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Abstract SEIS, the seismometer of the InSight mission, which landed on Mars on 26 November 2018, is

monitoring the seismic activity of the planet. The goal of the Mars Structure Service (MSS) is to provide, as a

mission product, the first average 1‐D velocity model of Mars from the recorded InSight data. Prior to the

mission, methodologies have been developed and tested to allow the location of the seismic events and

estimation of the radial structure, using surface waves and body waves arrival times, and receiver functions.

The paper describes these validation tests and compares the performance of the different algorithms to

constrain the velocity model below the InSight station and estimate the 1‐D average model over the great

circle path between source and receiver. These tests were performed in the frame of a blind test, during

which synthetic data were inverted. In order to propagate the data uncertainties on the output model

distribution, Bayesian inversion techniques are mainly used. The limitations and strengths of the methods

are assessed. The results show the potential of the MSS approach to retrieve the structure of the crust and

underlying mantle. However, at this time, large quakes with clear surface waves have not yet been recorded

by SEIS, which makes the estimation of the 1‐D average seismic velocity model challenging. Additional

locatable events, especially at large epicentral distances, and development of new techniques to fully

investigate the data, will ultimately provide more constraints on the crust and mantle of Mars.

1. Introduction

Because of its higher‐resolving power relative to other geophysical methods for sounding the interior of a

planetary body, seismology has played a prominent role in the study of the interiors of Earth and Moon.

This is one of the primary reasons for landing a seismometer on Mars with the InSight mission (Banerdt

et al., 2013). The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport)

lander successfully delivered a geophysical instrument package to the Martian surface on 26 November

2018, including broadband and a short‐period seismometer instrument package called SEIS (Seismic

Experiment for Interior Structure) (Lognonné et al., 2019). Although not buried but deployed at the

Martian surface under a Wind and Thermal Shield, SEIS is specifically designed to record marsquakes

and meteoritic impacts under Martian conditions, with a very low noise level (see Lognonné et al.,

2020, for noise levels, as compared to the prelaunch estimation provided by Mimoun et al., 2017).

Most of our knowledge about the internal structure of Mars has been inferred from geodesy data that has

been supplemented with assumptions about the bulk composition of Mars. From the precise tracking of
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spacecraft orbiting Mars, the static gravity field and dynamic gravity field have been determined, and the

tracking of surface landers allows for the determination of the planet's precession rate. By combining the sta-

tic gravity field and the precession rate, the moment of inertia is determined from which the mass distribu-

tion within the planet can be constrained. Supplementing the gravity field data with topographic data allows

constraining the structure of the crust, whereas the dynamic gravity field or tides allow constraining the core

radius and the rigidity of the mantle. Constraints about the bulk composition of the planet are deduced from

a large set of Martian meteorites, in situ rock analysis obtained from Martian rovers, surface spectroscopy,

and assumptions about how the planer formed. All these constraints have allowed for several estimates of

the internal mechanical properties and compositional structure of Mars (e.g., Baratoux et al., 2014; Khan

et al., 2018; Mocquet et al., 2011; Neumann et al., 2004; Plesa et al., 2015; Rivoldini et al., 2011; Smrekar et al.,

2019; Sohl & Spohn, 1997; Verhoeven et al., 2005). However, these models suffer from the intrinsic nonuni-

queness of any gravity data inversion, in particular with respect to the structure and thickness of the crust,

structure, and composition of the mantle, including the existence and depth of discontinuities, and the

core size.

The InSight mission extends planetary seismology to Mars. Seismic data will be integrated with geophysical

measurements to determine details of the internal structure and evolution of another terrestrial body for the

first time. However, the determination of the internal velocity structure and the location of the seismic

sources using only one station is a challenge. Routine operations in the InSight team are split into two ser-

vices: the Mars Structure Service (MSS) and the Marsquake Service (MQS), which are responsible for defin-

ing structure models (Panning et al., 2017) and seismicity catalogs (Clinton et al., 2018), respectively. While

the two tasks are intimately related and require constant feedback and interaction, these two services pro-

vide a structure to ensure the mission will meet its science goals.

Following early works (Khan et al., 2016; Panning et al., 2015, 2017), the MSS team has developed several

other different inversion algorithms in order to retrieve the first 1‐D‐averaged models of Mars from single

station seismic data. To deal with the large inescapable uncertainties associated with the quake parameters

and 1‐D structure model from a single station, we developed probabilistic inversion strategies with several

types of seismic observables: body wave phase arrivals, surface waves, and receiver functions (RFs). In all

cases, significant efforts have been devoted to the modeling approaches: when data are limited, they are

indeed keys for understanding the significance of the resulting models.

The goal of this paper is to present the results of a blind test in terms of structure, in order to show howMSS

can investigate Mars's interior using a variety of well‐suited methods performed on a single high‐quality seis-

mogram. We took as “blind data” a synthetic seismic event and its associated broadband seismogram, com-

puted within a 3‐D crust overlaying a 1‐D model from the Moho discontinuity to the core. All parameters

used in the forward modeling were unknown to those in charge of inversions. This single synthetic data

set was then used to perform inversions for inferring both Marsquake parameters (location, depth, origin

time, and moment tensor) and interior velocity models.

This study provides a clear framework to describe the methods employed by theMSS demonstrated on a data

set for which results can be compared to the ground truth. Clearly, this remains a “best case” scenario for the

resolving power of a single event, but it is an important demonstration of the planned approaches. The dif-

ferent algorithms handle surface waves and/or body waves, RFs, and consider different parameterizations.

We first describe the synthetic input data, the traveltime measurements, and then detail the different inver-

sion techniques for investigating the deep structure of Mars, and quake location. Constraints from RFs,

which provide information on crustal structure directly below the receiver, and from surface waves and body

waves, which average the structure over the great circle path between source and receiver, are considered

independently here. We first present, discuss, and compare the results of six different methods estimating

the 1‐D average model over the great circle path between source and receiver. Second, we described the

results from a local study below the station, by inverting RFs. The results clearly highlight the nonunique-

ness of the solution and enhance the approach considered by theMSS of using several complementary meth-

ods to fully investigate the data. We also demonstrate the feasibility to estimate the attenuation of Mars,

using a single event.

Up to now and despite very low noise (Lognonné et al., 2020), most seismic event waveforms recorded by

SEIS do not exhibit clear phase arrivals, and none have observable surface waves (Giardini et al., 2020;
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Lognonné et al., 2020). Only two marsquakes show clear P and S arrivals

with picking errors smaller than 2 s for P and S, which means that several

methods developed in the framework of the MSS cannot yet be used with

SEIS data. The core of the proposed methods will, therefore, be applicable

if Martian seismicity provides soon larger quakes with body wave phases

and first orbit surface wave dispersion, or one event large enough to

record multiple orbit surface waves. A section is therefore dedicated to

the inversion results using only body wave arrival times. The results show

a strong trade‐off between the seismic velocity profile and the quake loca-

tion, which prevents a clear estimation of the crust and mantle velocity

structure, as well as the crustal thickness. In the absence of surface waves,

the work of the MSS becomes even more challenging, and new methods

need to be developed in order to fully take advantage of all the informa-

tion contained in the SEIS data.

2. Synthetic Waveforms

Two blind tests were performed prior to landing to validate the SEIS data processing. The first one was for

the detection and characterization of events and was linked to the MQS activities (Clinton et al., 2018).

We refer to Clinton et al. (2017) and van Driel et al. (2019) for further details on the MQS tests results.

The MSS blind test was on its side designed for practicing and improving the procedures and methods aim-

ing to invert Mars's internal structure from SEIS data.

To mimic expected Mars conditions before InSight touchdown, the synthetic test data set included four

Earth day long seismic recordings (three‐component VBB data at 2 and 20 sps, single‐component combined

VBB vertical channel at 10 sps) as well as auxiliary channels such as pressure, magnetometer, wind speed,

wind direction, and atmospheric temperature.

A single marsquake is hidden in the continuous signal, which is contaminated by Martian noise based on

prelaunch hypotheses (Mimoun et al., 2017). The event's parameters are detailed in Table 1. The background

structural model, or 1‐D base model, for quake simulations was chosen from a suite of 14 models (Clinton

et al., 2017). In order to make this blind test challenging, an anomalous 1‐Dmodel is considered, with a tem-

perature profile in the crust and mantle close to the liquidus (Khan et al., 2018). Such a temperature profile

gives a seismic velocity profile located in the extreme lower bound of the expected velocity models of Mars

(Smrekar et al., 2019). The source parameters were randomly chosen.

In the MQS exercise focused on event detection and location (Clinton et al., 2017; van Driel et al., 2019), the

seismogramswere computed in a 1‐Dmodel, which greatly simplified the analysis. The goal here is to include

unexpected behavior as well as 3‐D effects on surface waves due to crustal heterogeneities (Bozdaǧ et al.,

2017). To this endwe performed a full 3‐D computation (Afanasiev et al., 2019) for Swaves and surface waves

to the shortest period of 5 s and merged the trace in the time domain just before the S wave arrival with 1‐D

synthetics (Bozdaǧ et al., 2017;Nissen‐Meyer et al., 2014; vanDriel et al., 2015) accurate to 1.5 Hz. This ismoti-

vated by the observation that the attenuation of themodel would not allow shorter period teleseismic Swaves

above the noise level in any case. For consistency, the 1‐Dsynthetics are aligned to the 3‐DPwave arrival time

by cross correlation of the 1‐D and 3‐D synthetics in the frequency range where both are well resolved.

The seismic noise model comes from the SEIS noise model (Mimoun et al., 2017). This comprehensivemodel

includes prelanding estimates of the key contributors to the seismic noise: the pressure noise (Kenda et al.,

2017; Murdoch et al., 2017a), the wind‐generated mechanical noise (Murdoch et al., 2017b), the thermal and

magnetic noise (Mimoun et al., 2017), and the instrument self‐noise (Lognonné et al., 2019). Further details

about how this noise was integrated into the synthetic waveforms are provided in Clinton et al. (2017).

3. Traveltime Measurements
3.1. MQS Estimates

Since raw synthetic waveforms are supposed to mimic the worst‐case scenario planned for data transmission

of the continuous signal acquired on Mars, they are provided at a sampling rate of 2 Hz.

Table 1
Parameters of the MSS Blind Test Event for Computed and True Locations

Event parameters Computed origin True origin

Origin time (UTC) 2019‐01‐03 15:00:53 2019‐01‐03 15:00:30
Latitude 26°S 26.443°S
Longitude 53°E 50.920°E
Depth 36 km 38.4 km
Magnitude MsM¼ 3.7 (Mw¼ 4.2) Mw¼ 4.46
Distance 85.7° 87.6°
Back azimuth 243.0° 243.4°

Note. MsM is the magnitude derived for Mars using the surface wave
amplitudes (Böse et al., 2017).
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The probabilistic location algorithms that MQS utilizes are explained in Panning et al. (2015) and Böse et al.

(2017) in detail. MQS uses a collection of approximately 2,500 Mars models, which is a combined set of

inputs from all members of the InSight science team. The MQS algorithms operate on a traveltime database

for the most common body wave phases at all distance ranges, as well as surface wave arrivals in predeter-

mined frequency bands. Traveltimes are computed using the TauP package of Crotwell et al. (1999).

Table 1 summarizes the computed location and the input parameters. Although direct and major arc surface

wave arrivals were visible, it was not possible to identify a clear arrival of multiorbit surface waves (R3).

Further, 3‐D traveltime corrections for surface waves were not implemented at the time of the test.

Therefore, the MSS location was computed solely using body wave phases. The event depth (∼36 km) was

constrained using a clear pP arrival 14.4 s after the P wave. The event magnitude (MsM¼ 3.7) is computed

using the direct Rayleigh wave arrival. Following Böse et al. (2017), this value scales to approximately

Mw ¼ 4.2–4.3.

3.2. Body Waves

Onset times are picked by various contributors, they are gathered by the institution names (IPGP, ISAE,

ETH, MQS, and LPG), and the major seismic phases are represented in Figure 1. Concerning the compres-

sional seismic phases (i.e., P, pP, and PP), there is a very good agreement between all manually performed

picks, whereas we observe a slightly larger discrepancy for shear wave onset times.

The mean value for the arrival time of the direct P wave is 2019‐01‐03T15:09:54.5 (UTC) with a standard

deviation lower than 0.1 s; the corresponding value for the arrival time of the direct S wave is

2019‐01‐03T15:18:31.1 (UTC) with a standard deviation of 3.6 s. The larger uncertainty for the direct S phase

is mostly due to a low‐amplitude, emergent direct shear wave arrival, which is moreover almost concomitant

with a high‐frequency signal, which has not been identified, and no clear S wave coda (Figure 2).

To determine back azimuth (in the horizontal plane) and arrival (in the vertical plane) angles of the direct P

wave ray, we use an approach based on the analysis of the polarization of the incoming P wave energy. The

seismogram is band‐pass filtered between 0.2 and 0.5 Hz in order to enhance long‐period particle motion

around the hand‐picked Pwave onset time. The window of interest starts 1 s before the picked Pwave arrival

and ends 5 s after.

The analysis is based on the approach from Jurkevics (1988); that is, we solve an eigenvalue problem on the

3‐D particle motion to find the eigenvector that is a good approximation of the P wave vector. Its orientation

and polarity are then used to recover the back azimuth of the Pwave (Figure 3a). To strengthen the analysis,

which is very sensitive to noise, we also perform a Monte Carlo exploration of the 3‐D particle motion

obtained from the 6 s analysis window. Two hundred sets of samples from between 60% and 90% of all the

particle motion samples are randomly selected, and they are used to compute the average back azimuth.

This process is repeated 200 times so that the preferred back azimuth value (Figure 3b) is given by the mean

and the standard deviation of the distribution (given by a kernel density estimation). The inferred value for

the back azimuth is in agreement with the source location.

The arrival angle is computed following the same strategy (Figure 4). The back azimuth angle is used to

rotate the seismogram in order to use a vertical/radial/transverse reference frame. We also limit the analysis

to the radial/vertical particle motion as almost all of the P wave energy should be confined to this plane.

3.3. Surface Waves

Both Love waves on the transverse component and Rayleigh waves on the two other components (Figure 2)

are easily recognizable in the seismograms. Most of the surface wave energy is between 10‐ and 60‐s period.

The rotation in the great circle plane, defined by the source and the receiver, efficiently isolates Love waves

that travel faster than Rayleigh waves. Two types of observables can be derived from raw data: discrete group

velocity values at different frequencies and dispersion analyses using probability density functions (pdfs) of

the energy.

As for body waves, arrival times for Love and Rayleigh waves are manually picked and are converted into

group velocities for the different wave trains. Figures 5a and 5b exhibit the group velocity curves, with the

corresponding uncertainties, between 10‐ and 60‐s period, obtained from the G1 and L1 wave trains (travel

path along the minor arc between the source and the receiver). They are computed using the origin time and
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the quake location as given by theMQS (Table 1). Themajor arc wave trains (i.e., G2 and R2) are picked with

good consistency between the various contributions, but since they are not used for inversions, they are not

shown here. Only two contributors picked G3 and R3 arrival times in a very narrow frequency band

(between 25‐ and 30‐s period).

For both Love and Rayleigh waves, all contributions are very consistent over the whole frequency range.

Almost all group velocity values are within the uncertainties defined by the ETH and the MQS. This feature

is consistent with a mean model for which body wave velocities are increasing as a function of depth.

3.4. Dispersion Analysis

In addition to the arrival time picks for the different wave trains of surface waves, we present a dispersion

analysis of the first fundamental mode waveforms (Figures 6a and 6b). Both Love and Rayleigh waves are

Figure 1. (a–d) Body wave picks are represented by red vertical lines. For each seismic phase, the corresponding time window is 150 s long and is centered around
the first picked value (top trace). When it has been quantified during the picking step, the uncertainties are showed in pink. The band‐pass filter characteristics
and the component are indicated above each plot.
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Figure 2. Synthetic traces after rotation in the source‐to‐receiver great circle plane and filtered between 2‐ and 100‐s
period. Direct P waves arrival is highlighted in pink, S waves in violet, and surface waves (both Love and Rayleigh)
are present in the green window.

Figure 3. Illustration of the back azimuth computation from the polarization analysis of the ZNE particle motion.
(a) Particle motion in the EN plane (solid black line) with the recovered back azimuth (red dashed line). (b) Kernel
density estimation (Gaussian kernel with 1° bandwidth) of the back azimuth distribution (solid black line) with
the mean of the distribution (dashed red line). The retrieved back azimuth value is 242° ± 1°.
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filtered using 20 narrow Gaussian band‐pass filters, and each trace is converted into energy using the

envelope of the signal. The signal is then interpolated on a regularly discretized group velocity axis,

assuming an origin time value and an epicentral distance (the location from MQS is used, Table 1), and

the whole window is finally converted into probabilities, which is a slightly different version of the one

described in Panning et al. (2015). The collection of pdfs of group velocities displayed in Figure 6,

therefore, can be seen as a dispersion diagram. Two histograms, corresponding to two different

frequencies, are displayed above the dispersion diagrams to illustrate this approach.

When looking at the dispersion for periods greater than 12 s, it is clear that group velocities are unimodal,

and the maximum of each pdf matches almost perfectly the picked values shown in Figure 5. At shorter per-

iods, we observe a sharp discontinuity in both pdfs. They are highlighted by bimodal distributions (see red

histograms in Figures 6a and 6b). This feature affects both Love and Rayleigh waves and prevents inversions

for periods shorter than 10–12 s. We do not observe any robust correlation between Love and Rayleigh sig-

nals that could indicate the presence of anisotropy (Babuska & Cara, 1991), and we interpret this

short‐period energy in terms of 3‐D propagation effects. Since we do observe a 2π phase shift between

Figure 4. Illustration of the incidence computation from the polarization analysis of the ZR particle motion. (a) Same as
Figure 3 but for ZR particle motion (black solid line) and incidence angle (red dashed line). (b) Same as Figure 3 for
incidence angle. Incidence angle ¼ 22° ± 1°.

Figure 5. (a and b) Surface wave group velocities computed from manually picked arrival times. The value for origin time and epicentral distance are given at the
top; they correspond to the MQS solution.
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longitudinal and vertical components (see Figure 7 for the fundamental mode), we are facing retrograde par-

ticle motion. This spurious signal can, therefore, be associated with multipathing since there is a large crus-

tal thickness anomaly (up to 20–25 km) in the source neighborhood. Hence, this energy can propagate along

the same travel path and therefore reach the receiver with no significant arrival angle anomaly (Woodhouse

& Wong, 1986).

3.5. Particle Motion

As explained in Panning et al. (2015), the particle motion of the Rayleigh wave fundamental mode can be

used for back azimuth determination but it can be used as well to investigate the physical properties of

the crust. In a velocity model showing a substantive velocity increase as a function of depth, Rayleigh waves

are characterized by a retrograde elliptical particle motion. In many cases on Earth, the particle motion of

the Rayleigh wave fundamental mode is retrograde while higher modes propagate in prograde motion.

Very few studies report prograde observations of the fundamental mode (Tanimoto & Rivera, 2005), and this

effect due to propagation through a thick sedimentary basin. In the case of a retrograde motion, once the

horizontal components are rotated into the source‐receiver great circle reference frame, the longitudinal

(in the direction of positive minor arc propagation) is π/2 phase‐shifted with respect to the vertical. It means

that horizontal displacements are in phase with the Hilbert transform of the vertical component multiplied

by−1 (Gribler &Mikesell, 2019). Thus, such a comparison between longitudinal and vertical waveforms can

bring some information on the near‐surface properties.

The result of the particle motion analysis is displayed in Figure 7. For 170 time samples (blue and red points),

which corresponds approximately to the duration of the Rayleigh fundamental mode wave train, the nor-

malized cross correlations between the longitudinal component and the Hilbert transform of the vertical

multiplied by −1 (associated with blue color) and +1 (in red) are computed. Each color point represents

the zero‐lag value of these cross correlations. In order not to be affected by the length of the time window

used for the computations, all possible lengths between 150 and 350 s are tested and the best zero‐lag value

is retained.

It is obvious that (i) all blue points are positives which is consistent with a retrograde particle motion and (ii)

the largest value is almost equal to one and it corresponds to the beginning of the Rayleigh wave train (thick

blue line). The top graph on the left (Figure 7) shows for this time window that the normalized cross

Figure 6. Dispersion analysis of the first wave trains of surface waves. The waveforms corresponding to (a) Love and (b) Rayleigh are band‐pass filtered in 20
narrow band Gaussian filters between 8‐ and 50‐s period. For each frequency, the envelope of the filtered signal is converted into a probability density
function of group velocities and are plotted in gray scales. Two histograms (red for short periods and green for long periods, as indicated by the
colored lines in the dispersion diagrams) are shown above the dispersion diagrams. For Love waves and vertical Rayleigh waves, the red
histograms are shown for period values of 10.7 and 12.9 s, respectively. The green histograms corresponds to a period of 30.8 s.
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correlation between the longitudinal and −HðZÞ (blue signal) is almost identical to the autocorrelation of

the longitudinal component (black signal). On the other hand, the best value for the cross correlation

between longitudinal and positive Hilbert transform is for the last point (top graph on the right), which

means that the corresponding time window is after the end of the Rayleigh fundamental mode wave train.

4. Estimation of the 1‐D Average Model Over the Great Circle Path Between
Source and Receiver
4.1. Methods

Six independent inversion algorithms were developed in order to retrieve the 1‐D average model along the

minor arc. The goal here is not to produce a single model, but rather a family of models that fit the data

and are consistent with the most recent set of prior constraints. The main characteristics of each method

are described in Table 2. This study spans a relatively wide range in terms of model parameterization from

the standard seismic parameterizations over fully self‐consistent thermodynamic methods. Indeed, two

main approaches are considered. One set of models (called M1) are parameterized in seismic velocity as a

function of depth. A second set (called M2) is obtained with models parameterized by geodynamical para-

meters like temperature and composition. Assuming thermodynamic equilibrium, the seismic velocity pro-

files can then be calculated using first thermodynamics principles with experimentally derived parameters

for candidate minerals. The strength of the M1 models is that they are able to mimic “exotic” models if

the composition and/or temperature are variable along the wave path, or if the equilibrium assemblage is

not reached. Their weakness is that they do not take into account constraints frommineral physics, nor geo-

physical data (e.g., moment of inertia, tidal response, and thermal evolution of the planet). The M2 method

permits the application of tight constraints on velocity structure with a relatively limited data set, by produ-

cing stable velocity models through the whole planet, in contrast to the M1 models which give some con-

straints only at the depths where the data are sensitive. The M2 modeling approach is extremely powerful

if we have very good prior constraints. However, theM2models will not be representative ofMars if the prior

assumptions on mineral physics turn out to be false or if the equilibrium assemblage is not reached. The

Figure 7. Bottom graph: Analysis of the particle motion of the first vertical Rayleigh wave train (black signal). Each color point (blue and red) represents the
zero‐lag value of the normalized cross correlation between the longitudinal and the negative in blue (positive in red) Hilbert transform of the vertical
component. Top graphs: For two time windows, the autocorrelation of the longitudinal component in black and the normalized cross correlation
between longitudinal component and the Hilbert transformed vertical multiplied by −1 in blue and +1 in red. The top left graph shows that
at 5,530 s the waveform on BHL component is perfectly matching −HðBHZÞ.
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advantage of using these two complementary approaches is that comparisons between these two families

could indicate regions of the models that are not well constrained by the data, or inconsistent with the

physical assumption of the M2 modeling approach.

The inverse problem consists in retrieving the seismic velocity profiles as a function of depth from body

waves and surface waves traveltimes measurements. The problem is, however, underdetermined, in the

sense that several combinations of velocity profiles and locations can give similar arrival times. Due to the

underdetermined nature of the problem, we mainly use Bayesian inversion techniques to obtain robust pdfs

of seismic velocity profiles. This technique allows the investigation of a large range of possible models and

provides a quantitative measure of the models' uncertainty and nonuniqueness. As such, it is well suited

to our problem given the still poorly known nature of theMartian interior, as well as the low amount of iden-

tified phase arrivals recorded by SEIS at this time (Giardini et al., 2020; Lognonné et al., 2020). The forward

problems are computed with 1‐D structure, which allows the computations of several million forward pro-

blems. The pdf of the a priori distribution, for each of the six methods, is displayed in Figure 8. In the follow-

ing, the six methods are described in details. TheM1methods were initially developed for Earth applications

and recently modified for Mars in preparation for the InSight mission. The M1a and M1b methods were

modified from the previous work of Drilleau et al. (2013) and Panning et al. (2015, 2017). The M1c method

is derived from Xu and Beghein (2019). The M2a method was already published in Khan et al. (2016, 2018),

whereas the M2b and M2c methods were recently developed in the framework of the MSS.

4.1.1. M1 Models
M1a. The inversion algorithm is mainly based on the work of Drilleau et al. (2013) and Panning et al. (2015,

2017). The 1‐D VS models are parameterized with three layers in the crust, and with six Bézier points in the

mantle, which are interpolated using polynomial C1 Bézier curves. The inverted parameters are the depth of

the three layers in the crust and their VS values, the depth and VS values of the Bézier points in the mantle,

and the VP/VS ratios in the three layers of the crust and the mantle. In total, 21 parameters are inverted to

describe the velocity model. The a priori conditions on the depths of the crustal layers are that the depth

of the first and third layers cannot exceed 10 and 100 km, respectively. The Bézier points are randomly

located between the Moho depth and the top of the core. The VS profiles are randomly sampled within rela-

tively wide prior bounds, as shown in Figure 8a. In order to ensure a velocity jump at the Moho, we impose

that VS of the first Bézier point in themantle must be higher than VS in the third layer of the crust. The VP/VS

ratios are allowed to vary between 1.5 and 2.2. Simultaneously, a relocation of the quake is performed by

moving the epicentral distance and the depth of the quake. For the blind test exercise, we choose to set

the prior bounds relying on the uncertainties found by the MQS, between 80° and 95° and 25–45 km for

the epicentral distance and the depth of the quake, respectively.

Table 2
Details of the Six Different Inversion Methods Used by the MSS

M1a M1b M1c M2a M2b M2c

Possibility of using yes no no yes yes yes
body waves only
Data surface waves surface waves surface waves surface waves surface waves surface waves

body waves body waves body waves body waves
(Figures 1 and 5, (Figure 6) (see section 4.1.1, (Figures 1 and 5, (Figures 1 and 5, (Figures 1 and 5,
MQS values) M1c) MQS values) MQS values) MQS values)

Relocation yes no yes yes yes yes
Inverse problem McMC McMC McMC McMC McMC grid search
Misfit function differential group waveforms traveltimes differential traveltimes
calculated on arrival times velocities and and arrival times

group velocities group velocities
Inverted VP, VS VP, VS, VS crust: VP, VS crust: VP, VS VP, VS
structure radial anisotropy mantle: composition mantle and core of a priori models
parameters and temperature convective temperature based on geodynamical

viscosity, parameters
activation energy,
activation volume
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To solve the inverse problem, we employ aMarkov chainMonte Carlo (McMC) approach (e.g., Mosegaard &

Tarantola, 1995). For each sampledmodel, we rely on the ray tracing algorithm of Shearer (2019) to compute

body wave traveltimes. The surface wave velocity dispersion curves are calculated using the MINEOS pack-

age (Masters et al., 2011) and are then converted to traveltimes using the randomly sampled epicentral dis-

tance value. Since the origin time t0 is typically unknown, we use differential times relative to the P wave

phase arrival. The cost function is then defined as follows:

C ¼
jðtobsS − tobsP Þ−ðtcalcS − tcalcP Þj

σS þ σP
þ

jðtobspP − tobsP Þ−ðtcalcpP − tcalcP Þj

σpP þ σP

þ∑
N

jðtobsR − tobsP Þ−ðtcalcR − tcalcP Þj

σR þ σP
;

(1)

where C computes the misfit between the observed and computed differential arrival times tS− tP, tpP− tP

and the sum of the misfit between the observed and computed differential arrival times tS− tR at each fre-

quency, taking into account the error bars σP, σS, σpP, and σR on P, S, pP, and Rayleigh waves arrival

times, respectively. Superscripts throughout refer to observations (obs) and computed data (calc).

Inversion output consists of an ensemble of internal structure models that fit the cost function.

Figure 8. A priori probability density functions of VS as a function of depth for M1 (a–c) and M2 (d–f) methods, considering that all the sampled models which are
in good agreement with a priori information are accepted. Blue and red colors are low and high probability, respectively. The black lines in (a) and
(b) show the upper and lower prior bounds. At every kilometer in depth, the pdf values are computed by counting the number of profiles in
each VS interval of 0.05 km/s. For a given depth, the sum of the pdf over all the parameter intervals is equal to 100%.
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M1b. In contrast with the previously describedmethod for M1amodels, M1bmodels are inferred using infor-

mation carried by surface waves only, considering a fixed location of the marsquake (see Table 1, computed

origin). The anisotropy is taken into account in a joint Love/Rayleigh inversion scheme. The data space is

composed here by two distinct ensembles of a priori pdfs of both Love and Rayleigh group velocities

(Figures 6a and 6b; see section 3 for details). The parameter space in our case is composed by four subspaces

(compressional and shear velocities, density, and ξ) as a function of depth. The inverse procedure relies on

McMC explorations of the whole parameter space in order to compute a posteriori probability densities

for each subspace. It is an improved version of the concepts presented in Panning et al. (2015, 2017) in the

sense that the forward problem can now take into account for anisotropy.

Under the hypothesis of a transversely isotropic medium (Love, 1892), the joint inversion of the two types of

surface waves allows constraining

ξ ¼
V2

SH

V2
SV

; (2)

where VSH and VSV are the horizontally and vertically polarized shear wave velocities, respectively.

For each 1‐D trial model defined by ρ(z), VP(z), and VSV(z) and VSH(z), a modal summation theory (Masters

et al., 2011) is used to compute the corresponding Love and Rayleigh group velocities. Each group velocity

curve can be compared directly to the dispersion diagrams (Figure 6), which quantifies the relevance of

the trial model in the data space. This means that, in contrast to widely used misfit computations within

Bayesian explorations and relying on gaussian assumptions, the goodness of fit is measured by the

likelihood,

Lða1;…; amÞ ¼ ∏
N

i¼1
Pðνi; a1;…; amÞ: (3)

The likelihood function is then the product of the individual probabilities sampled by the group velocity

curves (which represent the state of a given parameter configurationa1,… , am evaluated at each frequency νi).

To compute a large ensemble of model shapes, 70 Markov chains are running in parallel, and each chain

uses a given geometrical constraint for the generated models between 0‐ and 140‐km depth. As introduced

by Drilleau et al. (2013), each model shape is controlled by piecewise C1 Bézier curves (Bézier, 1977;

Farin, 1993), based on several anchor points. Two anchor points at 0‐ and 140‐km depth bound the explora-

tion range and all intermediate points are shared by two following Bézier curves. To ensure a broad explora-

tion of the model space, each Markov chain is associated with a unique random seed and an amount of

Bézier points, which vary between 5 and 9. This amount varies between all chains but does not vary within

a single chain during iterations. Theminimum authorized distance between each anchor point is set to 8 km,

which allows to generate models varying smoothly over the whole depth space as well as sharp

discontinuities.

After a first stage of large wavelength exploration (cold runs), the posterior probabilities are constructed with

the 6,000 models showing the lowest misfit values inferred during the 70 × 5,000 iterations (once they have

been downsampled in order to prevent covariances).

M1c. The technique used here is a waveform modeling method based on a hierarchical transdimensional

Bayesian approach tomeasure the dispersion of fundamental and higher mode surface waves. It was initially

developed by Xu and Beghein (2019) for Earth applications and recently modified forMars in preparation for

the InSight mission. AMcMC technique is used to seek a distribution of 1‐D shear wave velocity models that

represent the phase velocities of the fundamental and/or higher mode surface waves recorded between a

seismic source and a receiver on a single seismogram. The distribution of 1‐D models is then used to calcu-

late dispersion curves and uncertainties, and tests are performed to assess the reliability of the measure-

ments. Fundamental mode surface waves are generally much easier to isolate on the seismogram than the

overtones, and thus, their dispersion is often more reliably measured.

An advantage of using a hierarchical transdimensional Bayesian approach lies in the fact the depth parame-

terization does not have to be fixed a priori since the algorithm lets the data control the complexity of the
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solution while being parsimonious. Another great advantage is that it can also fit the data noise, which

reduces the risk of mapping unknown noise into the velocity model and associated phase velocities. In addi-

tion, the source parameters can be included among the unknowns, thereby allowing source estimate uncer-

tainties to be propagated into the model uncertainties. Since we are working with only one seismometer on

Mars, uncertainties in the source may be larger than we are used to on Earth and it is well known that wave-

form inversions can be affected by trade‐offs between source and structure. Here, we present results based on

the source parameters obtained by the MQS (Table 1).

A notable difference between performing phase velocity measurements with waveform modeling on Mars

compared to Earth is that we do not yet have a reliable reference model for Mars. For Earth applications,

a reference dispersion curve calculated for a reference interior model is often used to prevent cycle skipping,

which can affect the measured phase velocities. In the absence of a reliable reference model for Mars, we

included the envelope of the waveform in the cost function instead, as was done previously by Yoshizawa

and Ekström (2019).

The vertical component of the blind test data were filtered in different frequency bands, but no clear higher

mode Rayleigh waves were visible. Fundamental mode Rayleigh waves, however, were clearly seen at per-

iods between 25 and 50 s. The method employed here is not fully nonlinear due to the high computational

cost of the forward problem. First, a synthetic reference seismogram and corresponding eigenfunctions

are calculated using the fully nonlinear normal mode summation code MINEOS (Masters et al., 2011) and

a starting model. The synthetic seismogram is then updated at each iteration using a linear approximation.

To find a reference model, we first tested several published 1‐D Mars interior models (Sohl & Spohn, 1997;

Zheng et al., 2015) and found that one of the Zheng et al. (2015) models predicted a synthetic seismogram

that resembles the filtered blind data in the same period range the best, apart from a time shift of about

2 s. We then performed a rough grid search to modify the VS profile in order to bring the synthetic waveform

and the blind test waveform closer together in time. The misfit was calculated with a L2 norm. We used the

resulting VS model as our reference model.

The VS profile is described by a variable number k of interpolation points, the vertical and horizontal posi-

tions of which define the depths at which VS is perturbed and the amount by which VS is perturbed relative

to a reference model, respectively. The prior for VS is a uniform distribution of ±10% around the reference

model (Figure 8c), and the Moho is allowed to vary by ±5 km around the reference value and two different

reference values are tested to account for the prior uncertainty on crustal thickness. Perturbations in Pwave

velocity are assumed to be proportional to those in VS, as often done for Earth applications (e.g., Yoshizawa

& Ekström, 2019). We compared results for which density anomalies were neglected and scaled to dVS

(dρ/ρ¼ 0.3dVS/VS) and found no significant change in the resulting VS models.

We comparedVS profiles obtainedwith referencemodels with differentMoho depths, namely, 50‐ and 75‐km

depth. Note that by changing the crustal thickness in the referencemodel, we also had to adjust the reference

VS in order to time shift the synthetic waveform and bring it closer to the observed blind surface waveform.

We used a uniform prior for source parameters with a range of allowed values based on the uncertainties esti-

mated by the MQS. Only the source latitude and longitude were kept constant. On average, the misfit for

models with a 50‐km‐thick crust is smaller than that of models with a 75‐km‐thick crust. However, after per-

forming F tests (Menke, 2012) on several of the best models in each case, we found that themisfit difference is

not significant due to the difference in the number of model parameters. The waveform and envelope inver-

sion is therefore unable to distinguish between models with a 50‐ or 75‐km‐thick crust. In the discussion in

section 4.2, only the results using the 50‐km‐thick crust reference model are shown.

Because the envelope fit can be strongly affected by the noise level, we also tested whether the inclusion of

group velocity data instead of the envelope affects the results. To do this, we modified the cost function to

include group velocity measurements. We find that the velocity profiles do not strongly differ from those

using the envelope measurements only, but the range of allowable VS models is slightly larger with group

velocities than with the envelope.

4.1.2. M2 Models
M2a. In the following, we describe a method for inverting P and S wave body wave traveltimes and surface

wave dispersion data jointly as outlined in Khan et al. (2016). To compute radial profiles of density, P and S
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wave velocity, and shear attenuation, we rely on an average bulk Martian mantle composition and model

areotherm using thermodynamic principles, mineral physics data, and viscoelastic modeling as described

in Khan et al. (2018). OurMartian model is spherically symmetric and consists of three layers: a silicate crust

and mantle and a metallic core. Seismic properties in the three layers are determined in the following

manner.

1. Mantle. We use the free‐energyminimization strategy of Connolly (2009) to determine stable mineralogy,

elastic moduli, and density along self‐consistently computed mantle adiabats for a given bulk composi-

tion. The thermodynamic formulation of Stixrude and Lithgow‐Bertelloni (2005) including parameters

as in Stixrude and Lithgow‐Bertelloni (2011) are employed for this purpose. Bulk moduli are estimated

by Voigt‐Reuss‐Hill averaging, while the pressure profile is obtained by integrating the load from the sur-

face boundary condition p¼ 105 Pa. Mantle compositions are explored within the Na2O‐CaO‐FeO‐MgO‐

Al2O3− SiO2 (NCFMAS) chemical model system, which accounts for more than 98% of the mass of the

mantle of the experimental Martian model of Bertka and Fei (1997).Estimates for the Martian mantle

composition derive from geochemical studies of a set of basaltic achondrite meteorites, which are

believed to originate from Mars (e.g., Dreibus & Wanke, 1985; Lodders & Fegley, 1997; McSween Jr,

1994; Mohapatra & Murty, 2003; Sanloup et al., 1999; Taylor, 2013; Treiman, 1986). Based on these

analyses, the Martian mantle is found to contain ∼17 wt% FeO, implying a Martian mantle Mg# of 75

(100 times molar Mg/Mg+Fe).

2. Crust. The crust is subdivided into three layers that are parameterized in terms of P and S wave velocity,

and density, in addition toMoho thickness. To emulate the effect of porosity, we computed the aforemen-

tioned physical properties by multiplying the thermodynamically computed seismic wave speeds and

density in crustal layer i by a variable parameter ϕ. The ϕi is determined from ϕi¼ ϕ0+ (1− ϕ0)(i/N) with

ϕ0 being variable surface porosity andN the total number of crustal layers. This parameterization ensures

that crustal properties increase from the surface down to the Moho where porosity is expected to vanish

due to pressure.

3. Core. Sulfur is believed to be the dominant light element in the core of Mars because other elements

(e.g., silicon, oxygen, and carbon) do not have sufficient solubility in iron‐rich liquid at the relatively

low pressures that are expected to have been maintained during core formation (e.g., Stevenson, 2001).

Evidence in support of this comes from the observed depletion of chalcophile elements in the Martian

meteorites, notably sulfur and the large value of the degree‐2 gravitational potential Love number. To

compute depth‐dependent thermoelastic properties for the core, we use equations of state for liquid iron

and liquid iron‐sulfur alloys, relying on the parameterization of Rivoldini et al. (2011) for a well‐mixed

and convecting core.

4. Attenuation. The dissipation model adopted here is based on laboratory‐derived torsional forced oscilla-

tion data on melt‐free polycrystalline olivine and is described in detail in Jackson and Faul (2010). The

extended Burgers model of Jackson and Faul (2010) is preferred over other rheological models because

of its ability to describe the transition from (anharmonic) elasticity to grain size‐sensitive viscoelastic

behavior as a means of explaining the observed dissipation in the experiments on olivine.For present pur-

poses, computations were conducted employing a single shear wave attenuation (Q) model at seismic

frequencies (1 s) and a grain size of 1 mm. For the Martian crust and lithosphere, we fixed shear wave

Q to 600 after PREM (Dziewonski & Anderson, 1981). As the core is assumed liquid, no shear attenuation

is needed in the core. Dissipation in bulk is neglected and we assume Qκ¼ 104 in line with terrestrial

applications (e.g., Durek & Ekström, 1996). Anelastic P and S wave speeds as a function of pressure,

temperature, composition, and frequency are estimated from the expressions for the viscoelastically

computed temperature‐, pressure‐, and frequency‐dependent moduli (further details may be found in

Khan et al., 2018).

M2b. In this approach, we use a McMC joint inversion of body waves and surface wave seismic data, where

the modeling of Mars's thermochemical history is part of the forward problem. In order to make reliable pre-

dictions about the seismic data from interior structuremodels the present‐day thermal state ofMars is of fun-

damental importance. To obtain a plausible present‐day thermal state of Mars, we simulate for each interior

model its long‐term thermal evolution. The thermal evolution is calculated with a parameterized thermo-

chemical model that depends on a small set of parameters and an initial temperature profile. Such approach,

allows the long‐term planetary evolution to be accurately modeled at a reasonable computational cost.
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Our forward problem consists in sampling the model space by computing different thermochemical evolu-

tions of a Mars‐like planet divided into several concentric and spherically symmetric envelopes (Figure 9a):

a convecting iron‐sulfur liquid core (Rivoldini et al., 2011), surrounded by a silicate envelope. The latter con-

sists of an adiabatic mantle (with top and bottom thermal boundary layers) convecting under a stagnant (i.e.,

essentially diffusive) lithospheric lid of thickness, Dl, which includes a crust of thickness Dcr, enriched in

heat‐producing elements. The thermochemical evolution was computed using a parameterized approach

(e.g., Breuer & Spohn, 2006; Hauck & Phillips, 2002; Schubert & Spohn, 1990; Stevenson et al., 1983, and

references therein) detailed in Samuel et al. (2019). In brief, the evolution of this layered planet is computed

by numerically integrating a set of coupled differential equations expressing the conservation of internal

energy within each convecting envelope, which includes internal heat production by radioactive elements

and latent heating/cooling effects.

Heat transfer between the planetary envelopes is strongly controlled by the value of the mantle viscous

rheology. Therefore, the viscosity of the Martian mantle plays an key role and is assumed to depend on both

temperature and pressure, following an Arrhenius relationship (Karato & Wu, 1993). The temperature and

the pressure dependence of viscosity is expressed by E∗ and V∗, the effective activation energy and activation

volume, respectively. These quantities can account for viscous deformation in the diffusion creep regime, or

in the dislocation creep regime (Christensen, 1983; Kiefer & Li, 2016; Plesa et al., 2015; Samuel et al., 2019).

In the purely conducting lithospheric layer (in which the crust is embedded, see Figures 9a and 9b), the tem-

perature profile is obtained by integrating the time‐dependent heat equation with radially dependent heat

sources, density, and thermal conductivity, to account for differences between the enriched and buoyant

crust and the depleted residual lithosphere. The lithospheric and crustal thicknesses are not constant but

evolve (Figure 9d) as a function of the time‐dependent thermochemical state of the planet (Figure 9c).

Figure 9. Example of Mars's thermochemical evolution, for E∗¼ 300 kJ K−1mol−1, and V
∗
¼ 5 cm3/mol. Present‐day structure (a) and areotherm (b) resulting

from 4.5 Gyr of evolution. (c) Time evolution of mantle and core temperature below the top and bottom thermal boundary layers, respectively. (d) Time
evolution of crustal and lithospheric thicknesses.
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The lithospheric thickness is determined by considering an energy balance between the convective heat flux

at the top of the mantle, the conductive heat flux out of the lithosphere, and the energy consumed to

transform a portion of convective mantle into additional viscous lithosphere material, and vice versa

(Schubert et al., 1979; Spohn, 1991, and references therein). The crustal thickness evolves by accounting

for a time‐dependent crustal production rate, the latter being a function of shallow mantle temperature

and convective velocity (Breuer & Spohn, 2003; Spohn, 1991). Finally, present‐day areotherms are

obtained by conducting the parameterized thermochemical calculations for 4.5 Gyr (Figure 9b).

Along the McMC inversion procedure, we varied the values of the following governing parameters for the

thermochemical evolution:

• The mantle rheology: effective activation energy (E∗), volume (V∗), and reference viscosity (η0);

• the initial thermal state: temperature below the lithosphere (Tm0) and core temperature at the CMB (Tc0);

• the core radius (Rc).

The values of all other physical parameters governing the thermochemical evolution of Mars were those

listed in Samuel et al. (2019) (Tables S1–S3 in the supporting information), with the exception of the mantle

and core average densities, thermal expansion, and specific heat. These quantities were obtained via the suc-

cessive application of the thermal evolution and the mineral physics models in a fixed‐point iteration fash-

ion, until a simultaneous convergence of the values of these physical parameters and the thermal history was

reached (typically less than ten iterations were necessary). This ensured consistency between the mineralo-

gical and thermodynamic models, and the physical parameters used to compute the thermal evolution.

The parameterized approach described above reproduces the thermochemical evolution of a Mars‐sized

stagnant‐lid planet in spherical geometry well at both transient and steady‐state stages, including the

Figure 10. Example of Mars's radial profiles computed at present day. (a) Thermal profile resulting from 4.5 Gyr of
thermochemical evolution, computed for given value of governing quantities (initial thermal state, mantle rheology,
and core size). (b) Corresponding density profile. (c) Body wave seismic velocities: P waves (purple), and S waves
(green). (d) Shear quality factor. Dotted horizontal lines indicate the Moho depth. See text for further details.

10.1029/2020EA001118Earth and Space Science

DRILLEAU ET AL. 16 of 37



effects of complexities such as temperature and pressure‐dependent mantle viscosities and the presence of

an enriched evolving crust (Samuel et al., 2019; Thiriet et al., 2018, and references therein).

The present‐day thermal profiles resulting from 4.5 Gyr of evolution are then used to compute seismic velo-

city profiles based on the mineralogical model described below. Underneath the crust, the areotherms were

used to compute the mantle densities and seismic velocities using the Perple_X Gibbs energy minimization

software (Connolly, 2005), which uses the thermodynamic formulation and thermodynamic properties at

reference conditions of mineral phases of Stixrude and Lithgow‐Bertelloni (2011), and assuming the mantle

bulk composition of Taylor et al. (2006). To account for the influence of Mars's composition, we performed

additional sets of inversions for which we considered different bulk Martian mantle compositions (Lodders

& Fegley, 1997; Sanloup et al., 1999). Above the Moho depth, we parameterized the crust by considering sev-

eral crustal layers of variable thickness, in which the body wave velocities and density are uniform. The

uppermost part of the crust consisted of a 2‐km‐thick bedrock layer with a reduced density of 1,900 kg/m3

and reduced seismic velocities (with VP and VS being set to 0.6 and 0.5 times the value of the corresponding

velocities in the layer directly below it; Smrekar et al., 2019). In the liquid core, seismic velocities were com-

puted following the approach underlined in Rivoldini et al. (2011).

Different thermal histories result in a variety of thermochemical structures, notably in terms of crustal and

lithospheric thicknesses, or in mantle and core thermal states. These differences yield distinct stable miner-

alogical assemblages and therefore result in distinct seismic velocity profiles. Consequently, instead of vary-

ing independently the values of the density, or body wave velocities along a given profile depth during the

inversion process, we sample the model space by varying the values of the governing parameters mentioned

above (mantle rheology, initial thermal state, and core size) that control Mars's thermochemical history. This

approach yields mantle and core density, seismic velocity profiles, and attenuation, as illustrated in

Figure 10. Following the approach in Samuel et al. (2019) bulk attenuation is based on the PREM value,

while shear attenuation is determined assuming a power law frequency dependence and a pressure and tem-

perature Arrhenius dependence of the corresponding local quality factor Qμ, and by requiring that the

present‐day ratio of the planet's quality factor, Q, to its degree‐2 Love number, k2, to be equal to 559

(Zharkov & Gudkova, 2005) at the tidal period of Phobos, together with an upper bound forQμ in the mantle

of 600 (Khan et al., 2018). In the liquid core, Qμ¼ 0. The k2 and Q values were computed following the

approach for a viscoelastic medium described in Khan et al. (2004).

Unlike the mantle, the structure of the crust, its layering, and its seismic velocities are not computed from its

chemical composition by Gibbs energy minimization because its composition is not well known, likely not

in thermodynamic equilibrium, and heavily altered by surface processes. For this reason, we directly vary

and invert for the crustal seismic velocity structure (both in terms of layering, and in terms of the values

of seismic velocities within each crustal layer) instead of deriving it purely from thermal andmineral physics

considerations because our mineralogical model does not apply for crustal conditions, and our approach

only constrains crustal thickness and its density. However, the crustal density (within the range of [1,900–

3,000] kg/m3) together with the core sulfur content were adjusted together via a bisection method to satisfy

the mass and moment of inertia constraints within uncertainties. Hence, these two parameters are not

directly sampled by the inversion algorithm but are constrained through the aforementioned geodetic obser-

vations. In the cases where the bisection algorithm converged toward a crustal density outside of the above

range, the corresponding evolution was excluded from the set of models. In addition, crater counting

(Hartmann et al., 1999) indicates the presence of recent volcanism on Mars, which suggests that the interior

of Mars is convectively active. Therefore, only evolutions that led to a convective mantle were retained (i.e.,

cases for which the mantle went subcritical were excluded; these correspond to cases for which the combi-

nation of temperature and rheological parameters led to a thin and relatively viscous convectingmantle). We

also allowed for a constant shift in the obtained mantle seismic velocity profiles within ±5% in order to

account for uncertainties in the thermochemical and mineralogical models. This was achieved by inverting

for mantle correction factors, whose values ranged between 0.95 and 1.05.

In addition to allow for a better self‐consistency than varying independently seismological parameters along

the inversion process (Moho depth, seismic velocities, etc.), the built‐in geodynamic frame significantly

reduces the parameter space, by accounting for the interdependencies between various quantities (e.g., tem-

perature, composition, and rheology) and their influences on crustal thickness. This approach can also
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constrain the value of physical quantities inaccessible to direct measurements, such as the rheology of the

Martian mantle, and provides the entire history of the planet associated with each model. These advantages

are also tied to the main underlying assumptions in the forward geodynamic model. In particular, we

assume is that stagnant lid mantle convection has operated for most of Mars history and until present

day. In addition, we assume that Mars's mantle is homogeneous in composition. Compositional heterogene-

ity would affect both the thermal evolution and the seismic structure of the mantle (Smrekar et al., 2019).

While the above assumptions are reasonable, it is important to keep in mind such framework when inter-

preting the results from these inversions.

M2c. This approach uses a set M of geophysically consistent a priori models provided by different authors

(Khan et al., 2018; Rivoldini et al., 2011; Samuel et al., 2019). Generally, all models were constructed so as

to satisfy current observations of mass, moment of inertia, and tidal response. The reader is referred to

Giardini et al. (2020, SI3) for further details. This set originally consists of more than 20,000 models. To

reduce this number for location operations, the following approaches were used:

• Calculate a set of nine seismic variables for each model in the set. These observables are minimum and

maximum thickness of the crust over the whole planet, crustal thickness at the landing site, P traveltime

at 5° and 80°, S traveltime at 80°, extend of S shadow and surface wave traveltimes at two different fre-

quencies. This creates a nine‐dimensional space S of “seismic observable” with an injective projection

M← S.
• Run clustering algorithm over all models, creating K clusters, such that each cluster has equal volume in

S. This means different number of modelsNi in each cluster i, since they were importance‐sampled to geo-

physical parameters by the authors.

• Randomly select the same number of models n from each cluster to create a subset of S, called Ssel. This
subset spans a wide range of potential seismic observables, but the importance sampling property is lost.

• Reapproach the importance sampling character by giving models in each cluster the weight wi¼Ni/n.

For operations, MQS selected 2,500 models of the full set by cutting S into K¼ 10 clusters. Once seismic

observations are available, a grid search over possible depths d, distances Δ, andmj∈ Ssel is done to calculate

likelihoods for each combination L(d, Δ, mj). By multiplication with the prior weights wi and integration

over depths and distances, a marginal probability for each model is computed.

4.2. Inversion Results and Discussion

The inversion results of the six methods are displayed in Figure 11. They show the additional gain in infor-

mation obtained through inversion, compared to the prior distributions (Figure 8). The thick black line

represents the 1‐D base model used to compute the synthetic seismograms, whereas the gray area shows

the minimum and maximum VS values encountered over the great circle path between source and receiver.

The inverted data sets are the body waves and surfaces waves arrival times estimated by the MQS (Table 1

and Figures 1 and 5), except for the M1b and M1c methods, which use group velocity dispersion diagrams

(Figure 6) and both waveforms and group velocities, respectively. The data fit is shown in Figure 12.

Figure 11 clearly highlights the nonuniqueness of the solution. Depending on the depth, some distributions

are unimodal, bimodal, or multimodal. The results show that none of the distributions perfectly fit the input

model, but depending on the method, they share some common feature with the model to retrieve.

Let us first review the results of the three M1 methods. The pdf of the M1a method (Figure 11a) is spread

within the parameter space, because both the seismic velocity profiles and the quake location are simulta-

neously inverted, with relatively large prior bounds. The maximum of the pdf between 15‐ and 70‐km depth

is located in the vicinity of the input model, which means that VS in the crust is well constrained. Below

80‐km depth the distribution enlarges and has a similar shape to the a priori pdf (Figure 8a), which means

that the sensitivity to the data decreases at these depths (the highest period of surface wave considered with

this method is 40 s; Figure 12). The discontinuity located at 100‐km depth is due to the prior assumptions and

the loss of sensitivity of surface waves at these depths. The pdf of M1b (Figure 11b), obtained using surface

waves measurements only, is narrower compared to the previous method, mostly because the source loca-

tion and the origin time are fixed to the MQS values. Although surface wave data are known to be less sen-

sitive to the sharpness of the discontinuities, two inflexion points are observed near 15‐ and 60‐km depth,

close to the two discontinuities of the input model. The VS distribution in the crust lies within the
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minimum and maximum VS values encountered along the first orbit Rayleigh wave path. Similarly to the

M1a method, the pdf is spread below 70‐km depth. This enlargement is also visible on the results

obtained with the M1c method (Figure 11c), which invert both surface wave group velocities and surface

wave waveforms. The retrieved VS value in the crust is constant with depth, overestimated in the upper

crust and slightly underestimated in the lower crust, which means that the M1c inversion is unable to

recover the detailed layering of the crust, which is not surprising considering the sensitivity of Rayleigh

waves at the periods measured (between 25 and 55 s; Figure 12). The M1c pdf shows a discontinuity

clearly located at 50‐km depth, in the range of the model to retrieve, because the crustal thickness is allow

to slightly vary between ±4 km around the 50‐km‐thick crust 1‐D model chosen as the starting model of

the inversion. The M1c method is also able to provide the strike, dip, slip, and the focal depth of the

Figure 11. Posterior probability density functions (pdf) of VS as a function of depth for M1 (a–c) and M2 (e–f) methods. Blue and red colors are low and high
probability, respectively. Concerning the M2a method (d), the accepted models are shown in red. The black lines in (a) and (b) show the upper and lower
prior bounds. The thick black line represents the 1‐D base model used to compute the synthetic seismograms, whereas the gray area shows the
minimum and maximum VS values encountered along the first orbit Rayleigh wave path.

10.1029/2020EA001118Earth and Space Science

DRILLEAU ET AL. 19 of 37



marsquake. Figure 13 shows that the strike's distribution is centered near 110°, in agreement with the MQS

values. In return, the focal depth is not constrained by the data, and changes in themarginal distributions for

the dip, slip, and Moho depth indicates trade‐offs among the parameters.

By analyzing the output distributions of the M1models, we conclude that (1) VS in the crust is relatively well

constrained and consistent to the mean path averaged values; (2) the structure is not reliably constrained

below 70 km; (3) the crustal thickness is difficult to retrieved by inverting both the VS profile and the quake

location (M1a), but it could be approximated if the quake location is fixed (M1b) or if small perturbations

around a 1‐D starting model with a Moho depth already close to the model to retrieve are performed (M1c).

Concerning the three methods handling geophysical and geodynamical parameters, VS in the crust is

slightly underestimated for M2a models (Figure 11d) and overestimated for M2c (Figure 11f). Note that

Figure 12. Fit of data for both Rayleigh and body waves. (a) The mean value and ± mean absolute deviation of the arrival time of Rayleigh waves minus the
arrival times of P wave as a function of frequency, for all sampled models. The thick gray lines show the data uncertainties estimated by MQS. (b and c)
The marginal probabilities of tS− tP and tpP− tP, respectively. Relative to the legend, colors are less vivid because profiles have been plotted using a
transparency factor. Note that the methods M1b and M1c do not used body waves. The black line and dashed lines show the arrival time
and uncertainty measured by MQS.
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the depth of the discontinuity between the upper crust and the lower crust of M2a models is fixed and not

inverted during the inversion scheme. For the M2c models, higher VS values in the crust are explained by

the choice of the a priori distribution, showing low probabilities near the VS value to retrieve (Figure 8f).

Conversely, M2b models fit well the VS values in the lower crust (Figure 11e), because a large range of

values is considered (Figure 8e). Contrary to M1 models, M2 models provide a quantitative estimate of the

Moho depth (Figure 14). For the M2a method, the largest number of models show a Moho located near

75‐km depth (Figure 14a), which is outside the range of Moho depths along the first orbit. The M2b a

Figure 13. Marginal probabilities of the strike, dip, slip, focal depth, and Moho depth obtained using the M1c method.
The estimated values from MQS are shown in red, and the true values are in black. The a priori distribution is
the gray area centered on the MQS value.

Figure 14. Marginal probabilities of the Moho depth for the three M2 methods. The black line show the Moho depth of
the 1‐D base model, whereas the dashed red lines define the range of the crustal thickness along the R1 path.
The a priori distributions are shown in gray.
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posteriori distribution of the Moho depth is almost equal to the a priori distribution. This result is in good

agreement with the M1 outputs, showing that the Rayleigh waves have a poor sensitivity at these depths.

The M2c models (Figure 11f) display a distribution of Moho depth compatible with the range of Moho

depths encountered along the first orbit (Figure 14f ). It should be noticed that the maximum value of the

a priori distribution is located in the range of the true Moho depth values. For the three M2 methods, the

seismic velocities in the mantle are narrower than for M1 methods, because they rely on geodetical,

geophysical, and thermochemical modeling. These assumptions considerably limit the number of possible

solutions in the mantle, as shown for the M2a models, where the seismic velocities in the mantle are

nearly fixed for all the sampled models (Figures 11d and 8d). An interesting feature in the M2b models is

that VS in the mantle are systematically higher than the model to retrieve (Figure 11e). Indeed, the a

priori pdf of VS in the mantle (Figure 8e) is significantly higher than the input model, which means that

the algorithm will never reach the input model. It seems that the modeling of Mars thermochemical

history is not compatible with such an extreme 1‐D base model, build using a hot temperature profile.

Concerning M2c models, the VS distribution in the mantle is bimodal, similarly to the a priori distribution

(Figure 8f) but the maximum of the pdf value is located in the vicinity of the profile to retrieve (Figure 11f).

By investigating the a posteriori distributions of the M2 models, we highlight the following points: (1) VS in

the crust is constrained if the prior bounds are large enough; (2) the geophysical and/or geodynamical a

priori assumptions could have some difficulties to retrieve the model if Mars thermal properties are greatly

anomalous, compared to the knowledge we have of the Earth (M2b); (3) considering the weak sensitivity of

surface waves near Moho depth, the crustal thickness is approximated if the a priori distribution is relatively

close to the true value (M2c).

Although it is reductive to represent the complexity of multimodal pdfs using a simple mean and a 1σ stan-

dard deviation, in order to compare the results, the mean models of each method and their associated stan-

dard deviation are displayed in Figure 15. Figure 12a shows the mean differential arrival time between the

arrival times of Rayleigh waves at the different periods and the arrival times of the Pwave for all the sampled

models. We observe that almost all the models fit the data within uncertainty bounds, which means that

Figure 15. Mean VS models of the pdfs shown in Figure 11, for each of the six methods. Solid and dashed lines are the
mean profiles ± mean absolute deviation obtained from all sampled models. The thick black line represents the
1‐D base model used to compute the synthetic seismograms, whereas the gray area shows the minimum and
maximum VS values encountered along the first orbit Rayleigh wave path.
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almost all the sampled models are able to explain the data. The crust is mainly constrained by surface wave

group velocity, and the M1 models (Figure 15) show a relatively good agreement of VS in the crust. The

enlargement of the three M1 distributions near 70‐km depth indicates that the structure is poorly

constrained at these depths. The uncertainties of the M1a model are large compared to the M1b and M1c

models, because the quake location is inverted at the same time. In the crust, the M2a and M2c models

are located on the extrema, mainly due to the a priori conditions considered (Figures 8d and 8f). The M2b

model is closer to the input model due to the large a priori values considered in the crust (Figure 8e).

However, the mean VS model obtained by the M2b algorithm has higher seismic velocities than expected

in the mantle, which explain why the maximum of the tS− tP distribution is lower than the measurement

(Figure 12b), as well as the tR1− tP mean value at 33.6 s (Figure 12a). It should be noticed that reaching

the input VS value in the mantle with this algorithm should be possible by modifying the prior condition,

but this would enhance mantle melting and result in thicker crust. The small uncertainties of M2 models

in the mantle are mainly due to the strong a priori assumptions considered.

The results of the quake location are displayed in Figure 16, for the four approaches that are relocating source

during the inversion process (M1a andM2methods). Given that the true epicentral distance is relatively large

(87.8°), the bodywaves are traveling in themantle and so theymostly constrain the 600–900‐km depth range.

It is particularly enhanced in theM2b case: In order to increase the tS− tP differential time due to higher velo-

cities in the mantle, the epicentral distance distribution is shifted toward the upper bound of the prior range

(Figure 16a). M1a distributions of the epicentral distance, depth of the quake and origin time are spread,

Figure 16. Marginal probabilities of (a) the epicentral distance, (b) the depth of the quake, and (c) the origin time, for the four inversion methods performing a
relocation (M1a, M2a, M2b, and M2c). The black lines show the true values. The prior distributions are shown in gray. Note that the prior distributions of the
origin time for M1a and M2b methods are not represented, because t0 do not explicitly appear in the inversion processes. The origin time is then calculated
considering that the P wave arrival time of each sampled model is similar to the value measured by MQS in Figure 1.
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because the seismic velocities are explored in a wide parameter space (Figure 8a). The depth of the quake is

well retrieved, and the epicentral distance is slightly overestimated (90 instead of 87.8°). The origin time

distribution is large compared to the other ones, because no a priori assumption is made on it. The M2a

method retrieve well all the location parameters, because the VS values in the mantle are very close to the

input model (Figures 11d and 15) due to strong a priori conditions (Figure 8d). The M2c epicentral

distance and depth of the quake distributions are slightly shifted toward higher values, because the VS

distribution shows globally higher seismic velocities compared to the input model, in both crust and mantle.

We clearly observe on these blind test results the complementarity of the two parameterizations M1 andM2,

to ensure sufficient coverage of the a priori model space. The relatively large prior bounds used by the M1

models, with no constraints from mineral physics and thermodynamics, allow more flexibility in the model

sampling. They are powerful to constrain VS in the crust and also indicate regions of the parameter space in

depth, where the data (mainly surface waves) are no more sensitive to the structure. TheM2models produce

stable velocity models through the whole planet, in the sense that they satisfy current observations of mass,

moment of inertia, and tidal response, considering a variety of starting bulk Mars compositions, and give a

physical interpretation of the data. In the absence of surface wave measurements at large periods, allowing a

better exploration of the Moho, they also explicitly output Moho depths only compatible with physical rela-

tions. However, they could show some limitations if Mars's structure reaches extreme bounds of what we

expect, based on the knowledge on the interiors of Earth and Moon. The differences between the results

from the six different methods are mainly due to the chosen prior assumptions. Comparisons with the prior

distribution are essential to understand how the data improve our knowledge compared to the a priori con-

ditions. Considering only one station, these results support the approach set up by the MSS of using different

algorithms to constrain the deep interior structure of Mars.

4.3. Inversion Results Considering Only Body Waves

Seventy‐two sols after landing, InSight began streaming continuous data to Earth. During the first 168 sols,

until 31 July, InSight recorded 70 events, with at least 12 events of magnitudeMw3–4 (Giardini et al., 2020)

and two larger events located near the Cerberus Fossae system at 25–30° distance. Only direct P and S phase

Figure 17. Posterior probability density functions (pdf) of VS as a function of depth for M1a (a) and M2 (b–d) methods, only considering body waves in the
inversion process. Blue and red colors are low and high probability, respectively. Concerning the M2a method (b), the accepted models are shown in red. The
black lines in (a) and (b) show the upper and lower prior bounds. The thick black line represents the 1‐D base model used to compute the synthetic
seismograms, whereas the gray area shows the minimum and maximum VS values encountered along the first orbit Rayleigh wave path.
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identification is possible for S0173a and S0235b events, as scattering prevents positive identification for all

other events (Giardini et al., 2020; Lognonné et al., 2020). Multidiffusion analysis have shown that the

scattering is intermediate between that of the Earth and Moon (Lognonné et al., 2020). The first shear Q

measurements provide nevertheless values, which are in accordance with the lithospheric Q for these two

large events and are 2–3 times smaller than the lunar crustal Q (Lognonné et al., 2020).

For single station analysis, the absence of surface waves is however making the determination of both the

quake location and the velocity structure more challenging.

To respond to these new observations and to show what could be investigated using body waves alone, algo-

rithms that are using both surface and body waves are adjusted by removing the surface wave contribution.

The posterior pdfs are displayed in Figure 17. The M1b and M1c methods, handling surface waves only, are

not represented. The location and origin time are shown in Figure 19 and the data fits are displayed in

Figure 18. The exploration of the whole sets of models allows to check the compatibility of each model with

the recorded data. We observe that for all the methods, the posterior pdfs (Figure 17) are very similar to the

prior pdfs (Figure 8). The results of the M1a method show that the pdfs of the epicentral distance and quake

location are almost identical to the prior distribution, which clearly demonstrate the trade‐off between the

VS profile and the quake location. The M2a and M2c distributions of the epicentral distance (Figure 19a)

are broader compared to inversions made using both surface waves and body waves (Figure 16a). The

M2bmethod always indicates a larger epicentral distance and lower tS− tP values. Constraining the velocity

structure using body waves arrival times only seems difficult, in the sense that the algorithms will almost

always find a combination of VS model and epicentral distance compatible with the data. In other words,

the output epicentral distance distribution reflects the range of epicentral distances compatible with the a

priori distribution of VS profiles.

5. Estimation of the Velocity Model Below the Station
5.1. RFs Calculation

Five different methods are used to computed P‐to‐SRFs. A comparison of results, both in the ZRT coordinate

system and in the ray‐centered LQT system that includes an additional rotation around the incidence angle

so as to effectively separate P and SV contributions to the wavefield, is shown in Figure 20. A brief summary

Figure 18. Data fit of body waves. (a and b) The marginal probabilities of tS− tP and tpP− tP, respectively. Note that the methods M1b and M1c do not used body
waves. The black line and dashed lines show the arrival time and uncertainty measured by MQS.
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of the methods is given below. All of them have been applied to Earth data before, though in the context of

having many tens to hundreds of usable events.

For application of the transdimensional hierarchical Bayesian deconvolution (THBD) method (Kolb &

Lekić, 2014), the Pwave coda of the event was first transformed into upgoing P and SVwaveforms by apply-

ing a free‐surface transfer matrix (Kennett, 1991). The elements of the transfer matrix depends on the ray

parameter as well as the near‐surface P and S wave velocities. Their values were estimated by minimizing

the energy on the SV component during the first 2 s of the P wave arrival, following Abt et al. (2010). The

best estimates for near‐surface P and S wave velocities depend on the length of the deconvolution window

and whether it includes the pP phase or not. The shorter window gives a ray parameter estimate of 3.7 s

per degree, a P wave velocity of 4.3 km/s, and an S wave velocity of 2.5 km/s, whereas the longer window

results in a ray parameter estimate of 4.5 s per degree, a P wave velocity of 4.2 km/s and an S wave velocity

of 2.1 km/s. The THBD method then uses a reversible jump McMC algorithm (Green, 1995) to sample one

million random realizations of RFs, varying the width, lag‐time, amplitude, and number of Gaussian pulses

that make up the RF waveform. Resulting RFs were band passed between 0.1 and 0.7 Hz. The result of the

THBDmethod is an ensemble of RFs that are compatible with the data. Features that are common across the

ensemble are considered as robust. The THBD results for the shorter deconvolution window are displayed in

Figure 20b as gray shading for both P and SV, with black lines indicating the average RFs.

Figure 19. Marginal probabilities of (a) the epicentral distance, (b) the depth of the quake, and (c) the origin time, for the four inversion methods performing a
relocation (M1a, M2a, M2b, and M2c). Body waves only are considered in the inversion process. The black lines show the true values. The a priori
distributions are shown in gray. The origin time is then calculated considering that the P wave arrival time of each sampled model is similar to
the value measured by MQS in Table 1.
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The deterministic deconvolution methods applied include Wiener filter deconvolution in the time domain

(Hannemann et al., 2017; Kind et al., 1995), water‐level deconvolution (Clayton & Wiggins, 1976), iterative

time domain deconvolution (Ligorria & Ammon, 1999), and extended‐time multitaper frequency domain

deconvolution (Helffrich, 2006).

For the Wiener filter deconvolution, the data were band‐pass filtered between 20 s and 2 Hz. RFs were cal-

culated both in the ZRT and in the LQT system. The incidence angle for rotation into the LQT system was

estimated by polarization analysis of the P wave onset (Jurkevics, 1988), yielding an angle of 19°. A length

of 80 s for the deconvolution window and a damping factor of 0.1 were used, which resulted in clear RF

phases with little noise contamination. We also derived the frequency‐dependent apparent P wave polariza-

tion by measuring the amplitudes of the resulting vertical and radial RF in different filter bands (see below).

Water level deconvolution was applied to obtain a radial RF, whereas the vertical RF was obtained by spec-

tral whitening and autocorrelation (Tauzin et al., 2019). Gaussian low‐pass filter were applied during decon-

volution, where the width of the Gaussian was determined by the parameter a ¼ 2.5 rad/s for the radial and

a ¼ 3.0 rad/s for the vertical component (Ammon, 1991). The smoothing width for the spectral whitening

was set toW¼ 0.05 Hz. To stabilize the long‐period component of the vertical RF, a zero‐phase second‐order

Butterworth high‐pass was applied at 5‐s period.

For the iterative time domain deconvolution, seismic records were band‐pass filtered between 1 and 15 s. To

calculate the RFs, the waveform in a time window 5 s before and 40 s after the P wave arrival on the vertical

(ZRT)/L component (LQT) was chosen as the source function and a Gaussian filter parameter of 3 rad/s

was used.

Computing RFs using the extended‐time multitaper frequency domain deconvolution involved manually

picking the source wavelet on the vertical (ZRT)/L component (LQT) within a time window around the

Figure 20. Comparison of P‐to‐S receiver functions derived by different methods. Note that horizontal components, that is, RRF and QRF, are upscaled by a factor
of 2. (a) In the ZRT coordinate system. WF: Wiener filter deconvolution (green), ITD: iterative time domain deconvolution (light blue), ETMT: extended‐time
multitaper deconvolution (orange), WL: water‐level deconvolution (blue, radial component only), SW+AC: spectral whitening and autocorrelation (purple,
vertical component only). (b) In the LQT coordinate system. Gray shading is a data density plot of the THBD results, with darker shading indicating a
more likely value. Abbreviations in the legend are the same as in (a).
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visible Pwave arrival. Deconvolution is then performed using a 50‐s window, a time‐bandwidth product of 3

that translates to a frequency bandwidth of permissible spectral leakage of 0.2 Hz, and four tapers (Shibutani

et al., 2008). Different time windows for the source function were tested and found to produce similar results.

The Pwave coda of the synthetic event contains a strong secondary arrival at about 14 s after the onset, iden-

tified as pP (section 3 and Figure 1b), which is also visible in the RFs. When using the ZRT coordinate sys-

tem, this results in a negative pulse on both the vertical (Z) and radial (R) component for some

deconvolution methods (Figure 20a). Even though the amplitude of this pulse on the R component is com-

parable to that of other phases, for example, that at 8 s, this is not a P‐to‐S converted phase that we want to

interpret, but rather a mapping of P energy onto the radial component. Rotation in the LQT or the P‐SV coor-

dinate system efficiently suppresses this arrival (Figure 20b) and thus provides a better base for interpreting

the RF in terms of P‐to‐S conversions.

The frequency content of the RFs from different deconvolution methods is not completely identical as the

parameter that influence the frequency content were chosen individually for each method. The timing of

the main phases in the radial and Q component RFs waveform, that is, at 1.8 s, between 5 and 10 s, and at

26 and 34 s, respectively, shows good agreement between most of the applied methods, though the ampli-

tudes of the iterative time domain and extended‐time multitaper deconvolution results are smaller, specifi-

cally for the early arrivals. The Q‐RF waveforms of the various deterministic deconvolution methods

generally lie within the uncertainty range provided by the THBD.

The results of theWiener filter deconvolution were further used to measure the frequency‐dependent appar-

ent Pwave polarization. This quantity is related to the apparent subsurface Swave velocity via a simple rela-

tion that also requires knowledge of the ray parameter (Hannemann et al., 2016; Svenningsen & Jacobsen,

2007; Wiechert, 1907). The derived apparent S wave velocities were jointly inverted with the RF waveform.

Unfortunately, the signal‐to‐noise ratio of the radial component, as defined in Knapmeyer‐Endrun et al.

(2018), was only larger than 5, which is considered an indicator for a reliable measurement (Hannemann

et al., 2016), for periods up to 4 s. Thus, the apparent velocity curve is only defined at the shortest periods

and provides constraints on the S wave velocity in the near‐surface layer only. The apparent P wave inci-

dence angles range between 19 ° and 20° for these periods, in good agreement with the angle determined

Figure 21. Amplitude stacking according to Zhu and Kanamori (2000). (a) Results for the average RF waveform from the THBD method using semblance
weighting (e.g., Knapmeyer‐Endrun et al., 2014), and a value of 5.5 km/s for the average crustal P wave velocity. The assumed ray parameter is 3.7 s per
degree. (b) Results for the Wiener filter deconvolution using semblance weighting (e.g., Knapmeyer‐Endrun et al., 2014) and averaging results for
three different average crustal P wave velocities: 5.5, 6, and 6.5 km/s. Lower P wave velocities result in smaller values for the crustal thickness,
and higher P wave velocities in larger values. The assumed ray parameter is 4 s per degree.
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from polarization analysis of the actual waveform data. To derive appar-

ent S wave velocities from these polarization angles, information on the

ray parameter is needed. Based on the estimated epicentral distance of

85.7° and precalculated Pwave ray parameters for a number of Mars mod-

els and event depths (Knapmeyer‐Endrun et al., 2018), the estimated

likely range is 3.6 to 4.0 s per degree.

In an initial interpretation of the RF waveforms, the working group unan-

imously identified the clear positive arrival at 8.0–8.3 s as the likely Moho

conversion, with the following peak and trough around 26 and 34 s as the

corresponding first (PpPs) and second (PsPs+ PpSs)multiply reflected and

converted phase, respectively. This interpretation is further substantiated

by applying the stackingmethod of Zhu and Kanamori (2000) to the single

RF trace. This methods stacks the amplitudes at the arrival times for

hypothetical Ps conversions and their multiples, which are calculated for

a given crustal thickness, VP/VS ratio and average crustal P wave velocity.

The phases should stack coherently and thus produce an amplitude max-

imum for the true crustal thickness and VP/VS ratio. In general, the method benefits from the availability of

data frommultiple events with different ray parameters. However, it also provides a clear result for the single

synthetic trace, pointing to a Moho depth of 52 to 66 km, depending on the assumed average crustal P wave

velocity, and a VP/VS ratio, less well constrained than the Moho as usual, between 1.73 and 1.95 (Figure 21).

The assumed average crustal Pwave velocity is found to have a larger influence on the actual resulting crustal

thickness than the assumed ray parameter of the event, at least for variations within a sensible range (3.6–4.0

s per degree).

In contrast to the broad consensus on the identification of the Moho signal, there were different interpreta-

tions for intracrustal structure. The first interpretation considers the peak at 1.6–2.2 s as intracrustal conver-

sion, with the peak and through at 5.5–6 and 7.1 s as the corresponding multiples, whereas an alternative

interpretation saw the peak at 5.5–6 s as an additional intracrustal conversion. This is also mirrored in the

stacking results that strongly point to a discontinuity around 10‐km depth and also contain some construc-

tively stacked energy around 40‐km depth (Figure 21b). The waveform inversion accordingly also considers

both two and three crustal layers (section 5.2).

We did not try to calculate S‐to‐P RFs for this event because the S arrival is rather weak, in keeping with

some of the synthetics of the previous MQS blind test, which contained a number of models with broad S

wave shadow zones in the mantle (Clinton et al., 2017).

5.2. Inversion

A single algorithm was applied in order to invert the RFs for crustal structure. It was specifically developed

for the application to small amounts of data, as, for example, InSight. Another algorithm, using a fully

Bayesian approach, has been presented for application to InSight data from Mars before (Panning et al.,

2017) but was not used during the blind test. Similar to the surface wave case, both algorithms produce an

ensemble of models that can explain the data in order to also characterize uncertainty and trade‐offs. The

main characteristics of the method applied here are given in Table 3. All models adhere to a standard seismic

parameterization as the crustal composition of Mars is expected to be variable and possibly, due to the low

temperatures, not in thermodynamic equilibrium (e.g., Wood & Holloway, 1984). Additional complications

arise from complex crustal lithologies and porosity. Thus, mineral physics constraints are weak and all con-

sidered models are parameterized in terms of seismic velocities and density as a function of depth.

We jointly invert the radial RF waveform resulting from Wiener filter deconvolution and the apparent S

wave velocity curve derived from this waveform, as previous studies have shown that this combination helps

to reduce the depth‐velocity trade‐off inherent to RFs as a traveltime method (Svenningsen & Jacobsen,

2007) and that the apparent velocity curves from just a few events should allow to recover the first‐order

crustal structure of Mars (Knapmeyer‐Endrun et al., 2018).

The inversion is performed with the Conditional Neighbourhood Algorithm (NA) (Wathelet, 2008). The NA

(Sambridge, 1999) is a direct search method that uses Voronoi cells to subdivide the parameter space and

Table 3
Parameterization for Inversion Method for Receiver Functions

Parameter 2 Layers 3 Layers

D1 (km) 5–20 5–20
V1 (km/s) 1.5–3.5 1.5–3.5
R1 1.6–2.1 1.6–2.1
D2 (km) 30–70 30–60
V2 (km/s) 2–5 2–5
R2 1.6–2.1 1.6–2.1
D3 (km) — 45–70
V3 (km/s) — 2–5
R3 — 1.6–2.1
Vh (km/s) 2–5 2–5
Rh 1.6–2.1 1.6–2.1

Note. For each layer, the depth, S wave velocity, and VP/VS ratio are
abbreviated as D, V, and R, respectively. Vh and Rh represent the velocity
and VP/VS ratio of the half‐space.
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preferentially looks for new models in the vicinity of the current best fitting models in a self‐adaptive man-

ner. In principle, it is able to identify several separate low‐misfit regions during a single inversion run. The

NA is a derivative‐free method, so the complexity of the misfit function is the computationally limiting fac-

tor, as its derivatives are not required to guide the search (Sambridge, 1999). The modifications by Wathelet

(2008) allow to define irregular limits to the searchable parameter space, for example, based on physical con-

ditions or prior information, and include a dynamic scaling to keep the exploration of the parameter space as

constant as possible over the iterations of an inversion run.

The forward calculation of RFs is based on the code by Shibutani et al. (1996) that uses a simple reflectivity

matrix approach to provide the P‐to‐S response of a layer stack. The resulting synthetic vertical and radial

RFs are convolved with the measured vertical RF to take into account source complexity, and, in this case,

the pP conversion in the P wave coda. Tests with synthetic seismograms for Mars models have shown that

this allows to obtain results comparable to full Instaseis synthetics based on an AxiSEM database (Nissen‐

Meyer et al., 2014) with a greatly reduced computation time (Knapmeyer‐Endrun et al., 2018). Density

was not used as an independent parameter during the inversion but calculated from P wave velocity values

using Birch's law (Birch, 1961). VP/VS, on the other hand, was allowed to vary. For details on the parameter-

ization, see Table 3.

Cases with both two and three constant‐velocity layers over a half‐space were investigated. Individual for-

ward runs prior to the inversion process showed that misfit for the RF waveform was an order of magnitude

less than that for the apparent velocity curve, so a weight factor of 10 was used for the RFmisfit. As there was

no standard deviation of the data available based on only a single event, the misfits were not weighed inver-

sely with their standard errors in the objective function definition. The cost function is then defined using an

L1 norm:

C ¼ 10 × ∑
N

n¼1
RFobs

n − RFpred
n

�

�

�

�þ ∑
M

m¼1
vobsappm

− v predappm

�

�

�

�

�

�
; (4)

where n iterates over the number of data points in the RF and m over the number of samples in the appar-

ent velocity curve. Superscripts refer to observations (obs) and predicted data (pred). Due to the uncer-

tainty in event location and velocity model, there is an uncertainty in the ray parameter which was

estimated to lie between 3.6 and 4.0 s per degree. Both end‐members were used to invert for the subsurface

structure as they would span the range of all the possible ground models.

Two parameters that control the NA need to be tuned depending on the style of sampling needed. For a more

explorative search that is robust against local minima, we perform 1,200 iterations in each inversion run

with 500 models produced at each iteration and 300 cells resampled at each iteration, resulting in an ensem-

ble of ∼400,000 models per run. Furthermore, each inversion was repeated several times to test the stability

of the results.

5.3. Inversion Results and Discussion

Figure 22 shows the resulting 1‐D subsurface profiles for the two‐layer and three‐layer case, with the fit to

the RF waveform and apparent velocity curve for the two‐layer case given in Figures 23 and 24, respectively.

The plot includes all models within amaximummisfit, ranked and color coded according to misfit. Themax-

imum acceptable misfit is derived visually by considering the uncertainty in the RF waveform as derived by

THBD (Figure 20). The spread between the maximum and minimum RF amplitude at each point in time as

given by THBD is added to the inverted RF waveform as a measure of uncertainty (dashed lines in Figure 23)

and all models that produce RFs that mostly lie outside of this range are discarded.

It is evident from the velocity profiles that adding a third crustal layer to the model is not warranted by the

data. The velocity contrast between the additional layer and the one adjacent to it is about 1.5% for both ray

parameters considered, and the velocities obtained for this layer lie within the velocity range of the adjacent

layer. The minimum misfit also just reduces insignificantly from 0.0065 to 0.0061 in going from two crustal

layers (8 free parameters) to three layers (11 free parameters). Adding yet another fourth crustal layer again

has no visible effect on the ground profiles, and therefore, a two‐layer model is considered as the optimum

for the inversion, in agreement with the true model. The VP/VS ratio could not be well constrained by the
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inversion, that is, models within the considered misfit range show VP/VS values across the whole allowed

parameter space (Table 3) for all layers. Therefore, the VP/VS results are not shown here.

The S wave velocities and layer depths of the true model lie between the model families derived for the two

end‐member ray parameters. The uncertainty in the velocities gets larger at larger depth, though, and the S

Figure 22. One‐dimensional velocity profiles from joint inversion of receiver functions and apparent velocity curves for (a) two crustal layers and (b) three crustal
layers; (i) and (ii) denote ray parameters 4.0 and 3.6 s per degree, respectively. The thin black lines represent the minimum and maximum parameter ranges,
the thick black line represents the true model and the thick dotted brown line indicates the near‐surface S wave velocity obtained from the free‐surface
transfer matrix for a ray parameter of 4.5 and 3.7 s per degree in (i) and (ii), respectively.

Figure 23. Fit to receiver function waveforms for (a) ray parameter 4.0 s per degree and (b) ray parameter 3.6 s per
degree. The thick black curve represents the radial component of receiver function, and the dashed curve represents
the maximum and minimum range of models deduced from the THBD data set.
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wave velocity in the uppermost mantle is less well resolved than the crustal velocities. In fact, the true man-

tle Swave velocity is at the upper end of those resulting from the inversion. As there are no conversions from

within the mantle, this velocity is not constrained by any traveltimes, like those of the intracrustal andMoho

conversions, but only by the amplitudes of these phases. As amplitudes have a higher uncertainty than tra-

veltimes in RF, this is one probable explanation. Another factor that contributes to the loss of resolution with

depth is the limited period range for which apparent velocities could be measured. Nevertheless, crustal

velocities, layering and thickness could be reasonably well determined form a single event and with a limited

apparent velocity curve.

The S wave velocities derived from the free surface transfer matrix for the shallow subsurface show a clear

trade‐off with the associated ray parameters. For a ray parameter of 4.5 s per degree, which is larger than the

range estimated based on epicentral distance and model uncertainty, the estimated velocities are too low,

whereas they show a closer agreement with the inversion results and the true model for a ray parameter

of 3.7 s per degree. For the actual marsquakes, MQS is providing probabilistic ray parameter distributions

for each event, which was not the case here. This allows to better take the uncertainty in the ray parameter

into account during the inversion and also provides a reference to compare the results from the free surface

transfer matrix to. Thus, it helps to understand better how the velocities derived from both approaches might

deviate from each other.

Figure 24. Fit to apparent velocity curves for (a) ray parameter 4.0 s per degree and (b) ray parameter 3.6 s per degree. The thick black curve denotes the observed
apparent velocity curve.

Figure 25. Result of spectral fit with the data. Spectrum was calculated for each phase arrival and was fitted with the function expressed in Equation 5. Obtained
values are summarized in Table 4.
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6. Attenuation and Diffusion

Another seismic feature we would like to extract from the seismic signals

is the attenuation, which is represented by the quality factor Q.

Attenuation is a feature closely related to the thermal structure and the

composition. One variable that increases the attenuation is the existence

of the water (e.g., Karato, 2013). Observed seismic amplitude spectra A

can be expressed as

A ¼ A0e
−

ωt
2Q ¼ A0e

−

ωt∗

2
; (5)

where ω is the angular frequency, t is the total traveltime, and A0 is the original amplitude without

attenuation (Aki & Richards, 2002). The quality factor Q can be obtained by fitting the model to the

observed seismic spectra. Since the attenuation also depends on the traveltime, which varies with the seis-

mic velocity model chosen, attenuation may also be expressed by t∗, which is the ratio between Q and the

traveltime t. It should also be noted that this Q should be regarded as an effective Q with multiple phe-

nomena included. The quality factor Q will quantify the amount of energy loss during the wave propaga-

tion, including both elastic and inelastic effects. The elastic attenuation can be referred to as scattering due

to the heterogeneity in the medium, while the inelastic attenuation can be referred to absorption of energy

(e.g., Sato et al., 2012). For a layered structure, Equation 5 can be rewritten as

A ¼ A0e
−

ω
2∑ i

ti

Qi

¼ A0e
−

ω
2∑ it

∗
i (6)

and by using multiple events with different paths as inputs, we can invert for the 1‐D structure of Q. In the

blind test, however, we are focusing on what we can investigate with a single event and we will estimate

the effective Q by fitting the spectral decay. With the real Martian data, we plan to investigate both the

elastic and inelastic effect by using methods such as the one described in Gillet et al. (2017).

Here, we use the arrival picks provided byMQS and chose P, PP, and SH phases forQ estimation. Each phase

arrival was cut into 5‐ to 10‐s window chosen to include the complete signal pulse of each phase. Then seis-

mic spectra were calculated using amultitaper method. Figure 25 and Table 4 show the results of the spectral

fit and the summary of t∗ and Q obtained with the reference values used to create the synthetic data. Q was

calculated using traveltimes calculated with the reference seismic velocity model. We found that our method

was able to obtain correctly the t∗ and/or Q for the P phase while the estimation was less accurate for the S

phase. These results show that the simple approach we have taken here is efficient to obtain a first estimate

of the attenuation of Mars even with single event.

7. Conclusion

In this article, we describe the methodologies that have been proposed by the MSS, based on a single station

and a single event, and we demonstrate the feasibility for locating Marsquake and for constraining the 1‐D

seismic velocity structure of Mars. This be achieved using RFs, and surface and body wave arrival times

information. We also show how we could estimate the attenuation of Mars. The inversion of the RF wave-

forms and the apparent S wave velocity, taking into account the uncertainty of the ray parameter, provides

the velocity profile and the Moho depth below the InSight station. Using six different methods, the combi-

nation of body waves and surface waves enable to determine VS in the crust integrated along the great circle

path. Taking into account the 1σ uncertainties (Figure 15), the models range between −6% and +9% around

the 1‐D base model. Due to the period range of surface waves considered (and because high‐frequency sur-

face wave are contaminated by an extra energy, see Figure 6), the Moho depth and VS in the mantle are

poorly constrained. Only the methods that are not inverting source and medium properties simultaneously

are retrieving a fairly good estimation of Moho depth. We demonstrate the complementarity of using both

models parameterized with seismic velocities and physical parameters, when handling such a nonlinear pro-

blem. Although the uncertainties on the structure are large, the approach chosen by the MSS, of combining

the outputs of several methods, using different a priori conditions and different seismic data, helps to reveal

biases of any single method and highlights the diversity of the models compatible with the data. However,

Table 4
Model and Obtained Seismic Q and t

∗
Values

Phase
name

Model
traveltime (s)

Model
Q

Model
t
∗

Obtained
t
∗

Observed
Q

P 563.5 229 2.46 2.35 240
PP 675.8 179 3.77 2.50 270
SH 1079.7 84 12.72 3.71 291
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complexities related to anisotropy and three‐dimensional structure, particularly in the crust and lithosphere,

undoubtedly complicate the interpretation as a 1‐D radial model envisaged here. Lateral structural varia-

tions in the Martian crust are likely much stronger than on Earth due to the crustal dichotomy between

the Southern and Northern Hemispheres (Zhong & Zuber, 2001), which complicates the wave propagation

on Mars.

In the absence of surface waves, as is the case for the Marsquakes recorded by InSight so far, we demon-

strated the difficulties to constrain independently the velocity structure and the source location. A future

effort be made in order to create a joint inversion of both RFs and body wave arrival times. While the iden-

tification of seismic phases is up to now limited with the InSight data, if a number of additional phases could

be identified, for example, reflections from the surface (SS and SSS) and Moho (PmP and SmS), they could

add additional constraints on the structure and quake location. In the event of meteorite impacts, they could

be located by one of several orbiting cameras, which could provide a known location. This would enable the

direct inversion of all differential traveltimes with respect to the P arrival time and improve the constraints

on the output 1‐D model. Daubar et al. (2018) demonstrated that using a fixed location, the average seismic

model could be constrained near the depths of the turning point of the ray paths. If more events with clear

wave arrivals accumulate, joint inversion of all the events will be critical, enabling a continuous refinement

of model parameter distributions. However, the feasibility of the present approach will strongly depend on

the future data. Further work seems to be necessary to develop new techniques using, for instance, polariza-

tion and amplitude information, to fully investigate the recorded data.

Data Availability Statement
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vices/; http://ws.ipgp.fr/fdsnws/station and http://ws.ipgp.fr/fdsnws/dataselect). To download the MSS

blind test miniseed data, use the following link (http://ws.ipgp.fr/fdsnws/dataselect/1/query?

network¼7Jstation¼SYNT4start¼2019-01-01end¼2019-01-05nodata¼404). We thank Constanza Pardo for

making these data available to the public. The M1a method was developed by Mélanie Drilleau (melanie.
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Eric Beucler (eric.beucler@univ‐nantes.fr). The M1c was implemented has been made by Caroline

Beghein (cbeghein@g.ucla.edu) and Haotian Xu (htxu@g.ucla.edu). The M2a method was developed by
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leau@ipgp.fr) and Henri Samuel (samuel@ipgp.fr). The M2c method has been created by Simon Stähler

(simon.staehler@erdw.ethz.ch). The method for combined inversion of RFs and apparent velocity curves

was developed by Rakshit Joshi (joshir@mps.mpg.de). We gratefully thank the Editor and two reviewers,

whose comments helped us improving the manuscript.

References
Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity

structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research, 115, B09301. https://doi.org/10.1029/2009JB006914
Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., et al. (2019). Modular and flexible spectral‐element

waveformmodeling in two and three dimensions.Geophysical Journal International, 216, 1675–1692. https://doi.org/10.1093/gji/ggy469
Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd). University Science Books.
Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81,

2504–2510.
Babuska, V., & Cara, M. (1991). Seismic anisotropy in the Earth. Dordrecht, Netherlands: Kluwer Academic Publishers.
Banerdt, W. B., Smrekar, S., Lognonné, P., Spohn, T., Asmar, S. W., Banfield, D., et al. (2013). InSight: A discovery mission to explore the

interior of Mars. In Lunar and Planetary Science Conference (pp. 1915).
Baratoux, D., Samuel, H., Michaut, C. A., Toplis, M. J., Monnereau, M., Wieczorek, M., et al. (2014). Petrological constraints on the density

of the Martian crust. Journal of Geophysical Research: Planets, 119, 1707–1727. https://doi.org/10.1002/2014JE004642
Bertka, C. M., & Fei, Y. (1997). Mineralogy of the Martian interior up to core‐mantle boundary pressures. Journal of Geophysical Research,

102(B3), 5251–5264. https://doi.org/10.1029/96JB03270
Bézier, P. (1977). Essai de définition numérique des courbes et des surfaces expérimentales: Contribution à l'étude des propriétés des

courbes et des surfaces paramétriques polynomiales à coefficients vectoriels (Ph.D. Thesis), Université Pierre et Marie Curie (Paris VI).
Birch, F. (1961). The velocities of compressional waves in rocks to 10 kilobars, Part 2. Journal of Geophysical Research, 66, 2199–2224.
Böse, M., Clinton, J. F., Ceylan, S., Euchner, F., van Driel, M., Khan, A., et al. (2017). A probabilistic framework for single‐station location of

seismicity on Earth and Mars. Physics of the Earth and Planetary Interiors, 262, 48–65. https://doi.org/10.1016/j.pepi.2016.11.003

10.1029/2020EA001118Earth and Space Science

DRILLEAU ET AL. 34 of 37

Acknowledgments

Xu and Beghein were funded by NASA
InSight PSP Grant 80NSSC18K1679. M.
P. P., W. B. B., S. E. S., and S. T. were
supported the NASA InSight mission
and funds from the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract with the
National Aeronautics and Space
Administration. The French authors
acknowledge the French Space Agency
CNES as well as CNRS and the French
team universities for personal and
infrastructure supports. The
development of the MSS and associated
software was provided by ANR (ANR‐
14‐CE36‐0012‐02 and ANR‐19‐CE31‐
0008‐08) and, for IPGP team, by
UnivEarthS Labex program (ANR‐10‐
LABX‐0023), IDEX Sorbonne Paris Cit
(ANR‐11‐IDEX‐0005‐0). M1a and M2b
models computation used HPC
resources of CINES under the
allocation A0050407341 and
A0070407341 attributed by GENCI
(Grand Equipement National de Calcul
Intensif). M1bmodel is computed at the
Centre de calcul des pays de la Loire
(ccipl). This is InSight Contribution
Number 141 and IPGP Contribution
4104. M. v. D. and S. C. S. were
supported by a grant from the Swiss
National Science Foundation (SNF‐
ANR Project 157133 Seismology on
Mars) and the Swiss National
Supercomputing Center (CSCS) under
Project ID sm682. A. K. and D. G. would
like to acknowledge support from the
Swiss National Science Foundation
(SNF‐ANR project 172508 Mapping the
internal structure of Mars).

https://www.fdsn.org/webservices/
https://www.fdsn.org/webservices/
http://ws.ipgp.fr/fdsnws/station
http://ws.ipgp.fr/fdsnws/dataselect
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
http://ws.ipgp.fr/fdsnws/dataselect/1/query?network=7Jstation=SYNT4start=2019-01-01end=2019-01-05nodata=404
https://doi.org/10.1029/2009JB006914
https://doi.org/10.1093/gji/ggy469
https://doi.org/10.1002/2014JE004642
https://doi.org/10.1029/96JB03270
https://doi.org/10.1016/j.pepi.2016.11.003
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