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This report serves as a user manual for the tools available in the Microsoft Research (MSR) Identity 

Toolbox. This toolbox contains a collection of MATLAB tools and routines that can be used for 

research and development in speaker recognition. It provides researchers with a test bed for 

developing new front-end and back-end techniques, allowing replicable evaluation of new 

advancements. It will also help newcomers in the field by lowering the “barrier to entry”, enabling 

them to quickly build baseline systems for their experiments. Although the focus of this toolbox 

is on speaker recognition, it can also be used for other speech related applications such as language, 

dialect and accent identification. 

 

In recent years, the design of robust and effective speaker recognition algorithms has attracted 

significant research effort from academic and commercial institutions. Speaker recognition has 

evolved substantially over the past 40 years; from discrete vector quantization (VQ) based systems 

to adapted Gaussian mixture model (GMM) solutions, and more recently to factor analysis based 

Eigenvoice (i-vector) frameworks. The Identity Toolbox provides tools that implement both the 

conventional GMM-UBM and state-of-the-art i-vector based speaker recognition strategies. 

 

 
 

A speaker recognition system includes two primary components: a front-end and a back-end. The 

front-end transforms acoustic waveforms into more compact and less redundant representations 

called acoustic features. Cepstral features are most often used for speaker recognition. It is practical 



2 

 

to only retain the high signal-to-noise ratio (SNR) regions of the waveform, therefore there is also 

a need for a speech activity detector (SAD) in the front-end. After dropping the low SNR frames, 

acoustic features are further post-processed to remove the linear channel effects. Cepstral mean 

and variance normalization (CMVN) is commonly used for the post-processing. The CMVN can 

be applied globally over the entire recording or locally over a sliding window. Feature warping, 

which is also applied over a sliding window, is another popular feature normalization technique 

that has been successfully applied for speaker recognition. This toolbox provides support for these 

normalization techniques, although no tool for feature extraction or SAD is provided. The Auditory 

Toolbox (Malcolm Slaney) and VOICEBOX (Mike Brooks) which are both written in MATLAB 

can be used for feature extraction and SAD purposes. 

 

The main component of every speaker recognition system is the back-end where speakers are 

modelled (enrolled) and verification trials are scored. The enrollment phase includes estimating a 

model that represents (summarizes) the acoustic (and often phonetic) space of each speaker. This 

is usually accomplished with the help of a statistical background model from which the speaker-

specific models are adapted. In the conventional GMM-UBM framework the universal background 

model (UBM) is a Gaussian mixture model (GMM) that is trained on a pool of data (known as the 

background or development data) from a large number of speakers. The speaker-specific models 

are then adapted from the UBM using the maximum a posteriori (MAP) estimation. During the 

evaluation phase, each test segment is scored either against all enrolled speaker models to 

determine who is speaking (speaker identification), or against the background model and a given 

speaker model to accept/reject an identity claim (speaker verification).  On the other hand, in the 

i-vector framework the speaker models are estimated through a procedure called Eigenvoice 

adaptation. A total variability subspace is learned from the development set and is used to estimate 

a low (and fixed) dimensional latent factor called the identity vector (i-vector) from adapted mean 

supervectors (the term “i-vector” sometimes also refers to a vector of “intermediate” size, bigger 

than the underlying cepstral feature vector but much smaller than the GMM supervector). Unlike 

the GMM-UBM framework, which uses acoustic feature vectors to represent the test segments, in 

the i-vector paradigm both the model and test segments are represented as i-vectors. The 

dimensionality of the i-vectors are normally reduced through linear discriminant analysis (with 

Fisher criterion) to annihilate the non-speaker related directions (e.g., the channel subspace), 

thereby increasing the discrimination between speaker subspaces. Before modelling the 

dimensionality reduced i-vectors via a generative factor analysis approach called the probabilistic 

LDA (PLDA), they are mean and length normalized. In addition, a whitening transformation that 

is learned from i-vectors in the development set is applied. Finally, a fast and linear strategy, which 

computes the log-likelihood ratio (LLR) between same versus different speakers hypotheses, 

scores the verification trials. The Identity toolbox provides tools for speaker recognition using both 

the GMM-UBM and i-vector paradigms. 
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This report does not provide a detailed description of each speaker recognition tool available. The 

function descriptions include references to more detailed descriptions of corresponding 

components. We have attempted to maintain consistency with the naming convention in the code 

to follow the formulation and symbolization used in the literature. This will make it easier for the 

users to compare the theory with the implementation and help them better understand the concept 

behind each algorithm. 
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Usage 

 

In order to better support interactive or batch usage, most of the tools in the Identity 

Toolbox accept either floating point or string arguments. String arguments, either 

for a file name or a numerical value, are useful when these tools are compiled and 

called from a shell command line. This makes it easy to use the tools on machines 

with limited memory (but enough disk space) as well as computer clusters (from a 

terminal). In addition, the interactive tools can optionally write the output products 

(models or matrices) to the disk if an output file name is specified. 

 

This toolbox makes extensive use of parfor loops (as opposed to for loops) so that 

parallel processing can speed up the computations. However, if the Distributed 

Computing Toolbox is not installed, MATLAB automatically considers all parfor 

loops as for loops and there is no need to modify the tools. MATLAB by default sets 

the number of parallel workers to the number of physical CPU cores (not logical 

threads!) available on a computer. At the time of writing this report, MATLAB 

supports a maximum of 12 workers on a local machine. 

 

The Identity toolbox has been tested on Windows 8 as well as Ubuntu Linux 

computers running MATLAB R2013a. The toolbox is portable and is expected to 

work on any machine that runs MATLAB. 

 

Compilation 

In case MATLAB is not installed or MATLAB license is not available (for instance on 

a computer cluster), we provide standalone executables that can be used in 

conjunction with the MATLAB Compiler Runtime (MCR). The MCR is a standalone 

set of shared libraries that enables the execution of compiled MATLAB applications 

or components on computers that do not have MATLAB installed. The MCR installer 

can be obtained free of charge from the web address: 

 

http://www.mathworks.com/products/compiler/mcr/ 

 

The binaries supplied with this version of the toolkit need version 8.1 (R2013a) of 

the MCR. 

 

The MCR installer is easy to use and provides users with an installation wizard. 

Assuming that the MCR is installed, a MATLAB code can be compiled from either 

the command window or a DOS/bash terminal as: 
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mcc -m -R -singleCompThread -R -nodisplay -R -nojvm foo.m -I libs/ -o foo -d 

bin/ 

 

for a standalone single-threaded executable. Single-threaded executables are useful 

when running the tools on clusters that only allow a single CPU process per 

scheduled job. To generate multithreaded executables (this is important when using 

parfor) the mcc can be used as following:  

 

mcc -m -R -nodisplay foo.m -I libs/ -o foo -d bin/ 

 

For more details on the “mcc” command see the MATLAB documentation. 
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Flow Charts 

 

The Identity toolbox provides researchers with tools that implement both the conventional 
GMM-UBM and state-of-the-art i-vector based systems. The block diagrams below show 
the overall signal flow and the routines (page numbers in parenthesis) used by each system. 
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cmvn 

  

 Purpose 

  Global cepstral mean and variance normalization (CMVN) 

 

 Synopsis 

  Fea = cmvn(fea, varnorm) 

  

 Description 

This function implements global cepstral mean and variance normalization 

(CMVN) on input feature matrix fea to remove the linear channel effects. The code 

assumes that there is one observation per column. The CMVN should be applied 

after dropping the low SNR frames. 

 

The logical switch varnorm (false | true) is used to instruct the code to perform 

variance normalization in addition to mean normalization. 
 

 Examples 

In an example we plot the distribution (histogram) of 𝐶1 (first cepstral coefficient) 

in sample feature file, before and after global CMVN: 
  >> load('mfcc') 

>> size(mfcc) 

 

ans = 

 

            39       24252 

  >> hist(mfcc(2,:), 30) 

  >> hist(cmvn(mfc(2,:), true), 30) 

   

     

 

 

 

 

 

 

 

 

 

 

As expected there is no change in overall shape of the distribution, and only the 

dynamic range of the feature stream is modified. 
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wcmvn 

  

 Purpose 

  Cepstral mean and variance normalization (CMVN) over a sliding window 

 

 Synopsis 

  Fea = wcmvn(fea, win, varnorm) 

  

 Description 

This function implements cepstral mean and variance normalization (CMVN) on 

input feature matrix fea to remove the (locally) linear channel effects. The code 

assumes that there is one observation per column.  

 

The normalization is performed over a sliding window that typically spans 301 

frames (that is 3 seconds at a typical 100 Hz frame rate). The middle frame in the 

window is normalized based on the mean and variance computed over the specified 

time interval. The length of the sliding window can be specified through the scalar 

input win which must be an odd number. The CMVN should be applied after 

dropping the low SNR frames. 

 

The logical scalar varnorm (false | true) is used to instruct the code to perform 

variance normalization in addition to mean normalization. The normalized feature 

streams are return in Fea. 

 

 Examples 

In this example we plot the distribution (histogram) of 𝐶1 (first cepstral coefficient) 

in a sample feature file, before and after windowed CMVN: 

 
  >> load('mfcc') 

>> size(mfcc) 

 

ans = 

 

            39       24252 

  >> hist(mfcc(2,:), 30) 

  >> hist(wcmvn(mfc(2,:), 301, true), 30) 
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Unlike with the global CMVN, for this sample feature stream the overall shape of 

the feature stream distribution is approximately mapped to a standard normal 

distribution. 
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fea_warping 

  

 Purpose 

  Short-term Gaussianization over a sliding window (a.k.a feature warping) 

 

 Synopsis 

  Fea = fea_warping(fea, win) 

  

 Description 

 

This routine warps the distribution of the cepstral feature streams in fea to the 

standard normal distribution (i.e., 𝒩(0, 1)) to mitigate the effects of (locally) linear 

channel mismatch. This is specifically useful because the distribution of cepstral 

feature streams is often modeled by Gaussians. The code assumes that there is one 

observation per column.  

 

The normalization is performed over a sliding window that typically spans 301 

frames (that is 3 seconds at a typical 100 Hz frame rate). The middle frame in the 

window is normalized based on its rank in a array of sorted feature values over the 

specified time interval. The length of the sliding window is specified through the 

scalar input win which must be an odd number. 

 

Fea contains the normalized feature streams. Note that the feature warping should 

be applied after dropping the low SNR frames. 

 

 Examples 

In this example we plot the distribution (histogram) of 𝐶1 (first cepstral coefficient) 

in a sample feature file, before and after feature warping: 

 
  >> load('mfcc') 

>> size(mfcc) 

 

ans = 

 

            39       24252 

  >> hist(mfcc(2,:), 30) 

  >> hist(fea_warping(mfc(2,:), 301), 30) 

 

 

 

 



Identity Toolbox  11 

 

  

 

 

 

 

 

 

 

 

Notice that the overall distribution of the feature stream is warped to the standard 

normal distribution. 

 

 See Also 

[1] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verification,”    
in Proc. ISCA Odyssey, Crete, Greece, Jun. 2001. 
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gmm_em 

  

 Purpose 

  Fit a Gaussian mixture model (GMM) to observations 

 

 Synopsis 

  gmm = gmm_em(dataList, nmix, final_niter, ds_factor, nworkers, gmmFilename) 

  

Description 

This function fits a GMM to acoustic feature vectors using binary splitting and 

expectation-maximization (EM). The input argument dataList can be either the 

name of an ASCII list containing feature file names (assuming one file per line), or 

a cell array containing features (assuming one feature matrix per cell). In case a list 

of files (the former option) is provided, the features must be saved in uncompressed 

HTK format. In case a cell array of features is provided, the function assumes one 

observation per column. 

 

The scalar nmix specifies the number of desired components in the GMM, and must 

be a power of 2. A binary splitting procedure is used to boot up the GMM from a 

single component to nmix components. After each split the model is re-estimated 

several times using the EM algorithm. The number of EM iterations at each split is 

gradually increased from 1 to final_niter (scalar) for the nmix component GMM. 

 

While booting up a GMM (from one to nmix components) on a large number of 

observations, it is practical to down-sample (sub-sample) the acoustic features. It is 

usually not necessary to re-estimate the model parameters at each split using all 

feature frames. This is due to the redundancy of speech frames and the fact that the 

analysis frames are overlapping. The scalar argument ds_factor specifies the down-

sampling factor. The value assigned to the ds_factor is reset to one in the last two 

splits. 

 

The scalar argument nworkers specifies the number of MATLAB parallel workers 

in the parfor loop. MATLAB by default sets the number of workers to the number 

of Cores (not virtual processors!) available on a computer. At the time of writing 

this report, MATLAB only supports a maximum of 12 workers on a local machine. 

 

The optional argument gmmFilename (string) specifies the file name of GMM 

model to be saved. If this is specified, the GMM hyper-parameters (as structure 

fields, see below) are saved in a .mat file on disk. 
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The model hyper-parameters are returned in gmm which is a structure with three 

fields: 

- gmm.mu  component means 

- gmm.sigma  component covariance matrices 

- gmm.w   component weights 

 

The code reports the accumulated likelihood of observations given the model in 

each EM iteration. It also reports the elapsed time for each iteration. 
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mapAdapt 

  

 Purpose 

  Adapt a speaker specific GMM from a universal background model (UBM) 

 

 Synopsis 

  gmm = mapAdapt(dataList, ubm, tau, config, gmmFilename) 

  

Description 

This routine adapts a speaker specific GMM from a UBM using maximum a 

posteriori (MAP) estimation. The adaptation data is specified input via dataList, 

which should be either the name of an ASCII list containing feature file names 

(assuming one file per line), or a cell array containing features (assuming one 

feature matrix per cell). In case a list of files is provided, the features must be saved 

in uncompressed HTK format. 

 

The input argument ubm can be either a file name (string) or a structure with UBM 

hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also 

gmm_em). The UBM file should be a .mat file with the same structure as above. 

 

The code supports adaptation of all model hyper-parameters (i.e., means, 

covariance matrices, and weights). The input string parameter config is used to 

specify which parameters should be adapted. Any sensible combination of ‘m’, ‘v’, 
and ‘w’ is accepted (default is mean ‘m’). The MAP adaptation relevance factor is 

set via the scalar input tau. 

 

The optional argument gmmFilename (string) specifies the file name of the adapted 

GMM model to be saved. If this is specified, the GMM hyper-parameters (as 

structure fields, see below) are saved in a .mat file on disk. 

 

The model hyper-parameters are returned in gmm, which is a structure with three 

fields (i.e., gmm.mu, gmm.sigma, gmm.w). 

  

 See Also 

  [1] D.A. Reynolds, T.F. Quatieri, R.B. Dunn, “Speaker verification using adapted  

  Gaussian mixture models”, Digital Signal Processing, vol. 10, pp. 19-41, Jan. 2000. 
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score_gmm_trials 

  

 Purpose 

  Compute verification scores for GMM trials 

 

 Synopsis 

  scores = score_gmm_trials(models, tests, trials, ubmFilename) 

  

 Description 

This function computes the verification scores for trials specified in the input 

argument trials. The scores are computed as the log-likelihood ratio between the 

given speaker models and the UBM given the test observations. 

 

The input argument models is a cell array containing the speaker models. The 

speaker models are GMM structures with fields described before (see also 

gmm_em). 

 

The input argument tests is also cell array that should either contain the feature 

matrices or the feature file names.  

 

The input argument trials is a 2-dimensional array with 2 columns. The first column 

contains the numerical model IDs (1 ... N, assuming N models), while the second 

column contains the numerical test IDs (1 … M, assuming M test files). Each row 

of the two-column array specifies a model-test trial (e.g., [3 10] means model 

number 3 should be tested against test segment 10). 

 

The input argument ubmFilename can be either a file name (string) or a structure 

with UBM hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see 

also gmm_em). The UBM file should be a .mat file with the same structure as 

above. 

 

The verification likelihood ratios are returned in scores (one score per trial). 

 

 

 See Also 

  [1] D.A. Reynolds, T.F. Quatieri, R.B. Dunn, “Speaker verification using adapted  

  Gaussian mixture models,” Digital Signal Processing, vol. 10, pp. 19-41, Jan. 2000. 
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compute_bw_stats 

  

 Purpose 

  Compute the sufficient statistics for observations given the UBM 

 

 Synopsis 

  [N, F] = compute_bw_stats(fea, ubm, statFilename) 

  

Description 

This function computes the zeroth (N) and first (F) order sufficient statistics (Baum-

Welch statistics) for observations given a UBM:  

 𝑁𝑔 = ∑ 𝑝(𝑔|𝐎𝑡, 𝜆𝑢𝑏𝑚)𝑡  

𝑭𝑔 = ∑ 𝐎𝑡 ∙ 𝑝(𝑔|𝐎𝑡, 𝜆𝑢𝑏𝑚)𝑡 − 𝐦𝒈 ∙ 𝑁𝑔 

where 𝑝(𝑔|𝐎𝑡, 𝜆𝑢𝑏𝑚) denotes the posterior probability of the UBM mixture 

component 𝑔 given the observations 𝐎𝑡.  

 

The input argument fea can be either a feature file name (string) or a feature matrix 

with one observation per column. In case a file name is provided, the features must 

be saved in uncompressed HTK format. 

 

The input argument ubm can be either a file name (string) or a structure with UBM 

hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also 

gmm_em). The UBM file should be a .mat file with the same structure as above. 

 

The optional argument statFilename (string) specifies the stat file name to be saved. 

If this is specified, the statistics are saved in a .mat file on disk. The zeroth order 

statistic, N, is a one-dimensional array with nmix elements (i.e., the number of 

Gaussian components from the UBM). The first order statistic, F, is also a one-

dimensional array with nmix × ndim components (i.e., the supervector dimension). 

The first order statistic is centered. 

 

See Also 

[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor 

analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011. 

[2] P. Kenny, "A small footprint i-vector extractor," in Proc. ISCA Odyssey, The 

Speaker and Language Recognition Workshop, Singapore, Jun. 2012. 
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train_tv_space 

  

 Purpose 

  Learn a total variability subspace from the observations 

 

 Synopsis 

  T = train_tv_space(dataList, ubm, tv_dim, niter, nworkers, tvFilename) 

  

Description 

This routine uses EM to learn a total variability subspace from the observations. 

Technically, assuming a factor analysis (FA) model of the form: 

 𝐌 = 𝐦 + 𝐓 ∙ 𝐱 

 

for mean supervectors, 𝐌, the code computes the maximum likelihood estimate 

(MLE) of the factor loading matrix 𝐓 (a.k.a. the total variability subspace). Here, 𝐌 is the adapted mean supervector, 𝐦 is the UBM mean supervector, and 𝐱~𝒩(𝟎, 𝐈) is a vector of total factors (a.k.a. the i-vector). 

 

The observations are assumed to be in form of sufficient statistics computed with 

the background model (UBM). The input argument dataList is either the name 

(string) of an ASCII list containing statistics file names (one file per line), or a cell 

array of concatenated stats that is the zeroth order stats, N, appended with the first 

order stats, F, in a column vector. 

 

The input argument ubm can be either a file name (string) or a structure with UBM 

hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also 

gmm_em). The UBM file should be a .mat file with the same structure as described 

above. 

 

The scalar input tv_dim specifies the dimensionality of the total subspace. The 

tv_dim values typically range from 400 to 800. The total subspace is learned in an 

EM framework. The number of EM iterations can be set using the scalar niter 

argument. The accumulation of statistics in each EM iteration can be sped up using 

a parfor loop. The scalar argument nworkers specifies the number of MATLAB 

parallel workers in the parfor loop. 

 

The optional argument tvFilename (string) specifies the output file name. If this is 

specified, the total subspace matrix is saved in a .mat file on disk. 
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See Also 

[1] D. Matrouf, N. Scheffer, B. Fauve, J.-F. Bonastre, “A straightforward and 

efficient implementation of the factor analysis model for speaker verification,” in 

Proc. INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 1242-1245. 

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor 

analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011. 

[3] P. Kenny, “A small footprint i-vector extractor,” in Proc. ISCA Odyssey, The 

Speaker and Language Recognition Workshop, Singapore, Jun. 2012. 

[4] “Joint Factor Analysis Matlab Demo,” 2008. [Online]. Available: 
http://speech.fit.vutbr.cz/software/joint-factor-analysis-matlab-demo/. 
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extract_ivector 

  

 Purpose 

  Compute the identity vector (i-vector) for observations 

 

 Synopsis 

  x = extract_ivector(stat, ubm, tv_matrix, ivFilename) 

  

 Description 

This function computes the i-vector for observations as the mean (conditional 

expectation) of the posterior distribution of the latent variable 𝐱. The observations 

are assumed to be in form of sufficient statistics computed with the background 

model (UBM). The input argument stat is either the name (string) of .mat file 

containing the statistics or a one-dimensional array of concatenated stats, that is the 

zeroth order stats, N, appended with the first order stats, F, in a column vector. 

 

The input argument ubm can be either a file name (string) or a structure with UBM 

hyper-parameters (specifying gmm.mu, gmm.sigma, and gmm.w, see also 

gmm_em). The UBM file should be a .mat file with this same structure. 

 

The i-vector extractor tv_matrix can be specified either with a file name (string) or 

a matrix. 

 

The code can optionally save the i-vectors into a .mat file. The input argument 

ivFilename specifies the output file name. The i-vector is returned in 𝐱, a column 

vector of size tv_dim (see also train_tv_space). 

 

See Also 

[1] D. Matrouf, N. Scheffer, B. Fauve, J.-F. Bonastre, “A straightforward and 

efficient implementation of the factor analysis model for speaker verification,” in 

Proc. INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 1242-1245. 

[2] P. Kenny, “A small footprint i-vector extractor,” in Proc. ISCA Odyssey, The 

Speaker and Language Recognition Workshop, Singapore, Jun. 2012. 

[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor 

analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011. 

 

 

 



20 

 

 

lda 

  

 Purpose 

  Linear discriminant analysis (LDA) using Fisher criterion 

 

 Synopsis 

  [V, D] = lda(data, labels) 

  

 Description 

This routine computes a linear transformation that maximizes the between class 

variation while minimizing the within class variances. It uses the Fisher criterion 

for this purpose.  

 

Technically, the Fisher criterion to be maximized is in the form: 

 𝐽(𝑽) = 𝑽𝑻𝚺𝒃𝑽𝑽𝑻𝚺𝒘𝑽 

 

where 𝚺𝒃 and 𝚺𝒘 are between- and within-class covariance matrices, respectively. 

The above relationship is a Rayleigh quotient, therefore the solution, 𝑽, is the  

generalized eigenvectors of  𝚺𝒃𝑽 = 𝑫𝚺𝒘𝑽. 

 

The input argument data is a two-dimensional array that specifies the data matrix, 

assuming one observation per column. Class labels for observations in the data 

matrix can be specified via labels which is a one dimensional array (or cell array) 

with one numerical (or string) element per class. 

 

The LDA transformation matrix (generalized eigenvectors stored in columns) is 

returned in V. Note that the maximum number of columns in V is the minimum of 

dimensionality of observations and the number of unique class minus 1. The 

generalized eigenvalues are returned in D. 

 

See Also 

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition. 2nd ed. New 

York: Academic Press, 1990, ch. 10. 
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gplda_em 

  

 Purpose 

  Learn a Gaussian probabilistic LDA (PLDA) from observations 

 

 Synopsis 

  plda = gplda_em(data, spk_labs, nphi, niter) 

  

 Description 

This function uses EM to learn a Gaussian PLDA model from observations. The 

observations are i-vectors computed from the development set. The input argument 

data contains the i-vectors (one observation per column). The development i-

vectors are internally centered (mean is removed), length-normalized, and whitened 

before modeling. 

 

Technically, assuming a factor analysis (FA) model of the i-vectors of the form: 

 𝐱 = 𝐦 + 𝚽 ⋅ 𝐲 + 𝝐, 

 

this routine computes the maximum likelihood estimate (MLE) of  the factor 

loading matrix 𝚽 (a.k.a. the Eigenvoice subspace). Here, 𝐱 is the i-vector, 𝐦 is the 

mean of training i-vectors, and 𝐲~𝒩(𝟎, 𝐈)  is a vector of latent factors. The full 

covariance residual noise term 𝝐 explains the variability not captured through the 

latent variables. 

 

The input argument spk_labs determines the class (i.e., speaker) labels for 

observations in the data matrix. spk_labs is a one-dimensional array (or cell array) 

with one numerical (or string) element per class. 

 

The dimensionality of the Eigenvoice subspace is specified using scalar argument 

nphi. The scalar input niter determines the number of EM iteration for learning the 

PLDA model. 

 

The Gaussian PLDA model is returned in plda, which is a structure with fields: 

- plda.Phi  Eigenvoice matrix 

- plda.Sigma covariance matrix of the residual noise (full) 

- plda.M  mean of the development i-vectors 

- plda.W  whitening transformation 
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See Also 

[1] S.J.D. Prince and J.H. Elder, “Probabilistic linear discriminant analysis for 

inferences about identity,” in Proc. IEEE ICCV, Rio de Janeiro, Brazil, Oct. 2007. 

[2] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length       

normalization in speaker recognition systems,” in Proc. INTERSPEECH, Florence, 

Italy, Aug. 2011, pp. 249-252. 

[3] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Proc. 

Odyssey, The Speaker and Language Recognition Workshop, Brno, Czech 

Republic, Jun. 2010. 
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score_gplda_trials 

  

 Purpose 

  Compute verification scores for i-vector trials using the PLDA model 

 

 Synopsis 

  scores = score_gplda_trials(plda, model_iv, test_iv) 

  

 Description 

This function computes the verification scores for all possible model-test i-vector 

trials. The scores are computed as the “batch” log-likelihood ratio between the same 

(𝐻1) versus different (𝐻0) speaker models hypotheses: 

 𝑙𝑙𝑟 = ln 𝑝(𝐱1, 𝐱2|𝐻1)𝑝(𝐱1|𝐻0) ∙ 𝑝(𝐱2|𝐻0) 

 

The i-vectors, 𝐱, are modeled with a Gaussian PLDA provided via plda. The input 

plda model is a structure with PLDA hyperparameters (i.e., plda.Phi, plda.Sigma, 

plda.M, and plda.W). 

 

Before computing the verification scores, the enrollment and test i-vectors are 

internally mean- and length-normalized and whitened. The input arguments 

model_iv and test_iv are two-dimensional arrays (one observation per column) 

containing unprocessed enrollment and test i-vectors, respectively. 

 

The likelihood ratio test has a linear and closed form solution. Therefore, it is 

practical to compute the verification scores at once for all possible combination of 

model-test i-vectors, and then select a subset of scores according to a trial list. The 

output argument scores is a matrix that contains the verification scores for all 

possible trials. 

 

See Also 

[1] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length       

normalization in speaker recognition systems,” in Proc. INTERSPEECH, Florence, 

Italy, Aug. 2011, pp. 249-252. 

[2] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Proc. 

Odyssey, The Speaker and Language Recognition Workshop, Brno, Czech 

Republic, Jun. 2010. 
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compute_eer 

  

 Purpose 

  Compute the equal error rate (EER) performance measure 

 

 Synopsis 

  [eer, dcf08, dcf10] = compute_eer(scores, labels, showfig) 

  

 Description 

This routine computes the EER given the verification scores for target and impostor 

trials. The EER is calculated as the operating point on the detection error tradeoff 

(DET) curve where the false-alarm and missed-detection rates are equal. 

 

The input argument scores is a one-dimensional array containing the verification 

scores for all target and impostor trials. The trial labels are specified via the 

argument labels which can be a one-dimensional binary array (0’s and 1’s for 
impostor and target), or a cell array with “target” and “impostor” string labels. 
 

The logical switch showfig (false | true) is used to instruct the code as to whether 

the DET curve should be plotted. 

 

The EER is returned in eer (in percent). Additionally, the minimum detection cost 

functions (DCF) are computed and returned if the optional output arguments dcf08 

and dcf10 are specified. The dcf08 (×100) is computed according to the NIST SRE 

2008 cost parameters, while the dcf10 (×100) is calculated based on the NIST SRE 

2010 parameters. 

 

See Also 

[1] “The NIST year 2008 speaker recognition evaluation plan,” 2008. [Online]. 

Available: http://www.nist.gov/speech/tests/sre/2008/sre08_evalplan_release4.pdf 

[2] “The NIST year 2010 speaker recognition evaluation plan,” 2010. [Online]. 

Available: http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST_SRE10_evalplan.r6.pdf 
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Demos 

Introduction 

We demonstrate the use of this toolbox with two different kinds of demonstrations. 

The first example demonstrates that this toolbox can achieve state-of-the-art 

performance on a standard identity task, using the TIMIT corpus.  The second 

demonstration uses artificial data to show the simplest usage cases for the toolbox. 

  

TIMIT Task 

In order to demonstrate how the tools in the Identity Toolbox work individually and 

when combined together, we provide two sample demos using the TIMIT corpus: 

1) demo_gmm_ubm and 2) demo_ivector_plda. The first and the second demo 

show how to use the tools to run speaker recognition experiments in a GMM-UBM 

and i-vector frameworks, respectively.  

 

A relatively small scale speaker verification task has been designed using speech 

material from the TIMIT corpus. There are a total of 630 (192 female and 438 male) 

speakers in TIMIT, from which 530 speakers have been selected for background 

model training and the remaining 100 (30 female and 70 male) speakers are used 

for tests. There are 10 short sentences per speaker in TIMIT. For background model 

training all sentences from all 530 speakers (i.e., 5300 speech recordings in total) 

are used. For speaker-specific model training 9 out of 10 sentences per speaker are 

selected and the remaining 1 sentence is kept for tests. Verification trials consist of 

all possible model-test combinations, resulting in a total of 10,000 trials (100 target 

versus 9900 impostor trials). 

 

The figure below shows the detection error tradeoff (DET) curves for the two 

systems: GMM-UBM (solid) and i-vector-PLDA (dashed). Also shown in the 

figure are the system performances on the TIMIT task in terms of the EER. The 

EER operating points are circled as the intersection of a diagonal line with the DET 

curves. 
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Demos 

 

Artificial Task 

A small-scale task generates artificial features for 20 speakers. Each speaker has 10 

sessions (channels) and each session is 1000 frames long (which translates to 10 

seconds assuming a frame rate of 100 Hz). 

 

The following script (demo_create_data.m) generates the features used in the 

following demonstrations:  

 
nSpeakers = 20; 

nDims = 13;             % dimensionality of feature vectors 

nMixtures = 32;         % How many mixtures used to generate data 

nChannels = 10;         % Number of channels (sessions) per speaker 

nFrames = 1000;         % Frames per speaker (10 seconds assuming 100 Hz) 

nWorkers = 1;           % Number of parfor workers, if available 

rng('default');         % To promote reproducibility. 

 

% Pick random centers for all the mixtures. 

mixtureVariance = .10; 

channelVariance = .05; 

mixtureCenters = randn(nDims, nMixtures, nSpeakers); 

channelCenters = randn(nDims, nMixtures, nSpeakers, nChannels)*.1; 

trainSpeakerData = cell(nSpeakers, nChannels); 

testSpeakerData = cell(nSpeakers, nChannels); 

speakerID = zeros(nSpeakers, nChannels); 

 

% Create the random data. Both training and testing data have the same 

% layout. 

for s=1:nSpeakers 

    trainSpeechData = zeros(nDims, nMixtures); 

    testSpeechData = zeros(nDims, nMixtures); 

    for c=1:nChannels 

        for m=1:nMixtures 

            % Create data from mixture m for speaker s 

            frameIndices = m:nMixtures:nFrames; 

            nMixFrames = length(frameIndices); 

            trainSpeechData(:,frameIndices) = ... 

                randn(nDims, nMixFrames)*sqrt(mixtureVariance) + ... 

                repmat(mixtureCenters(:,m,s),1,nMixFrames) + ... 

                repmat(channelCenters(:,m,s,c),1,nMixFrames); 

            testSpeechData(:,frameIndices) = ... 

                randn(nDims, nMixFrames)*sqrt(mixtureVariance) + ... 

                repmat(mixtureCenters(:,m,s),1,nMixFrames) + ... 

                repmat(channelCenters(:,m,s,c),1,nMixFrames); 

        end 

        trainSpeakerData{s, c} = trainSpeechData; 

        testSpeakerData{s, c} = testSpeechData; 

        speakerID(s,c) = s;                 % Keep track of who this is 

    end 

end 
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After generating the features are generated we can use them to train and test GMM-

UBM and i-vector speaker recognition systems. 

  

GMM-UBM Demo 

There are four steps involved in training and testing a GMM-UBM speaker 

recognition system: 

 

1. Training a UBM from the background data 

2. MAP adapting speaker models from the UBM using enrollment data 

3. Scoring verification trials 

4. Computing the performance measures (e.g., confusion matrix and EER) 

 

The following MATLAB script (demo_gmm_ubm_artificial.m) generates a UBM 

speaker-recognition model and tests it: 

 
%% 

rng('default') 

% Step1: Create the universal background model from all the  

% training speaker data 

nmix = nMixtures;        % In this case, we know the # of mixtures needed 

final_niter = 10; 

ds_factor = 1; 

ubm = gmm_em(trainSpeakerData(:), nmix, final_niter, ds_factor, ... 

 nWorkers); 

 

%% 

% Step2: Now adapt the UBM to each speaker to create GMM speaker model. 

map_tau = 10.0; 

config = 'mwv'; 

gmm = cell(nSpeakers, 1); 

for s=1:nSpeakers 

    gmm{s} = mapAdapt(trainSpeakerData(s, :), ubm, map_tau, config); 

end 

 

%% 

% Step3: Now calculate the score for each model versus each speaker's  

% data. 

% Generate a list that tests each model (first column) against all the 

% testSpeakerData. 

trials = zeros(nSpeakers*nChannels*nSpeakers, 2); 

answers = zeros(nSpeakers*nChannels*nSpeakers, 1); 

for ix = 1 : nSpeakers, 

    b = (ix-1)*nSpeakers*nChannels + 1; 

    e = b + nSpeakers*nChannels - 1; 

    trials(b:e, :)  = [ix * ones(nSpeakers*nChannels, 1), ...

 (1:nSpeakers*nChannels)']; 

    answers((ix-1)*nChannels+b : (ix-1)*nChannels+b+nChannels-1) = 1; 
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end 

 

gmmScores = score_gmm_trials(gmm, reshape(testSpeakerData', ...

 nSpeakers*nChannels,1), trials, ubm); 

 

%% 

% Step4: Now compute the EER and plot the DET curve and confusion matrix 

imagesc(reshape(gmmScores,nSpeakers*nChannels, nSpeakers)) 

title('Speaker Verification Likelihood (GMM Model)'); 

ylabel('Test # (Channel x Speaker)'); xlabel('Model #'); 

colorbar; drawnow; axis xy 

figure 

eer = compute_eer(gmmScores, answers, false); 

 

This generates the confusion matrix (image) shown below. (The EER curve is 

blank because recognition is perfect at these noise levels.) 
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i-vector Demo 

There are five steps involved in training and testing an i-vector speaker recognition 

system: 

 

1. Training a UBM from the background data 

2. Learning a total variability subspace from background statistics 

3. Training a Gaussian PLDA model with development i-vectors 

4. Scoring verification trials with model and test i-vectors 

5. Computing the performance measures (e.g., EER and confusion matrix) 

 

The following MATLAB script (demo_ivector_plda_artificial.m) demonstrates the 

use of the i-vector code and shows simple results: 

 
%% 

rng('default'); 

% Step1: Create the universal background model from all the  

% training speaker data 

nmix = nMixtures;% In this case, we know the # of mixtures needed 

final_niter = 10; 

ds_factor = 1; 

ubm = gmm_em(trainSpeakerData(:), nmix, final_niter, ... 

ds_factor, nWorkers); 

 

 

%% 

% Step2.1: Calculate the statistics needed for the iVector model. 

stats = cell(nSpeakers, nChannels); 

for s=1:nSpeakers 

    for c=1:nChannels 

        [N,F] = compute_bw_stats(trainSpeakerData{s,c}, ubm); 

        stats{s,c} = [N; F]; 

    end 

end 

 

% Step2.2: Learn the total variability subspace from all the 

speaker data. 

tvDim = 100; 

niter = 5; 

T = train_tv_space(stats(:), ubm, tvDim, niter, nWorkers); 

% 

% Now compute the ivectors for each speaker and channel.   

% The result is size 

%   tvDim x nSpeakers x nChannels 

devIVs = zeros(tvDim, nSpeakers, nChannels); 

for s=1:nSpeakers 

    for c=1:nChannels 
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        devIVs(:, s, c) = extract_ivector(stats{s, c}, ubm, T); 

    end 

end 

 

%% 

% Step3.1: Now do LDA on the iVectors to find the dimensions that  

% matter. 

ldaDim = min(100, nSpeakers-1); 

devIVbySpeaker = reshape(devIVs, tvDim, nSpeakers*nChannels); 

[V,D] = lda(devIVbySpeaker, speakerID(:)); 

finalDevIVs = V(:, 1:ldaDim)' * devIVbySpeaker; 

 

% Step3.2: Now train a Gaussian PLDA model with development  

% i-vectors 

nphi = ldaDim;                  % should be <= ldaDim 

niter = 10; 

pLDA = gplda_em(finalDevIVs, speakerID(:), nphi, niter); 

 

%% 

% Step4.1: OK now we have the channel and LDA models. Let's build  

% actual speaker 

% models. Normally we do that with new enrollment data, but now  

% we'll just reuse the development set. 

averageIVs = mean(devIVs, 3);   % Average IVs across channels. 

modelIVs = V(:, 1:ldaDim)' * averageIVs; 

 

 

% Step4.2: Now compute the ivectors for the test set  

% and score the utterances against the models 

testIVs = zeros(tvDim, nSpeakers, nChannels);  

for s=1:nSpeakers 

    for c=1:nChannels 

        [N, F] = compute_bw_stats(testSpeakerData{s, c}, ubm); 

        testIVs(:, s, c) = extract_ivector([N; F], ubm, T); 

    end 

end 

testIVbySpeaker = reshape(permute(testIVs, [1 3 2]), ... 

                            tvDim, nSpeakers*nChannels); 

finalTestIVs = V(:, 1:ldaDim)' * testIVbySpeaker; 

 

%% 

% Step5: Now score the models with all the test data. 

ivScores = score_gplda_trials(pLDA, modelIVs, finalTestIVs); 

imagesc(ivScores) 

title('Speaker Verification Likelihood (iVector Model)'); 

xlabel('Test # (Channel x Speaker)'); ylabel('Model #'); 

colorbar; axis xy; drawnow; 

 

answers = zeros(nSpeakers*nChannels*nSpeakers, 1); 
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for ix = 1 : nSpeakers, 

    b = (ix-1)*nSpeakers*nChannels + 1; 

    answers((ix-1)*nChannels+b : (ix-1)*nChannels+b+nChannels-1) 

= 1; 

end 

 

ivScores = reshape(ivScores', nSpeakers*nChannels* nSpeakers, 1); 

figure; 

eer = compute_eer(ivScores, answers, false); 

 

This generates the confusion matrix (image) shown below: 
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