithm to solve

the model.

A. THE MSPL MODEL

Multi-omics data naturally has multimodal properties. Multi-

modal data typically contains more complete description and

complementary information than those of single modality.

An intuitive way to achieve this is to select samples through

the interrelationship betweenmultiple modalities.We assume

that the different modalities share common knowledge of

sample confidence. In a word, samples with high quality in

one omics may be consistent with other omics.

The objective of MSPL can be mathematically described

as follows. Suppose given a multimodal dataset D =

{
(

x
(j)
1 , y1

)

,

(

x
(j)
2 , y2

)

, . . . ,

(

x
(j)
n , yn

)

}, where x
(j)
i =

(

x
(j)
i1 , x

(j)
i2 , . . . , x

(j)

ip(j)

)

is the i-th input sample with p(j) features

under the j-th modality. p(j) indicates the number of features

in the j-th modality. yi is the common label of the i-th sample

for every modality in the classification model (e.g. yi = {0, 1}

in the binary classification problem). Let L(yi, f (x
(j)
i , β(j)))

denotes the loss function, which calculates the loss between

the real label yi and the estimated value f (x
(j)
i , β(j)) in the j-

th modality. The β(j) represents the model parameter inside

the decision function f (x
(j)
i , β(j)). The objective function of
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MSPL can be expressed as:

min
β(j),v(j)∈[0,1]n,
j=1,2,...,m

E(β(j), v(j); λ(j), γ (j), δ)

=

m
∑

j=1

n
∑

i=1

v
(j)
i L

(

yi, f
(j)

(

x
(j)
i , β(j)

))

+

m
∑

j=1

λ(j)||β(j)||1

−

m
∑

j=1

n
∑

i=1

γ (j)v
(j)
i − δ

∑

1≤k,j≤m,
k 6=j

(

v(k)
)T

v(j), (3)

where m denotes the total number of modalities. x
(j)
i is the i-

th input sample (i = 1, 2, . . . , n) under the j-th modality, and

yi is the corresponding label of x
(j)
i for every j. v

(j)
i denotes

the weight of x
(j)
i . λ is a tuning parameter, it controls the

complexity of the model. γ (j) indicates the age parameter,

it controls the learning pace in each iteration in the j-th

modality. δ is the parameter that controls influence from other

modalities when one modality tends to select more training

samples.

The proposed MSPL model actually corresponds to the

sum of the SPL model under multiple modalities plus a

regularization term
∑

1≤k,j≤m
k 6=j

(

v(k)
)T
v(j). This inner product

encodes the relationship between multiple modalities. The

new regularizer actually establishes attribute links between

multiple modalities by using multimodal data of a sample.

It takes advantage of the information content of multimodal

data and selects high confident samples through the interre-

lationship between multiple modalities. Therefore, this new

regularizer enforces the weight penalizing the loss of one

modality similar to that of other modalities (e.g. a sample

with high confidence in one modality is likely the same in

other modalities). In addition, eachmodality of data uses high

confident samples to identify potential significant features,

which can improve the feature selection performance of the

model.

B. THE MSPL ALGORITHM

The proposed MSPL model can be solved by the alternative

optimization strategy (AOS) algorithm, as listed in Algo-

rithm 1.

Initialization: Initialize weight parameter v
(j)
i , age param-

eter γ (j) and δ. v(1), v(2), . . . , v(m) are zero vectors in Rm.

γ (1), γ (2), . . . , γ (m) are initialized with small values to

include few samples in the first iteration of the training

process. Set δ to a specific value through the whole learning

process. The initial loss of all samples in each modality is

obtained by simultaneously trainingmultiple classifiers on all

samples of different modalities.

Update v
(k)
i (k = 1, 2, . . . ,m; k 6= j): This step can obtain

the current optimal weight of samples under the k-th modal-

ity. Due to the multimodal data intrinsically contains comple-

mentary information. Therefore, the physical meaning of this

step is to prepare the confident samples (v
(k)
i > 0) for training

on the j-th modality. That is, a high confident sample can be

selected by the interrelationship betweenmultiple modalities.

Based on Equation (3), the first order derivative at v
(k)
i can be

estimate as:

∂E

∂v
(k)
i

=Li

(

yi, f
(k)

(

x
(k)
i , β(k)

))

− γ (k)−δ
∑

1≤j≤m,
j 6=k

v
(j)
i . (4)

According to Equation (4), the current optimal weight of the

i-th sample under the k-th modality can be expressed as:

v
(k)
i =







1, Li

(

yi, f
(k)

(

x
(k)
i , β(k)

))

<γ (k)+δ
∑

1≤j≤m,
j 6=k

v
(j)
i ,

0, otherwise.

(5)

Update v
(j)
i : The purpose of this step is to formally define

which samples will be confirmed into the training process

of the j-th modality. The optimal weight of the i-th sample

under the j-th modality can be calculated in the same way as

the previous step. Different from the previous step is that the

samples selected in this step will be directly employed for

training in the j-th modality. According to Equation (5), it is

easy to observe that the samples with high confidence from

other modalities possess higher chance of being selected for

the training of the j-th modality than other samples.

Update β(j): The purpose of this step is to train a classifier

using the selected samples in the j-th modality. In this work,

we select the sparse logistic regression classifier to train the

model. In this step, Equation (3) degenerates into the standard

sparse logistic regression optimization problem as:

min
β(j)

n
∑

i=1

Li

(

yi, f
(j)

(

x
(j)
i , β(j)

))

+ λ(j)||β(j)||1. (6)

where 1 < n(j) ≤ n. n(j) represents the current number of

samples used to train a classifier under the j-th modality. This

problem can be readily solved by R package glmnet [41].

Before the start of the next iteration, age parameters

γ (j)(j = 1, 2, . . . ,m) are increased to allow more samples

with larger loss values to enter the next iteration of the train-

ing process. We then repeat the above optimization process

for different modalities until all samples are used for model

training or reach the maximum number of iterations.

From Algorithm 1, we can easily observe that it can obtain

the optimal solution under interaction with multiple modal-

ities and the time complexity of it is O(n2 × p), where

n ≪ p. In the test phase, suppose given a test dataset

D′ =
{

x
(j)
1 , x

(j)
2 , . . . , x

(j)
u

}

with m modalities, where u is the

number of test sample. By using the optimal solution of a

classifier under each modality β(1), β(2), . . . ,β(m) to predict

the optimal yk , which can be predicted by the following

minimization problem:

yk = argmin
yk

m
∑

j=1

Lk

(

yk , f
(j)

(

x
(j)
k , β(j)

))

(7)
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Algorithm 1 Algorithm for Solving MSPL Model

1: Input: samples x
(j)
1 , x

(j)
2 , . . . , x

(j)
n (each sample has

m modalities), labels y1, . . . , yn, age parameters

γ (1), . . . , γ (m), δ and max_iter.

2: Output: β(1), . . . ,β(m).

3: Initialize v(1), . . . , v(m), γ (1), . . . , γ (m) and δ

4: Update β(1), . . . ,β(m)

5: iter = 1

6: while iter ≤ max_iter do

7: for j← 1 to m do

8: for k← 1 to m and k 6= j do

9: Update v
(k)
i : Prepare confident samples with non-

zeros v
(k)
i values for training on the j-th modality

10: end for

11: Update v
(j)
i : Confirm which samples will be feeded

into the training process of the j-th modality

12: Update β(j): Train a classifier (e.g. sparse logistic

regression model) under the j-th modality

13: end for

14: Augment γ (1), . . . , γ (m)

15: iter← iter + 1

16: end while

17: Return β(1), . . . ,β(m)

C. ALGORITHM ANALYSIS

The proposed MSPL algorithm, as shown in Algorithm 1,

mainly differs from current multi-omics data integration

approaches in the following four-fold aspects:

1) Instead of ‘‘simple and brute’’ aggregating multi-omics

data into a single dataset (e.g. concatenation-based) or

ignoring the interrelationship between multiple omic

data types (e.g. ensemble-based), the MSPL algorithm

uses multimodal interactions to recommend high con-

fident samples to train the model. In MSPL, if the i-th

sample in the k-th modality that loss value is smaller

than a confidence threshold γ (k) + δ
∑m

j=1 v
(j)
i (j 6= k)

is considered to be a high confident sample (v
(k)
i = 1)

and will be selected to train the classifier in the k-th

modality. Note that this confidence threshold is related

to the age parameter γ (k) in the k-th modality and

weight of the corresponding samples in other modal-

ities. It implies that we more prefer to select a sample

that is high confidence in other modalities than a sam-

ple that is not in it. High confident samples are selected

between multiple modalities to take full advantages of

comprehensive information to characterize an object.

2) When updating samples for training in one modal-

ity, in addition to selecting high confident samples

that are recommended by other modalities, the MSPL

algorithm may picks few high confident samples with

very small loss values on the current modality. This

strategy preserves some specific characteristics of each

modality.

3) For the ensemble-based data integration and DIABLO,

both of them apply a majority/average voting scheme

during performance evaluation and test dataset predic-

tion. The MSPL algorithm, inspired by [42], predicts

the subtype of a sample by solving the minimization

problem according to Equation (7). The prediction can

be performed more accurately by calculating the sum

of the predicted loss values under multiple classifiers.

4) The proposed MSPL model is a variant of the SPL

learning regime, which gradually increases the learn-

ing pace and automatically select more samples (from

smaller losses to progressively larger losses) to train

the model and obtain a more ‘‘mature’’ model. Meng

et al. [40] from the mathematical perspective have

proven the effectiveness of the SPL learning regime,

especially its robustness in heavy noises situation.

Therefore, MSPL achieves a better generalization per-

formance than traditional multimodal data integration

methods (see results part).

IV. RESULTS

We evaluate the capability of the proposed MSPL model

and compare its performance with other state-of-the-art

methods in this section. We applied the logistic regres-

sion model/multinomial model with Elastic Net (EN) reg-

ularization [27], Random Forest (RF) [43] and Self-paced

Learning (SPL) with L1 penalty [25] in the concate-

nation and ensemble frameworks. The compared meth-

ods include: concatenation-based methods (Concate_EN,

Concate_RF, and Concate_SPL), ensemble-based methods

(Ensemble_EN, Ensemble_RF, and Ensemble_SPL) and

DIABLO [15].

A. SIMULATIONS

We evaluate the robustness and feature selection performance

of our proposed MSPL model in simulated experiments with

varying noise control parameters and sample sizes.

1) GENERATE SIMULATED DATA

We generate multimodal data with small sample sizes and

high dimensionality, and each modality contains a large num-

ber of irrelevant features [10]. Beyond that, different modal-

ities with varying dimensionality. We generated the predic-

tor vectors xi1, xi2, . . . , xip(i = 1, . . . , n) independently by

the standard normal distribution, where p is the number of

features. xi =
(

xi1, xi2, . . . , xip
)

denotes the i-th sample.

The simulated dataset is generated by the logistic regression

model and is generated by the follows [11], [44]:

log

(

yi

1− yi

)

= β0 +

p
∑

j=1

xijβj + σ · ε (8)

where ε = (ε1, ε2, . . . , εn)
T is the independent random

errors generated by N (0, 4), σ is the noise control parameter.

Simulated data are generated by the above procedure.

Three simulated datasets (A,B,C) for two classes Y were
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TABLE 1. Test accuracy (%) of different methods on simulated data with
varying noise parameters and sample sizes. The mean accuracy (±sd)
over 30 repetitions of the experiments, and the best results are
highlighted in bold.

generated with equal sample sizes by different number of

features (p(A) = 2000, p(B) = 500, p(C) = 1500).

And each simulated dataset (A,B,C) can be treated as

one modality of samples. We set the true coefficients β(A),

β(B), and β(C) as sparse vectors with s(A) = 10, s(B) =

9, and s(C) = 8 nonzero components, respectively. The

locations of each nonzero coefficient are chosen randomly,

and the value of each nonzero coefficient is from {±E}

with E = 2.5.

We consider the cases with varying training samples size

n = 100, 150, 200 and varying noise control parameters

σ = 0, 0.4, 0.8, respectively. Each method was evaluated on

a test dataset with 100 samples. For the Concate_EN, Con-

cate_SPL, Ensemble_EN, Ensemble_SPL and MSPL meth-

ods, we used 10-fold cross-validation to obtain the optimal

tuning parameter λ in the sparse logistic regression model.

The simulated experiments were repeated 30 times and we

report the average measurement.

2) ANALYSIS OF SIMULATION

We demonstrate the average test accuracy of each competing

method for each simulated experiment in Table 1. It can

be observed that the proposed MSPL method achieves the

best performance in all cases compared to other methods.

For instance, with sample size n = 100, noise parameter

σ = 0.4, the average test accuracy of MSPL is 84.77%

obviously superior to 72.80%, 53.00%, 74.67%, 74.17%,

55.83%, 78.43%, and 74.93% obtained by the Concate_EN,

Concate_RF, Concate_SPL, Ensemble_EN, Ensemble_RF,

Ensemble_SPL andDIABLO, respectively. In addition, when

increasing the training sample size n, the test accuracy of all

the eight methods are improved. For instance, with σ = 0.4,

the average test accuracy of MSPL are 84.77%, 91.33% and

93.86% with the sample sizes n = 100, 150 and 200, respec-

tively. When updating the noise parameter σ , the prediction

performance of all methods are deceased. For instance, with

sample size n = 150, the average test accuracy from MSPL

deceased from 92.80% to 85.23%, in which σ increased from

0 to 0.8.

To better illustrate the robustness of the proposed MSPL

method towards heavy noises situation, we exhibit the ten-

dency curves of the training and test AUC of different meth-

ods on simulated experiments with varying noises parameters

and sample sizes in Fig. 1. From this figure, we can easily

conclude that the Concate_RF and Concate_RF can readily

FIGURE 1. Training and test AUC (%) of different methods on simulated
data with varying noise parameters and sample sizes.

overfit to the high dimensionality with small sample sizes

situation. Beyond that, it can be seen that gaps in predict

performance between MSPL and all other methods increase

as the training sample sizes deceased with the high noise

parameter σ = 0.8. That is, the robustness of our method

outperforms other competing methods in the case of small

sample sizes with heavy noise. For instance, with the train-

ing sample size n = 100, our method achieves more than

6% AUC gain compared with the second best results under

noise parameter σ = 0.8. When the training samples size n

increases, the prediction performance of all the methods are

improved.

We also evaluate the feature selection performance of each

competing method on simulated experiments with varying

noise parameters and samples sizes. The β-sensitivity and β-

specificity are used to evaluate the feature selection perfor-

mance, defined as follows [45]:

TruePositive(TP)=
∣

∣

∣
β. ∗ β̂

∣

∣

∣

0
,TrueNegative(TN )=

∣

∣

∣
β̄. ∗
¯̂
β

∣

∣

∣

0

FalsePositive(FP)=
∣

∣

∣
β̄. ∗ β̂

∣

∣

∣

0
,FalseNegative(FN )=

∣

∣

∣
β. ∗
¯̂
β

∣

∣

∣

0

β − sensitivity=
TP

TP+ FN
, β − specificity=

TN

TN+FP
(9)

where the |·|0 represents the number of non-zero elements

in a vector. The logical not operators of β and β̂ are β̄

and
¯̂
β, respectively. And .∗ is the element-wise product.

As shown in Table 2, it can be obviously seen that our

method gets the best β-sensitivity performance across all

cases of simulated experiments. With the training sample

size n = 100, our method attains more than about 10% β-

sensitivity gain compared with the second best results under

all noise parameters. It implies that our method is supe-

rior to other competing methods in identifying significant

features. For the β-specificity, Concate_EN and DIABLO

achieve the best and second best results. The proposed MSPL

method performs slightly worse than these two methods.

Although Concate_EN and Concate_SPL achieved the excel-

lent β-specificity performance in simulated experiments,

concatenation-based methods have an imbalance problem for

the identified multimodal features (See real dataset experi-

ments part).
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TABLE 2. Feature selection performance (%) of different models on simulated data with varying noise parameters and sample sizes. The mean
β-sensitivity and β-specificity (±sd) over 30 repetitions of the experiments, and the best results of β-sensitivity and β-specificity are highlighted in bold.

TABLE 3. The measurements of sample sizes and the number of features
in each omics for four benchmark cancer datasets.

B. REAL DATASET EXPERIMENTS

We first compare our proposed method with seven other

methods on four benchmark cancer datasets. In addition,

we curated approximately 1000 samples from breast cancer

multi-omics study, including four cancer subtypes. We use

breast cancer multi-omics dataset to evaluate the performance

of all competing methods in multi-class classification prob-

lem. Besides, we further analyze the significant multi-omics

signatures identified by our proposed method in breast cancer

data.

1) BENCHMARK CANCER DATASETS

Four benchmark multi-omics cancer datasets (mRNA,

miRNA and DNA methylation) were obtained from [5]:

Glioblastoma multi-forme (GBM), Kidney renal clear

cell carcinoma (KRCCC), Lung squamous cell carcinoma

(LSCC), Colon adenocarcinoma (COAD). Survival times

were provided for each disease cohort by [5]. By using the

median survival time, we dichotomized the samples into two

classes in low and high survival times. A brief description of

these four benchmark datasets is summarized in Table 3.

2) ANALYSIS ON BENCHMARK DATASETS

We evaluate the prediction and feature selection performance

of the eight methods on benchmark cancer datasets using ran-

dom partition. We randomly divide the datasets that approxi-

mate 70% of the datasets as the training samples and the rest

as the test samples. We repeated the experiments 30 times,

and report the average measurement.

Fig. 2 plots the box plot analysis of training and test accu-

racy calculated on four benchmark cancer datasets under 30

repetitions. For training accuracy, all methods get desirable

results, except the DIABLO. For instance, the average train-

ing accuracy of DIABLO is 74.78%, 77.52% and 79.56% in

three datasets GBM, KRCCC and LSCC respectively, while

other methods have reached more than 90%. For the test

accuracy, it can be easily seen that our method performs

FIGURE 2. Boxplot diagram of training and test accuracy (%) for the
methods with 30 repetitions in each benchmark cancer dataset.

best performance across all benchmark datasets. Our method

demonstrates the best generalization performance, it attains

approximate 5% test accuracy gain compared with other

methods in almost all benchmark datasets, except the LSCC

dataset. Moreover, methods with self-paced learning have

better generalization performance than the corresponding

without self-paced learning. For example, the average accu-

racy of Ensemble_SPL is superior to Ensemble_EN in all

benchmark datasets.

Fig. 3 indicates the number of significant multi-omics sig-

natures identified by all methods in the benchmark datasets.

From the figure, we can easily find that the concatenation-

based methods tend to be biased towards the more pre-

dictive signatures (mRNA and methylation). For instance,

in KRCCC dataset, the average number of signatures of

mRNA, miRNA and methylation selected by the Con-

cate_EN are 14.37, 0.17 and 22.67, respectively. Compared

to other omics significant features of mRNA andmethylation,

the concatenation-based methods almost failed to select the

significant miRNA. Our proposed MSPL method, DIABLO

and ensemble-based methods are robust in multi-omics fea-

ture selection.

3) BREAST CANCER MULTI-OMICS DATASET

We curated breast cancer multi-omics dataset (mRNA,

miRNA and methylation) from the Cancer Genome Atlas

(TCGA, data version 2015_11_01 for BRCA) [46] in order to

achieve a systems characterization of breast cancer subtypes

with multiple omics. This dataset contains four subtypes of

breast cancer: Luminal A (LumA), Luminal B (LumB), Her2-

enriched (Her2) and Basal-like (Basal), which have been

reported the most replicated subtypes of human breast can-

cer [47]. The miRNA dataset was derived from two different

VOLUME 7, 2019 170519



Z.-Y. Yang et al.: MSPL: MSPL for Multi-Omics Feature Selection and Data Integration

FIGURE 3. The stacked bar chart shows the average number of significant
multi-omics signatures identified by all methods with 30 repetitions in
each benchmark cancer dataset.

TABLE 4. A brief description of original and pre-processed breast cancer
multi-omics data.

TABLE 5. The number of each subtype in breast cancer dataset used to
the training and test dataset.

Illumina technologies: The Illumina Genome Analyzer and

the Illumina Hiseq. The methylation data was derived from

two different platforms: the Illumina Methylation 27 and the

Illumina 450K.

Normalization and pre-processing were used to clean the

original multi-omics breast cancer dataset. Each omics data

was normalized to log2-counts per million (logCPM) [48].

After normalization, we removed genes that counted to 0 in

70% of the samples. And the pre-processing of miRNA

transcripts and methylation was the same as the mRNA.

Besides that, we removed PAM50 labels in mRNA according

to the [15]. Original and pre-processed breast cancer multi-

omics data are described in Table 4. Table 5 demonstrates the

number of each subtype in breast cancer dataset used to the

training and test dataset.

4) ANALYSIS ON BREAST CANCER DATASETS

We evaluate the prediction performance of the eight meth-

ods in multiple cancer subtypes classification. Classification

accuracy and Cohen’s kappa (KAPPA) [49] are used as indi-

cators for evaluating all methods. As shown in Table 6, we can

conclude that the Concate_RF and the Ensemble_RF meth-

ods easily overfit to the training dataset, whose test accuracy

and KAPPA are inferior to other methods, except for DIA-

BLO. For the DIABLO method, the accuracy and KAPPA

of the training and test dataset are both worst compared with

other methods. While our method gets the third best result in

the training dataset, it is less prone to overfitting issue, the test

KAPPA achieves over 81%,which higher than othermethods.

TABLE 6. Training and test prediction performance (%) of different
methods on breast cancer dataset. The best results are highlighted in
bold.

TABLE 7. The 20 top-ranked significant mRNA selected by all methods
from breast cancer multi-omics dataset.

Fig. 4 shows the normalized confusion matrix to visualize

the test performance of all methods. Since sample sizes of

each subtype are an imbalance, we normalized the confusion

matrix so that it contains only numbers between 0 and 1. It can

be seen more intuitively from the figure that our method per-

forms better than other methods in multi-class classification.

For Concate_RF and Ensemble_RF, there is huge confusion

of Her2 with other subtypes. Meanwhile, they are difficult

to distinguish between LumA and LumB. The Concate_EN

and Ensemble_EN methods also make it difficult to distin-

guish Her2 with other subtypes. Compared to Concate_EN

and Ensemble_EN, Concat_SPL and Ensemble _SPL have

improved in distinguishing Her2 and LumB, but inferior to

DIABLO and our method. Although MSPL with slightly

weak separation of Her2 and LumB compared to DIABLO,

DIABLO is confused with LumA and LumB, and only 63%

of the samples are correctly predicted to be LumA. This is

significantly worse than other competing methods.

Tables 7, 8 and 9 summarize the 20 top-ranked signif-

icant features of mRNA, miRNA and methylation identi-

fied by all methods in breast cancer dataset, respectively.

According to these three tables, we can intuitively find that

the biological features selected by the concatenation-based

methods are still unbalanced, consistent with the results

of previous experiments. To explore the multi-omics fea-

tures that are selected by MSPL in depth, we examine the

interplay between 20 top-ranked selected features by our
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FIGURE 4. Normalized confusion matrix of all methods. The columns of each sub-figure are the truth labels and the rows of each
sub-figure are the predicted labels. Therefore, the values of the diagonal elements represent the degree of the correctly predicted classes.
The confusion is expressed by the false classified offdiagonal elements, since they are mistakenly confused with another class.

TABLE 8. The 20 top-ranked significant miRNA selected by all methods
from breast cancer multi-omics dataset. .

TABLE 9. The 20 top-ranked significant methylation selected by all
methods from breast cancer multi-omics dataset.

method. Fig. 5 shows the interactive network of the 20 top-

ranked features ofmRNAandmethylation selected byMSPL.

We construct an integrative network of interactions among

these features using the cBioPortal [50], [51] by integrating

the biological interaction from publicly breast cancer dataset

(METABRIC [52], [53]). Fig. 5 shows that mRNA features

FIGURE 5. Integrative network view of 20 top-ranked features from
mRNA and methylation selected by MSPL. The genes with thick border
represent the selected features. The rest genes with thin border represent
genes that are frequently altered in the public databases. The genes are
gradient color-coded according to the alteration frequency based on data
derived from METABRIC breast cancer database. The hexagons represent
drug targets gene, and with yellow color represents FDA approved drug.

IGBP1, GATA3, FZD9, CKS1B, CHEK2 and methylation

features ELK4, HMGA2, PREX1, EFNA3 in the maximum

interactive network, which are connected to other frequently

altered genes. In particular, GATAbinding protein 3 (GATA3)

is frequently mutated in breast cancer [54] and it is a critical

transcription factor in mammary gland development and dif-

ferentiation [55]. Checkpoint kinase 2 (CHEK2) is a tumor

suppressor gene, which is a key component of the DNA

damage-signaling pathway [56]. CHEK2 pathogenic variants

are associated with breast cancer and colorectal families,

and the risk of developing breast cancer is higher in car-

ries of CHEK2 mutations [57]. Expression of high mobility

group AT-hook 2(HMGA2) in cancer is associated with poor

prognosis for patients. In the latest research, [58] suggest

that HMGA2 is an attractive therapeutic target for com-
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FIGURE 6. The circos plot shows the multi-omics significant signatures
identified by the MSPL method. Each link indicates a Pearson correlation
coefficient. The selected features are represented on the side of the circos
plot, the side color indicates each omics type, and the optional line
represents the expression level in each cancer subtype.

FIGURE 7. Integrative network view of 20 top-ranked correlation features
from mRNA and methylation.

bination therapies using DNA damaging drugs. Moreover,

CHEK2 and CKS1B are targeted by several cancer drugs.

In other small networks of Fig. 5, there are several genes

are connected to other frequently altered genes associated

with breast cancer. For instance, MUC1 has been used in

clinical practice as a serum tumor marker (CA15-3) for mon-

itoring recurrence and response to the treatment of breast

cancers [59]. Besides, we can easily find that SUOX,CDKL1,

MUC1, SLC7A11 and CA12 are targeted by several cancer

drugs, the yellow hexagon represents FDA approved drug

targets gene.

We also use circos plot to present correlations between fea-

tures identified by MSPL in Fig. 6. We use a Pearson correla-

tion coefficient to calculate the association between features.

The association between features is shown as a color link

inside the figure to indicate a positive or negative correlation.

Fig. 6 shows the balance of multi-omics significant features

selected in our method. And, we construct an interactive net-

work of the high correlation features frommRNA and methy-

lation according to the 20 top-ranked Pearson correlation

values. Fig. 7 demonstrates the maximum interactive network

between these features, mRNA features AURKA, CDKN3,

FAT2, HASPIN, SPC25 and methylation features FGG and

TAS2R13 in the same interactive network and linked to other

frequently altered genes. AURKA is a molecular barrier to

the efficacy of PI3K-pathway inhibitors in breast cancer [60],

[61]. And [62] discovered a novel AURKA-MEK1 interac-

tion in breast cancer cells as a potential therapeutic target.

Reference [63] found that SPC25 expression is quite high in

basal-like subtype compared with other subtypes.

These above mentioned multi-omics features demonstrate

that our proposed MSPL method can efficiently and robustly

identify significant multi-omics signatures associated with

breast cancer. MSPL not only efficiently selects signatures

with high correlations between multi-omics, but also suc-

cessfully identifies significant biological signatures that are

associated with other frequently altered breast cancer genes.

V. CONCLUSION

Driven by technological advances, large-scale molecular

omics datasets are in strong need of integrative machine

learning methods for better utilize the multiple sources data

to gain insight into complex biological systems from different

levels and the development of predictive models. However,

heavy noises, large p and small n problem, and data het-

erogeneity of omics data present significant computational

challenges in applying the state-of-the-art machine learning

methods for integrative analysis and predictive modeling

from multi-omics data. In this paper, we propose a novel

multi-omics data integration method MSPL that simulta-

neously identifies significant multi-omics signatures during

the integration process and predicts the cancer subtypes.

Compared with current state-of-the-art methods, our method

performs robust in the presence of heavy noises and pos-

sesses excellent generalization performance. In addition, our

method achieves the best performance in both binary and

multi-class classification problems. Moreover, the proposed

method also can work well on other classifiers (e.g. Support

Vector Machine (SVM)). At last, the significant multi-omics

signatures selected by our method in breast cancer multi-

omics dataset are introduced in detail, which verifies the

effectiveness and robustness of our method in feature selec-

tion. This work in progress is aimed at further developing

effective machine learning method for integrative analysis

and predictive modeling from multi-omics data, and discover

potential biological signatures. This learning mechanism is

hopeful to be extended to other multimodal problems and

expands its range of applications.

DATA AVAILABILITY

The code is available at https://github.com/must-bio-

team/MSPL. All computation is done in R.
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