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Aiming at the limitation of the convolution kernel with a fixed receptive field and unknown

prior to optimal network width in U-Net, multi-scale U-Net (MSU-Net) is proposed by us

for medical image segmentation. First, multiple convolution sequence is used to extract

more semantic features from the images. Second, the convolution kernel with different

receptive fields is used to make features more diverse. The problem of unknown network

width is alleviated by efficient integration of convolution kernel with different receptive

fields. In addition, the multi-scale block is extended to other variants of the original U-Net

to verify its universality. Five different medical image segmentation datasets are used

to evaluate MSU-Net. A variety of imaging modalities are included in these datasets,

such as electron microscopy, dermoscope, ultrasound, etc. Intersection over Union (IoU)

of MSU-Net on each dataset are 0.771, 0.867, 0.708, 0.900, and 0.702, respectively.

Experimental results show that MSU-Net achieves the best performance on different

datasets. Our implementation is available at https://github.com/CN-zdy/MSU_Net.

Keywords: multi-scale block, U-net, medical image segmentation, convolution kernel, receptive field

1. INTRODUCTION

Medical imaging analysis has made a significant breakthrough with the rapid progress of deep
learning (Long et al., 2015; Chen et al., 2018a; Salehi et al., 2018; Wang et al., 2019b). Among these
techniques, encoder-decoder architecture has been widely used in the medical image segmentation
task (Salehi et al., 2017; Xiao et al., 2018; Guan et al., 2019). U-Net (Ronneberger et al., 2015) is
the most classic encoder-decoder structure for medical image segmentation. In recent years, the
original U-Net has been modified by many researchers. As a result, many variants of the original
U-Net have been proposed (Poudel et al., 2016; Oktay et al., 2018; Roth et al., 2018).

However, the variants of the original U-Net come with two limitations. First, the diversity of
features is lost due to the fixed receptive field of the convolution kernel. The same scale featuremaps
extracted from the convolution kernel with different receptive fields are semantically different.
As a result, the performance of the network may vary with the size of the receptive field, and
the performance depends on the size of the receptive field in the convolution kernel. Redundant
features will be extracted when the receptive field of the convolution kernel is too small. Smaller
targets are ignored when the receptive field of the convolution kernel is too large. For example, in
the pulmonary lesion or multi-organ segmentation task, the edge detail of the smaller lesion/organ
is not fine by the large receptor field and the structure of the lesion/organ is not obvious by the
small receptor field. Therefore, it is very important to use the convolution kernel with different
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receptive fields to process the image (Luo et al., 2016; Peng et al.,
2017; Shen et al., 2019). In the natural image processing task,
satisfactory results are obtained by combining the convolution
of different receptive fields (Seif and Androutsos, 2018). To
the best of our knowledge, there are few reports based
on different receptive fields in medical image segmentation
tasks. Second, some information may be lost using a single
convolutional sequence to extract features at each scale. More
feature information can be obtained by multiple convolutional
sequences. The loss of feature information can be reduced by
the structure of multiple convolutional sequences in the process
of down-sampling and up-sampling. Therefore, the learning
capacity of the network is aided by multiple convolutional
sequences (He et al., 2015).

In this paper, a new image segmentation architecture (multi-
scale U-Net) is proposed by us to overcome the above limitations.
This architecture is a generalization segmentation architecture.
Multi-scale U-Net (MSU-Net) consists of blocks of multi-scale
whose multi-scale blocks are composed of convolution sequences
with different receptive fields. The multi-scale block introduced
in MSU-Net achieves the following advantages. First, more
feature information can be obtained because of the multiple
convolutional sequences structure embedded in the network.
The input of the convolution sequence is all the same, while
their convolution kernel is not shared. This design not only
improves the performance of segmentation but also facilitates
the learning of network in the training process. Second, the
features extracted from the multi-scale block are diversified. This
is caused by the multiple convolution sequences with different
receptive fields in multi-scale block. This is helpful for intensive
forecasting tasks that require detailed spatial information. The
semantics extracted from the convolution sequence with different
receptive fields are different on the same scale feature map.
This structure enables the encoder of the network to extract
features better and the decoder to restore features better. We
construct different types of multi-scale blocks with several
commonly used convolution kernels. An extensive evaluation
of different types of multi-scale blocks is performed on three
segmentation datasets. Our results demonstrate that MSU-Net
built by integrated multiple convolution sequences with different
receptive fields enables significant improvement of semantic
segmentation. Compared with the traditional U-Net architecture,
the main improvement of MSU-Net is the integration of
multiple convolution sequences with different sizes of receptive
fields. This improvement enables the object features to become
more conspicuous with forward propagation. In addition, the
proposed multi-scale block can be easily integrated into other
network structures.

In summary, the main contributions of this paper are
summarized as follows:

(1) Multi-scale blocks are proposed by us based on several
commonly used convolution kernel. More diverse feature
information and better feature maps are captured from the
images through multi-scale block.

(2) MSU-Net, a new segmentation architecture for medical
image, is proposed for medical image segmentation. This is an
improvement on the basic structure of U-Net. Compared to the

existing algorithms, the proposed method has a stronger ability
to overcome the problems of class-imbalance and overwhelmed.

(3) Different receptive fields are crucial for dense prediction
tasks requiring detailed spatial information. It can stimulates
learning capacity of network and make the network more robust.
Experimental results demonstrate that the proposed method
is outperforms the state-of-the-art methods in medical image
segmentation task under different imaging modalities.

2. RELATED WORKS

With the development of convolutional neural network (CNN) in
the field of natural image processing and medical image analysis,
automatic feature learning algorithm using deep learning has
become a feasible method for biomedical image segmentation (Le
et al., 2019, 2020; Sua et al., 2020). Segmentation method based
on deep learning is a learning method with pixel-classification,
which is different from the traditional pixel or superpixel
classification method (Abramoff et al., 2007; Kitrungrotsakul
et al., 2015; Tian et al., 2015) using hand-made features. The
limitations of hand-made features are overcome when deep
learning approaches are used to learn features. The limitations
of hand-made features are overcome when deep learning
approaches are used to learn features. Early deep learning
methods for medical image segmentation are mostly based
on patch. The strategy based on plaque and sliding window
was proposed by Ciresan et al. (2012) to segment neuronal
membranes from microscopic images. Kamnitsas et al. (2017)
adopted a multi-scale 3D CNN architecture with fully connected
conditional random field (CRF) to enhance patch based brain
leasion segmentation. Pereira et al. (2016) proposed an automatic
segmentation method based on CNN to segment brain tumors.
Obviously, two main drawbacks are introduced by this solution:
the redundant computation caused by sliding window and the
global feature cannot be learned.

With the emerging of end-to-end FCN (Long et al., 2015),
Ronneberger et al. (2015) proposed U-Net for biomedical image
segmentation. U-Net has shown good performance in fields of
medical image segmentation. It has become a popular neural
network architecture for biomedical image segmentation tasks
(LaLonde and Bagci, 2018; Fan et al., 2019; Song et al., 2019).
Li et al. (2019) proposed a new dual-U-Net architecture to
solve the problem of nuclei segmentation. Milletari et al. (2016)
proposed a 3D image segmentation method based on U-Net to
perform end-to-end training on prostate MRI. Guan et al. (2019)
proposed an improved CNN structure for removing artifact
from 2D PAT images reconstructed. Many variants of U-Net has
been appeared for different medical image segmentation tasks.
In order to improve the learning ability of feature, some new
modules are proposed to replace the original modules. Seo et al.
(2019) proposed an up-sampling method based on an object
and redesigned the remaining paths and skip-connection. The
limitation of the traditional U-Net algorithm was overcome in
this way. Ge et al. (2019) proposed a k-shaped network of end-
to-end deep neural network. The network was used for multi-
view segmentation and multi-dimensional quantification of LV
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FIGURE 1 | Detailed description of MSU-Net and multi-scale block (37). Panel (A) is the architecture of MSU-Net. The overall architecture is similar to the original

U-Net. The dimensions of the network are represented by numbers on the block structure. Panel (B) is the architecture of multi-scale block (37). This module is

embedded in the original U-Net to get MSU-Net.

FIGURE 2 | The type of convolution kernel used in this article. Combining the above seven convolution kernels, different types of multi-scale blocks are proposed.

in PEAV sequences. Myronenko (2018) proposed a semantic
segmentation method for 3D brain tumor segmentation from
multimodal 3D MRIs. An asymmetric encoder was used to
extract features, and then two decoders segment the brain
tumor and reconstruct the input image, respectively. Oktay et al.
(2018) proposed AttU-Net in combination with attention gate.
Alom et al. (2018) integrated the structure of Recurrent Neural
Network (RNN) and ResNet into the original U-Net. RNN

could make the network extract better features. ResNet enables
the training of deeper networks. Liu et al. (2020) proposed a
ψ-shaped depth neural network (ψ-Net). In the deep stage,
semantic information was featured by selective aggregation. In
the shallow stage, the semantic information obtained in the deep
stage was used to improve the detailed information. Therefore,
discriminative features were obtained to provide the basis for
accurate subcortical segmentation of brain structures. In addition
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FIGURE 3 | An overview of 31 multi-scale blocks. m-s block represents the multi-scale block. Different multi-scale blocks are designed according to several

commonly used convolution kernels. More richer and diverse features can be extracted through this design. Meanwhile, the problem of unknown network width can

be alleviated by this design. Conducive to intensive prediction tasks that require detailed spatial information.

to the above achievements in medical image segmentation
based on U-Net, some researchers have also improved U-Net
to apply in general image segmentation. Zhang et al. (2018)
proposed a semantic segmentation neural network based on
residual learning and U-Net for road area extraction. Kohl et al.
(2018) proposed a generative segmentation model based on a
combination of a U-Net with a conditional variational auto-
encoder. A new Recurrent U-Net had been proposed by Wang
et al. (2019a). Thismodel not only retained the compactness of U-
Net, but also achieved a good performance improvement in some
benchmarks. TernausNet was proposed by Iglovikov and Shvets
(2018). The network replaces the encoder in U-Net with VGG11
and conducts pre-training on ImageNet. TernausNet achieved
the best results in the Kaggle Carvana Image Masking Challenge.

Although the architecture of U-Net has been widely used, the
most basic architecture has not changed. The convolution blocks
of the original U-Net network are adjusted by us to improve
the efficiency of the segmentation algorithm. The convolution
blocks are arranged in parallel to form a multiple convolution
sequence. Richer semantic information is provided by this design.
In addition, the convolution kernel of the multiple convolution
sequence is adjusted to have different receptive fields. The
convolution kernel with different receptive fields enables the
network to better extract and restore features.

3. METHOD

The proposed MSU-Net consists of major part: multi-scale block
(37), as shown in Figure 1. In the following, we first trace the
types of multi-scale block and then explain the structure of
MSU-Net and extended work of multi-scale block.

3.1. Multi-Scale Block
The multi-scale block is proposed by us, which is composed of
multiple convolution sequences with different receptive fields.
More diverse semantic information is extracted by this module

and more detailed feature maps are generated. The widely used
convolution kernel is shown in Figure 2.

The convolution kernel with different receptive fields is
matched to obtain a multi-scale block. We designed 31 kinds
of multi-scale blocks according to the above several convolution
kernels. The multi-scale block evolved from the different
convolution kernels is shown in Figure 3.

The 3× 3 convolution kernel has been used in all experiments.
The features of the input multi-scale block are processed by
the convolution kernel with different receptive fields, and then
the obtained features are output after 1 × 1 convolution.
A comprehensive ablation experiment is used to verify the
performance of different types of multi-scale blocks. In the
experiment, three datasets are used by us. The datasets are
EM, BUL, and CXR, respectively (detailed in section 4.1). The
experiments are carried out after integrated each multi-scale
block into the original U-Net. The experimental results are
illustrated in Table 1. The performance of multi-scale block (37)
is the best. The details of multi-scale block (37) are shown in
Figure 4.

x represents the characteristics of the input. x1 and x2
represent the characteristics obtained by the convolution kernel
of different sizes. F is the output result of multi-scale block. F is
computed as follows:

x1 = w32(w31x+ b31)+ b32 (1)

x2 = w72(w71x+ b71)+ b72 (2)

X = Cat[x1, x2] (3)

F = wfX + bf (4)

Feature fusion needs to be used in multi-scale block before 1X1
convolution. Therefore, different fusion methods are validated
by us (results in Table 2). MSU-Net (37+sum) uses element
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TABLE 1 | Ablation study on MSU-Nets of the convolution kernel with different

receptive fields.

Applications BUL EM NS

M ± SD M ± SD M ± SD

MSU-Net (13) 0.548 ± 0.076 0.871 ± 0.002 0.678 ± 0.017

MSU-Net (23) 0.610 ± 0.029 0.840 ± 0.035 0.661 ± 0.028

MSU-Net (35) 0.690 ± 0.047 0.884 ± 0.017 0.670 ± 0.036

MSU-Net (37) 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

MSU-Net (39) 0.699 ± 0.016 0.895 ± 0.009 0.660 ± 0.011

MSU-Net (123) 0.547 ± 0.067 0.862 ± 0.012 0.672 ± 0.015

MSU-Net (135) 0.679 ± 0.005 0.883 ± 0.010 0.676 ± 0.021

MSU-Net (137) 0.696 ± 0.018 0.890 ± 0.015 0.684 ± 0.025

MSU-Net (139) 0.682 ± 0.037 0.880 ± 0.015 0.674 ± 0.020

MSU-Net (235) 0.673 ± 0.036 0.873 ± 0.023 0.684 ± 0.025

MSU-Net (237) 0.703 ± 0.042 0.888 ± 0.017 0.687 ± 0.019

MSU-Net (239) 0.664 ± 0.029 0.893 ± 0.011 0.672 ± 0.023

MSU-Net (357) 0.679 ± 0.018 0.888 ± 0.016 0.682 ± 0.015

MSU-Net (359) 0.693 ± 0.007 0.894 ± 0.006 0.686 ± 0.020

MSU-Net (379) 0.705 ± 0.008 0.894 ± 0.011 0.671 ± 0.023

MSU-Net (1,235) 0.652 ± 0.015 0.877 ± 0.015 0.662 ± 0.038

MSU-Net (1,237) 0.655 ± 0.008 0.886 ± 0.009 0.693 ± 0.025

MSU-Net (1,239) 0.699 ± 0.017 0.885 ± 0.014 0.687 ± 0.031

MSU-Net (1,357) 0.689 ± 0.033 0.895 ± 0.005 0.673 ± 0.023

MSU-Net (1,359) 0.700 ± 0.028 0.898 ± 0.002 0.689 ± 0.015

MSU-Net (1,379) 0.702 ± 0.025 0.898 ± 0.003 0.692 ± 0.017

MSU-Net (2,357) 0.694 ± 0.040 0.894 ± 0.004 0.687 ± 0.023

MSU-Net (2,359) 0.681 ± 0.023 0.884 ± 0.014 0.702 ± 0.018

MSU-Net (2,379) 0.694 ± 0.036 0.882 ± 0.014 0.675 ± 0.013

MSU-Net (3,579) 0.696 ± 0.338 0.893 ± 0.010 0.695 ± 0.011

MSU-Net (12,357) 0.680 ± 0.017 0.893 ± 0.005 0.696 ± 0.027

MSU-Net (12,359) 0.705 ± 0.014 0.892 ± 0.006 0.687 ± 0.040

MSU-Net (12,379) 0.667 ± 0.023 0.893 ± 0.002 0.695 ± 0.021

MSU-Net (13,579) 0.697 ± 0.032 0.899 ± 0.001 0.685 ± 0.025

MSU-Net (23,579) 0.705 ± 0.020 0.889 ± 0.014 0.697 ± 0.008

MSU-Net (123,579) 0.693 ± 0.028 0.896 ± 0.002 0.696 ± 0.017

The numbers in brackets represent the size of receptive field in MSU-Net. This is

corresponds to the different multi-scale blocks in Figure 3. Intersection over Union (IoU)

is used as the evaluation metric for comparative. Bold values represent the best results.

summation for feature fusion. MSU-Net (37) uses concatenation
for feature fusion.

The dilated convolution is introduced into the multi-scale
block after the optimal convolution kernel is obtained. The
dilated convolution used in the experiment is described in
Figure 2. Convolution kernels with different receptive fields
are concatenated to verify the effectiveness of the multiple
convolution sequence. The details are shown in Figure 5. The
experimental results are shown in Table 2.

3.2. Network Architecture
The architecture of MSU-Net is illustrated in Figure 1. MSU-
Net has a contraction path and an expansion path. The network
architecture follows encoder-decoder. In original U-Net, each
block consists of two convolutional layers. However, there is still

a drawback in this block. Due to the limitation of the receptive
field, the network does not achieve better performance in feature
extraction and feature restoration. The convolution blocks in
encoder of the original U-Net are replaced with multi-scale
blocks to obtain MSU-Net (encoder). The convolution blocks
in decoder of the original U-Net are replaced with multi-scale
blocks to obtain MSU-Net (decoder). The experimental results
are illustrated in Table 2. In MSU-Net, the multi-scale block (37)
is used to replace the all convolution block in the original U-
Net. Multi-scale block enables encoder to extract more detailed
information. Multi-scale block makes the features of decoder
restoration more complete.

3.3. Extension of Model
Residual (He et al., 2016) is expanded into our model. The
residual multi-scale block is shown in Figure 6. In addition,
multi-scale blocks are also extended to variants of U-Net.

3.3.1. Residual Multi-Scale Block

The idea of residual is introduced with multi-scale blocks to
obtain residual multi-scale block (0) and residual multi-scale
block (1). Residual multi-scale block (0) and residual multi-scale
block (1) are shown in Figures 6A,B, respectively. The original
convolution block in U-Net was replaced by residual multi-scale
block (0) and residual multi-scale block (1) to get Res MSU-Net
(0) and Res MSU-Net (1). The experimental results are described
in Table 4. In Table 4, the performance of residual multi-scale
block (0) is better than residual multi-scale block (1).

The structure of residual multi-scale block (1) is described
below. xr represents the characteristics of the input. xr1 and
xr2 represent the characteristics obtained by the convolution
kernel of different receptive fields. FR is the output result of the
multi-scale block. FR is computed as follows:

xr1 = wr32(wr31xr + br31)+ br32 (5)

xr2 = wr72(wr71xr + br71)+ br72 (6)

XR = Cat[xr , xr1, xr2] (7)

FR = wrfXR + brf (8)

Residual connection can make the forward and backward
propagation of multi-scale block smoother. In forward
propagation, the input signal can be propagated directly
from the bottom to the top. The problem of network degradation
can be alleviated. In back propagation, the error signal can be
propagated directly to the lower layer without any intermediate
weight matrix transformation. The problem of gradient
dispersion can be alleviated. In addition, the generalization
capacity of the network can be enhanced by the structure.

3.3.2. Other Structures

In addition to combining the structure with our proposed
multi-scale block, we also extend our multi-scale block on the
variants of original U-Net. The convolution blocks in AttU-
Net (Oktay et al., 2018) and U-Net++ (Zhou et al., 2020)
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FIGURE 4 | Detailed description of multi-scale block. First, two 3X3 and 7X7 convolution kernels are used to extract features. Second, the extracted features are

merged by the feature by cat. Finally, the fused features are output after dimensionality reduction by 1X1 convolution.

TABLE 2 | Ablation study for MSU-Net and its variants.

Architecture BUL EM NS

M ± SD M ± SD M ± SD

MSU-Net 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

MSU-Net(37+sum) 0.694 ± 0.020 0.894 ± 0.013 0.683 ± 0.017

MSU-Net(encoder) 0.646 ± 0.061 0.889 ± 0.013 0.679 ± 0.021

MSU-Net(decoder) 0.656 ± 0.027 0.883 ± 0.018 0.661 ± 0.024

MSU-Net(37+concatenated) 0.642 ± 0.036 0.899 ± 0.004 0.674 ± 0.024

MSU-Net(73+concatenated) 0.707 ± 0.061 0.900 ± 0.001 0.667 ± 0.022

MSU-Net(37+dilated) 0.640 ± 0.033 0.877 ± 0.005 0.662 ± 0.013

MSU-Net is MSU-Net (37) in Table 1. MSU-Net (37+ sum) is an MSU-Net with feature

fusion by adding. MSU-Net (encoder) and MSU-Net (decoder) are obtained by using

multi-scale block to replace the convolution block between encoder and decoder in U-

Net. MSU-Net (73+concatenated) and MSU-Net (37+concatenated) are obtained after

concatenated the convolution kernel with different receptive fields. MSU-Net (37+dilated)

is obtained by dilated convolution. Intersection over Union (IoU) is used as the evaluation

metric for comparison. Bold values represent the best results.

are replaced with multi-scale block, namely MSAttU-Net and
MSU-Net++, respectively.

4. EXPERIMENT

4.1. Dataset
Table 3 summarizes the five biomedical image segmentation
datasets used in this study. These lesions/organs are derived
from the most common medical imaging modalities, such as
microscopy, X-ray, B-mode ultrasound, etc. The dataset was
randomly divided into six subsets. Five of six are used as
a training-validation dataset, and the remaining data as a
test dataset. Five-fold cross validation is applied by randomly
dividing training-validation into five subsets. The training
process alternates with a fixed ratio of 4:1 between the training
dataset and the validation dataset.

(1) Electron Microscopy (EM): The dataset is provided by the
EM segmentation challenge (Cardona et al., 2010), which is a
part of ISBI 2012. The dataset contains 30 images (512 × 512
pixels) from a serial section Transmission Electron Microscopy
(ssTEM) dataset of the Drosophila first instar larva ventral nerve
cord (VNC). The images has not been resized. The images size of
the input network is 512 × 512. An example of dataset is shown

in Figure 7. Each image has a completely annotated ground
truth segmentation map of the corresponding cell (white) and
membranes (black).

(2) Breast Ultrasound Lesions (BUL): The Breast Ultrasound
Dataset B (BUL) open-sourced in (Yap et al., 2017) is used in
this study. This dataset includes 163 ultrasound images of breast
lesions from different women. The image size of average is 760
× 570 pixels where each of the images presented one or more
lesions. For our experiments, the data is resampled to 128 × 128
pixels. The ground truths provided in the BUL are in the form of
binary masks of the lesions, as illustrated in Figure 7.

(3) Chest X-ray (CXR): The standard digital image database
for Tuberculosis (Candemir et al., 2013; Jaeger et al., 2013) is
created by the National Library of Medicine, Maryland, USA in
collaboration with Shenzhen No.3 People’s Hospital, Guangdong
Medical College, Shenzhen, China. The Chest X-rays are from
out-patient clinics. There are 800 images in the Chest X-rays
dataset. However, the ground truth of 96 images is unknown.
Seven hundred and four images of corresponding GT in the
dataset were used by us. The image size of average is 4456
× 4456 pixels. The images are rescaled to 128 × 128 for this
implementation. Referring to the example in Figure 7.

(4) Skin Lesions (SL): The dataset is provided by the ISIC
2018: Skin Lesion Analysis Toward Melanoma Detection
grand challenge dataset (Tschandl et al., 2018; Codella
et al., 2019). This dataset consists of 2594 RGB images of
skin lesions with an average image size of 2166 × 3188
pixels. For our experiments, the dataset is resampled to 256
× 256 pixels with cross validation. The training samples
include the original image and the binary image containing
the lesion. Pixels outside the target lesion are represented
by 0.

(5) Nuclei Segmentation (NS): This dataset is provided by The
Cancer Genome Atlas (TCGA). This dataset can be downloaded
from Kaggle. The dataset comprising 30 digitized Hematoxylin
and Eosin (H&E)-stained frozen sections (512 × 512 pixels)
derived from 10 different human organs. The dataset were
selected from different laboratories to maximize the staining
variability in the data set. Image tiles (3 per tissue) were
extracted from adrenal gland, larynx, lymph nodes, mediastinum,
pancreas, pleura, skin, testes, thymus, and thyroid gland. Like
the EM dataset, this dataset was not sampled prior to input. The
image size of the input is 512× 512.
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FIGURE 5 | Arrangement of convolution kernel with different receptive fields and dilated convolution. Panels (A,B) lay out the convolution kernel in different order,

respectively. In (C), the large convolution kernel in the multi-scale block (37) is replaced by dilated convolution. The receptive field of the convolution kernel is enlarged

without increasing the number of parameters.

FIGURE 6 | Residual multi-scale block. Panel (A) is the first structure designed to incorporate residual thinking. Panel (B) is the second. Experimental results show

that the performance of (A) structure is better than (B). Panel (C) describes (A) in detail. The different multi-scale blocks are described in Figure 3. The information of

the input features is directly transmitted to the deep layer of the network through the residual connection.

4.2. Baselines and Implementation
For comparison, the original U-Net is used to implement the
segmentation task. U-Net is a common performance baseline for
medical image segmentation. In addition, a wide U-Net with a
similar number of parameters to our proposed architecture was
designed. This is to ensure that the performance gain yielded
by our architecture is not simply due to the increased number
of parameters.

In this experiment, the program was based on the Pytorch
(Paszke et al., 2019) framework. SGD (Robbins and Monro,
1951) was used as the optimizer with the learning rate of 1e-2.
Both networks were constructed from the original U-Net. All the

experiments are performed using an NVIDIAGeForce RTX 2080
Ti GPUs with 11 GB memory.

4.3. Evaluation Measures
In this paper, the Intersection over Union (IoU) is used as the
main evaluation indicator to evaluate the results. Alternative
measurement metrics could be found in Table 6, such as dice
coefficient, precision, area Under Curve (AUC), and statistical
analysis. These metrics were calculated as follows:

IoU =
TP

TP + FP + FN
(9)
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TABLE 3 | Summary of biomedical image segmentation datasets used in our experiments.

Applications Images Input size Modality Provider

EM 30 512 × 512 Microscopy ISBI 2012 (Cardona et al., 2010)

BUL 163 128 × 128 Ultrasound Breast Ultrasound Lesions Dataset (Yap et al., 2017)

CXR 704 128 × 128 X-ray Chest X-ray Database (Candemir et al., 2013; Jaeger et al., 2013)

SL 2594 256 × 256 Demoscopy ISIC 2018 (Tschandl et al., 2018; Codella et al., 2019)

NS 30 512 × 512 Digitize Kaggle

TABLE 4 | Ablation study for U-Net, wide U-Net, MSU-Net, Res MSU-Net(0), and

Res MSU-Net(1).

Architecture BUL EM NS

M ± SD M ± SD M ± SD

U-Net (Ronneberger

et al., 2015)

0.608 ± 0.037 0.884 ± 0.007 0.675 ± 0.018

wide U-Net (Ours) 0.643 ± 0.025 0.889 ± 0.016 0.677 ± 0.012

MSU-Net (Ours) 0.708 ± 0.011 0.900 ± 0.001 0.702 ± 0.010

Res MSU-Net (0) (Ours) 0.713 ± 0.032 0.900 ± 0.001 0.704 ± 0.010

Res MSU-Net (1) (Ours) 0.628 ± 0.025 0.848 ± 0.056 0.675 ± 0.022

Wide U-Net is obtained by extending the width of the U-Net network. The wide U-Net

has the same number of parameters as the MSU-Net. Res MSU-Net (0)/Res MSU-Net

(1) are proposed based on Residual multi-block. Intersection over Union (IoU) is used as

the evaluation metric for comparison. Bold values represent the best results.

Dice =
2TP

2TP + FP + FN
(10)

Precision =
TP

TP + FP
(11)

where TP, FP, and FN represent the number of true positive,
false positive, and false negative, respectively. In addition, the
area under receiver operation characteristic curve (AUC) is used
to measure the segmentation performance. The closer the AUC
is to 1.0, the higher authenticity of the segmentation method.
When it is equal to 0.5, it has the lowest authenticity and no
application value.

5. RESULTS

5.1. Selection of Multi-Scale Block
31 kinds of multi-scale blocks were designed by combining
the convolution kernel with different receptive fields. The
different multi-scale blocks are shown in Figure 3. All multi-
scale blocks were embedded into the original U-Net respectively.
Subsequently, an ablation analysis of multi-scale block is made on
three datasets. The experimental results of different multi-scale
blocks on the dataset are illustrated in Table 1. Two key findings
are illustrated in our results: (1) The wider network structure
is not always better, (2) The optimal width of the network
depends on the difficulty and size of the dataset. Although these
findings may facilitate the automatic search of neural structures,
this approach is hampered by limited computational resources
(Elsken et al., 2018; Liu et al., 2018, 2019; Zoph et al., 2018).

The influence of the difference receptive field on the network
performance is shown inTable 1. Among them,multi-scale block
(37) achieves the best performance on datasets.

Different arrangements of convolution blocks and different
convolution kernels are verified in Table 2. The robustness
of the multiple convolution sequence is demonstrated by
experimental results.

5.2. Results of the Extended Model
The multi-scale block was extended by us. First, the idea of
residuals was introduced into the proposed module. Two multi-
scale blocks based on residuals were constructed. The structure
is shown in Figure 6. Second, the proposed multi-scale block
was extended to the existing U-Net variants. Convolution kernel
in AttU-Net and U-Net++ was replaced by multi-scale block.
The experimental results are shown in Tables 4, 5. Experimental
results show that the proposed method has good scalability
and compatibility.

It can be seen from the experimental results that the
performance of wide U-Net is better than U-Net. The main
reason is that there are more parameters in wide U-Net. When
the residual idea is not introduced,MSU-Net achieves very robust
performance on all three data sets. Compared with U-Net, MSU-
Net is higher than 0.1, 0.016, and 0.027 on the three datasets. The
performance of the network is improved by introducing residual
ideas. In addition, the extended experiment on U-Net variants
also confirmed the effectiveness and universality of multi-scale
block. By comparing the performance ofMSU-Net (37+encoder)
and U-Net, we found that the ability of network to extract
features was enhanced by combining multi-scale blocks.

5.3. Semantic Segmentation Results
In order to verify the performance of the network, MSU-Net
was compared with the current more advanced segmentation
network (Ronneberger et al., 2015; Badrinarayanan et al., 2017;
Chen et al., 2018b; Zhou et al., 2020). In addition, chest X-ray and
skin lesion segmentation datasets were added to the experiment.
These two datasets are larger than the three previouslymentioned
datasets. Figure 7 depicts a qualitative comparison of the results
between the different split schemas. Compared with other
architectures, the segmentation results of MSU-Net are more
detailed. SegNet cannot be trained on EM datasets. Therefore,
SegNet has not experimented on the EM dataset.

Table 6 shows the segmentation performance of the
architectures on different datasets. A statistical analysis based
on independent two-sample t-tests is performed by us for each
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FIGURE 7 | Qualitative comparison among SegNet, DeepLabV3+, U-Net, U-Net++, and MSU-Net. It shows the segmentation application of the architectures on five

different biomedical image datasets. The red arrows indicate areas of incorrect segmentation. SegNet can not be trained on EM datasets. Therefore, the result of

SegNet on the EM dataset is vacant. The ground truth is illustrated in the second column (from left to right).

TABLE 5 | Ablation study for AttU-Net, MSAttU-Net, U-Net++, and MSU-Net++.

Architecture BUL EM NS

M ± SD M ± SD M ± SD

AttU-Net (Oktay et al., 2018) 0.607 ± 0.039 0.853 ± 0.043 0.655 ± 0.020

MSAttU-Net (Ours) 0.674 ± 0.005 0.895 ± 0.004 0.677 ± 0.010

U-Net++ (Zhou et al., 2020) 0.670 ± 0.020 0.885 ± 0.013 0.665 ± 0.012

MSU-Net++ (Ours) 0.687 ± 0.009 0.895 ± 0.002 0.691 ± 0.022

MSAttU-Net and MSU-Net ++ are extended versions of AttU-Net and U-Net ++.

Intersection over Union (IoU) is used as the evaluation metric for comparison.

pair of data between different structures. Our results show that
MSU-Net is an effective network structure.

The results in Table 5 suggest that our proposed MSU-Net
is more robust in semantic segmentation. Compared with the
U-Net, MSU-Net achieves a significant IoU gain over both

architectures for all the five tasks of SL (↑0.01), CXR (↑0.01),
BUL (↑0.1), EM (↑0.016), NS (↑0.027) segmentation. AUC of
different architectures on the data set is illustrated in Figure 8.
Figure 8 shows the ROC curve of different architectures on the
datasets. Our model achieves the best performance in all datasets.
Fine Precision is not captured by our model on the SL dataset.
However, the high sensitivity of our model is shown in Figure 8.
This allows false positives and false negatives in the data to be
better balanced by our model. It is mainly due to the multiple
convolution sequence with different receptive fields. This design
makes the features in the network richer and more diverse.

6. DISCUSSION

Medical image segmentation plays an important role in
diagnosis, treatment and prognosis evaluation. In the process
of diagnosis, the main applications include morphological
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TABLE 6 | Semantic segmentation results measured by different metrics for different network architectures.

Metric Architecture
SL CXR BUL EM NS

M ± SD p-value M ± SD p-value M ± SD p-value M ± SD p-value M ± SD p-value

IoU

SegNet (Badrinarayanan

et al., 2017)

0.752 ± 0.007 9.824e-4 0.832 ± 0.008 6.179e-5 0.630 ± 0.033 0.001 — — 0.586 ± 0.021 4.084e-6

DeepLabV3+ (Chen et al.,

2018b)

0.762 ± 0.002 2.202e-3 0.847 ± 0.005 3.261e-4 0.558 ± 0.034 1.761e-5 0.837 ± 0.015 1.582e-5 0.582 ± 0.019 1.717e-6

U-Net (Ronneberger et al.,

2015)

0.751 ± 0.005 1.872e-4 0.857 ± 0.005 0.020 0.608 ± 0.037 4.789e-4 0.884 ± 0.007 6.873e-4 0.675 ± 0.018 0.020

U-Ne++ (Zhou et al., 2020) 0.746 ± 0.008 2.725e-4 0.863 ± 0.004 0.232 0.670 ± 0.020 0.013 0.885 ± 0.013 0.031 0.665 ± 0.012 8.243e-4

MSU-Net(Ours) 0.771 ± 0.004 — 0.867 ± 0.006 — 0.708 ± 0.011 — 0.900 ± 0.001 — 0.702 ± 0.011 —

Dice

SegNet (Badrinarayanan

et al., 2017)

0.852 ± 0.006 0.002 0.908 ± 0.005 6.393e-5 0.770 ± 0.026 0.002 — — 0.738 ± 0.017 5.941e-6

DeepLabV3+ (Chen et al.,

2018b)

0.857 ± 0.003 0.002 0.917 ± 0.003 3.123e-4 0.713 ± 0.029 3.215e-5 0.911 ± 0.009 2.104e-5 0.734 ± 0.016 2.830e-6

U-Net (Ronneberger et al.,

2015)

0.850 ± 0.004 1.696e-4 0.923 ± 0.003 0.020 0.753 ± 0.029 6.919e-4 0.938 ± 0.004 7.314e-4 0.805 ± 0.013 0.022

U-Ne++ (Zhou et al., 2020) 0.847 ± 0.006 2.892e-4 0.926 ± 0.002 0.230 0.800 ± 0.014 0.015 0.939 ± 0.007 0.032 0.797 ± 0.008 5.129e-4

MSU-Net(Ours) 0.865 ± 0.003 — 0.929 ± 0.004 — 0.827 ± 0.008 — 0.947 ± 0.001 — 0.824 ± 0.007 —

Precision

SegNet (Badrinarayanan

et al., 2017)

0.886 ± 0.010 0.161 0.856 ± 0.009 4.465e-4 0.725 ± 0.040 0.115 — — 0.873 ± 0.008 0.203

DeepLabV3+ (Chen et al.,

2018b)

0.892 ± 0.008 0.037 0.875 ± 0.005 0.029 0.798 ± 0.054 2.227e-4 0.864 ± 0.029 6.076e-4 0.860 ± 0.019 0.065

U-Net (Ronneberger et al.,

2015)

0.899 ± 0.014 0.024 0.878 ± 0.006 0.079 0.760 ± 0.061 0.018 0.913 ± 0.014 0.007 0.888 ± 0.019 0.917

U-Net++ (Zhou et al., 2020) 0.895 ± 0.010 0.030 0.882 ± 0.005 0.274 0.786 ± 0.043 0.011 0.919 ± 0.025 0.196 0.853 ± 0.059 0.267

MSU-Net(Ours) 0.873 ± 0.015 — 0.887 ± 0.009 — 0.842 ± 0.006 — 0.935 ± 0.003 — 0.887 ± 0.021 —

We have performed independent two sample t-test between and highlighted boxes in red when the differences are statistically significant (p<0.05). Bold values represent the best results.
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FIGURE 8 | ROC curves for different architectures. AUC is the area under the curve.

analysis, volume calculation, anatomical structure analysis, etc.
In surgical treatment planning, the commonly used methods
include preoperative biopsy guidance, target area planning of
radiotherapy, image registration fusion and path planning,
and target tracking in medical robot, etc. In the prognostic
assessment, the most important segmentation is the analysis
of lesion volume change and the analysis of lesion histological
characteristics. In addition, medical image segmentation can
be applied to three-dimensional reconstruction visualization,
which can provide clinicians with more intuitive pathological
morphology and spatial anatomy. In recent years, the method
based on deep learning has been widely used in medical image
segmentation. However, the performance of segmentation is
greatly affected by the network architecture and the ability to
acquire features in learning process.

U-Net is a very classical network architecture in the field of
medical image segmentation. At present, U-Net is widely used
in medical image segmentation. However, the basic architecture
of U-Net has not been significantly modified by the researchers.
Large receptive fields play an important role when we need
to make dense per-pixel predictions. In order to improve the
existing segmentation model, multi-scale blocks are constructed
by convolution sequence and multiple convolution kernel with
different receptive fields. The different types of multi-scale
blocks are illustrated in Figure 3. In addition, MSU-Net is
proposed after all the convolution blocks in the original U-
Net are replaced by multi-scale block. The details of the MSU-
Net are illustrated in Figure 1. Multiple convolution sequences
are used to extract more semantic features from images. In

addition, convolution kernels with different receptive fields are
used to make features more diverse. The problem of unknown
network width is alleviated by effective integration of multiple
convolution sequences with different receptive fields.

The most important innovation described in this paper
is the combination of multiple convolution sequences and
convolution kernel with different receptive fields to improve the
segmentation performance. It can be seen from the Table 1 that
the performance of the network is affected by different receptive
fields. Good performance was achieved by combining advanced
ideas with multi-scale blocks. In addition, multi-scale blocks
are extended to the variants of original U-Net. The results in
Tables 4, 5 describes that the segmentation performance of the
network is improved by combining the multiple convolution
sequence and the convolution kernel with the different receptive
fields. The strategies of our proposed strategy has the following
advantages: (1) More diverse features are extracted through
the convolution kernel of different receptive fields. This is
useful for intensive forecasting tasks that require detailed spatial
information. At the same time, the problem of unknown
network width can be alleviated. (2) More feature information
is extracted by multi-convolution sequence, which is helpful
to the segmentation task. Our method has obtained the best
performance compared with the advanced models through the
demonstration of multiple medical image segmentation datasets
(see in Table 6). The highest AUC is obtained by our architecture
(see in Figure 8). This suggests that our model has a stronger
ability to balance false positives and false negatives in the
data. In general, the proposed method is useful for intensive
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forecasting tasks requiring detailed spatial information. Different
receptive fields can provide diverse semantic information for
tasks, which is beneficial to the segmentation of lesions. More
detailed segmentation results can provide doctors with more
detailed lesion areas, which is helpful for the diagnosis of disease
and the formulation of treatment plan.

Although we have widely evaluated the performance of the
network on different datasets, there are still some deficiencies
in our network. First, the convolution kernels with a larger
receptive field are not attempted due to objective factors. The
performance of the network may be improved through greater
receptive field. Second, the dilated convolution can increase
the receptive field of the convolution kernel without increasing
the number of parameters. Unfortunately, dilated convolution
was not attempted in our experiment. Third, our network has
not been validated against the 3D medical image segmentation
dataset. The above work may be completed by us in the future.

7. CONCLUSION

In order to obtain more accurate segmentation image, a new
structure called multi-scale block was proposed by us. The
convolution blocks in the original U-Net are replaced by multi-
scale blocks to obtain MSU-Net. The improvement of MSU-
Net performance is attributed to multiple convolution sequence
and convolution kernels with different receptive fields. Two
key issues are addressed by this design: (1) The diversity of
features is lost due to the fixed size of the convolution kernel.
(2) Feature information may be lost at each scale using a single
convolutional sequence to extract features. Five different public

datasets were used to conduct an extensive evaluation of MSU-
Net. The experimental results show that MSU-Net achieves the
best performance.
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