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1 Introduction

Purpose and Scope

The modular three-dimensional (3-D) transport model referred to as MT3D

was originally developed by Zheng (1990) at S. S. Papadopulos & Associates,

Inc., and subsequently documented for the Robert S. Kerr Environmental

Research Laboratory of the U.S. Environmental Protection Agency.  In the past

several years, various versions of the MT3D code have been commonly used in

contaminant transport modeling and remediation assessment studies.  This

manual describes the next generation of MT3D with significantly expanded

capabilities, including the addition of (a) a third-order total-variation-diminishing

(TVD) scheme for solving the advection term that is mass conservative but does

not introduce excessive numerical dispersion and artificial oscillation; (b) an

efficient iterative solver based on generalized conjugate gradient methods to

remove stability constraints on the transport time stepsize; (c) options for

accommodating nonequilibrium sorption and dual-domain advection-diffusion

mass transport; and (d) a multicomponent program structure that can

accommodate add-on reaction packages for modeling general biological and

geochemical reactions.

Key Features

The new mass transport model documented in this manual is referred to as

MT3DMS, where MT3D stands for the Modular 3-Dimensional Transport

model, and MS denotes the Multi-Species structure for accommodating add-on

reaction packages.  MT3DMS has a comprehensive set of options and

capabilities for simulating advection, dispersion/diffusion, and chemical

reactions of contaminants in groundwater flow systems under general

hydrogeologic conditions.  This section summarizes the key features of

MT3DMS.

MT3DMS is unique in that it includes three major classes of transport solu-

tion techniques (the standard finite-difference method, the particle-tracking-based

Eulerian-Lagrangian methods, and the higher-order finite-volume TVD method)

in a single code.  Since no single numerical technique has been effective for all
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transport conditions, the combination of these solution techniques, each having

its own strengths and limitations, is believed to offer the best approach for

solving the most wide-ranging transport problems with efficiency and accuracy.

In addition to the explicit formulation of the original MT3D code, MT3DMS

includes an implicit formulation that is solved with an efficient and versatile

solver.  The iterative solver is based on generalized conjugate gradient (GCG)

methods with three preconditioning options and the Lanczos/ORTHOMIN

acceleration scheme for nonsymmetrical matrices.  If the GCG solver is selected,

dispersion, sink/source, and reaction terms are solved implicitly without any

stability constraints.  For the advection term, the user has the option to select any

of the solution schemes available, including the standard finite-difference

method, the particle-tracking-based Eulerian-Lagrangian methods, and the third-

order TVD method.  The finite-difference method can be fully implicit without

any stability constraint to limit transport step sizes, but the particle-tracking-

based Eulerian-Lagrangian methods and the third-order TVD method still have

time-step constraints associated with particle tracking and TVD methodology.  If

the GCG solver is not selected, the explicit formulation is automatically used in

MT3DMS with the usual stability constraints.  The explicit formulation is

efficient for solving advection-dominated problems in which the transport step

sizes are restricted by accuracy considerations.  It is also useful when the implicit

solver requires a large number of iterations to converge or when the computer

system does not have enough memory to use the implicit solver.

MT3DMS is implemented with an optional, dual-domain formulation for

modeling mass transport.  With this formulation, the porous medium is regarded

as consisting of two distinct domains, a mobile domain where transport is

predominately by advection and an immobile domain where transport is

predominately by molecular diffusion.  Instead of a single “effective” porosity

for each model cell, two porosities, one for the mobile domain and the other for

the immobile domain, are used to characterize the porous medium.  The

exchange between the mobile and immobile domains is specified by a mass

transfer coefficient.  The dual-domain advective-diffusive model may be more

appropriate for modeling transport in fractured media or extremely heterog-

eneous porous media than the single-porosity advective-dispersive model,

provided the porosities and mass transfer coefficients can be properly

characterized.

MT3DMS retains the same modular structure of the original MT3D code

which is similar to that implemented in the U.S. Geological Survey modular

three-dimensional finite-difference groundwater flow model, MODFLOW

(McDonald and Harbaugh 1988; Harbaugh and McDonald 1996).  The modular

structure of the transport model makes it possible to simulate advection,

dispersion/diffusion, source/sink mixing, and chemical reactions separately

without reserving computer memory space for unused options; furthermore, new

packages involving other transport processes and reactions can be added to the

model readily without having to modify the existing code.

As in the original MT3D code, MT3DMS is developed for use with any

block-centered finite-difference flow model such as MODFLOW and is based on
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the assumption that changes in the concentration field will not affect the flow

field significantly.  After a flow model is developed and calibrated, the informa-

tion needed by the transport model can be saved in disk files which are then

retrieved by the transport model.  Since most potential users of a transport model

are likely to have been familiar with one or more flow models, MT3DMS pro-

vides an opportunity to simulate contaminant transport without having to learn a

new flow model or modify an existing flow model to fit the transport model.  In

addition, separate flow simulation and calibration outside the transport model can

result in substantial savings in computer memory.  The model structure also

saves execution time when many transport runs are required while the flow solu-

tion remains the same.  Although this report only describes the use of MT3DMS

in conjunction with MODFLOW, MT3DMS can be linked to any other block-

centered finite-difference flow model in a simple and straightforward fashion.

MT3DMS can be used to simulate changes in concentrations of miscible

contaminants in groundwater considering advection, dispersion, diffusion, and

some basic chemical reactions, with various types of boundary conditions and

external sources or sinks.  The chemical reactions included in the model are

equilibrium-controlled or rate-limited linear or nonlinear sorption and first-order

irreversible or reversible kinetic reactions.  It should be noted that the basic

chemical reaction package included in MT3DMS is intended for single-species

systems.  An add-on reaction package such as RT3D (Clement 1997) or

SEAM3D (Widdowson and Waddill 1997) must be used to model more sophis-

ticated multispecies reactions.  MT3DMS can accommodate very general spatial

discretization schemes and transport boundary conditions, including:  (a) con-

fined, unconfined, or variably confined/unconfined aquifer layers; (b) inclined

model layers and variable cell thickness within the same layer; (c) specified

concentration or mass flux boundaries; and (d) the solute transport effects of

external hydraulic sources and sinks such as wells, drains, rivers, areal recharge,

and evapotranspiration.

Organization of the Report

This report covers the theoretical, numerical, and application aspects of the

MT3DMS transport model.  Following this introduction, Chapter 2 gives a brief

overview of the physical-mathematical basis and various functional relationships

underlying the transport model.  Chapter 3 explains the basic ideas behind the

various solution schemes implemented in MT3DMS.  Chapter 4 discusses the

computer implementation of the numerical solution schemes.  Chapter 5

describes the program structure and design of the MT3DMS code, which has

been divided into a main program and a number of packages, each dealing with a

single aspect of the transport simulation.  Chapter 6 provides detailed model

input instructions and discusses how to set up a simulation.  Chapter 7 describes

the benchmark and example problems that were used to test the MT3DMS code

and illustrate its applications.  The appendices include information on the

iterative solver (Appendix A), the computer memory requirements of the

MT3DMS model (Appendix B), the interface between MT3DMS and a flow

model (Appendix C), several postprocessing programs (Appendix D), and tables

of abbreviated input instructions (Appendix E).
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2 Fundamentals of
Contaminant Transport
Modeling

Governing Equations

The partial differential equation describing the fate and transport of

contaminants of species k in 3-D, transient groundwater flow systems can be

written as follows:

     
( ) ( ) ∑++θ

∂
∂

−










∂
∂

θ
∂
∂

=
∂
θ∂

n
k
ss

k
i

ij

k

ij
i

k

RCqCv
xx

C
D

xt

C
            (1)

where

    θ = porosity of the subsurface medium, dimensionless

  C
k

= dissolved concentration of species k, ML
-3

     t = time, T

xi, j = distance along the respective Cartesian coordinate axis, L

ijD = hydrodynamic dispersion coefficient tensor, L
2
T

-1

vi = seepage or linear pore water velocity, LT
-1

; it is related to the

specific discharge or Darcy flux through the relationship, θ= ii qv

 qs = volumetric flow rate per unit volume of aquifer representing fluid

sources (positive) and sinks (negative), T
-1
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     k
sC  = concentration of the source or sink flux for species k, ML

-3

∑ nR  = chemical reaction term, ML
-3

T
-1

The left-hand side of Equation 1 can be expanded into two terms, i.e.,
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k
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kk
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∂
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∂
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(2)

where tqs ∂θ∂=′  is the rate of change in transient groundwater storage (unit,

T
-1

).

The chemical reaction term in Equation 1 can be used to include the effect of

general biochemical and geochemical reactions on contaminant fate and trans-

port.  Considering only two basic types of chemical reactions, i.e., aqueous-solid

surface reaction (sorption) and first-order rate reaction, the chemical reaction

term can be expressed as follows:

k
b

k
k

bn CC
t

C
R ρλ−θλ−

∂
∂

ρ−=∑ 21 (3)

where

 bρ = bulk density of the subsurface medium, ML
-1

kC = concentration of species k sorbed on the subsurface solids, MM
-1

  1λ = first-order reaction rate for the dissolved phase, T
-1

 2λ = first-order reaction rate for the sorbed (solid) phase, T
-1

Substituting Equations 2 and 3 into Equation 1 and dropping the species

index for simplicity of presentation, Equation 1 can be rearranged and rewritten

as

     
( )

CCCqCq

Cv
xx

C
D

xt

C

t

C

bsss

i
ij

ij
i

b

ρλ−θλ−′−+

θ
∂
∂

−










∂
∂

θ
∂
∂

=
∂
∂

ρ+
∂
∂

θ

21

(4)

Equation 4 is essentially a mass balance statement, i.e., the change in the mass

storage (both dissolved and sorbed phases) at any given time is equal to the

difference in the mass inflow and outflow due to dispersion, advection,

sink/source, and chemical reactions.
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Local equilibrium is often assumed for the various sorption processes (i.e.,

sorption is sufficiently fast compared to the transport time scale).  When the local

equilibrium assumption (LEA) is invoked, it is customary to express Equation 4

in the following form:

     ( ) CCCqCqCv
xx

C
D

xt

C
R bsssi

ij
ij

i

ρλ−θλ−′−+θ
∂
∂

−










∂
∂

θ
∂
∂

=
∂
∂

θ 21 (5)

where R is referred to as the retardation factor, which is a dimensionless factor

defined as:

     
C

C
R b

∂
∂

θ
ρ

+= 1 (6)

When the LEA is not appropriate, the sorption processes are typically represented

through a first-order kinetic mass transfer equation as discussed in the section on

Chemical Reactions.

Note that in the transport-governing equations described above, only a single

porosity has been assumed.  This porosity has been commonly referred to as

“effective” porosity, which is generally smaller than the total porosity of the

porous medium, reflecting the fact that some pore spaces may contain immobile

water with zero groundwater seepage velocity.  However, as discussed in some

detail by Zheng and Bennett (1995), this so-called effective porosity cannot be

readily measured in the field due to the complexity of the pore structure.  Rather,

it generally must be interpreted as the lumped parameter which, in model calibra-

tion, gives the closest representation both of plume movement and of observed

solute accumulation effects.  In some cases, such as transport in fractured media

or extremely heterogeneous porous media, it may be more appropriate to use a

dual-porosity approach, defining a primary porosity for those pore spaces filled

with mobile water where advection is the predominant means of transport and a

secondary porosity for those pore spaces filled with immobile water where trans-

port is primarily by molecular diffusion.  The exchange between the mobile and

immobile domains can be defined through a kinetic mass transfer equation simi-

lar to that used to describe nonequilibrium sorption.

The transport equation is related to the flow equation through the

Darcy’s Law

      
i

ii
i

x

hKq
v

∂
∂

θ
−=

θ
= (7)

where

iK  = principal component of the hydraulic conductivity tensor, LT
-1

   h = hydraulic head, L
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The hydraulic head is obtained from the solution of the three-dimensional

groundwater flow equation

     
t

h
Sq

x

h
K

x
ss

i
i

i ∂
∂

=+







∂
∂

∂
∂

(8)

where sS  is the specific storage of the aquifer, L
-1

, and
 

sq  is the fluid sink/

source term as defined in Equation 1.

Implied in Equations 7 and 8 is the assumption that the principal components

of the hydraulic conductivity tensor, Kx, Ky, and Kz, are aligned with the x, y, and

z coordinate axes so that all nonprincipal components (cross terms) become zero.

This assumption is incorporated in most commonly used finite-difference

groundwater flow models, including MODFLOW (McDonald and Harbaugh

1988; Harbaugh and McDonald 1996).

Advection

The advection term of the transport equation, ( ) ii xCv ∂θ∂ , describes the

transport of miscible contaminants at the same velocity as the groundwater.  For

many field-scale contaminant transport problems, the advection term dominates

over other terms.  To measure the degree of advection domination, a dimension-

less Peclet number is usually used, which is defined as

     
D

Lv
Pe = (9)

where

v = magnitude of the seepage velocity vector, LT
-1

L = characteristic length, commonly taken as the grid cell width, L

D = dispersion coefficient, L
2
T

-1

In advection-dominated problems, also referred to as sharp front problems, the

Peclet number has a large value.  For pure advection problems, the Peclet number

approaches infinity.

For advection-dominated problems, the solution of the transport equation is

often plagued to some degree by two types of numerical problems as illustrated

in Figure 1.  The first type is numerical dispersion, which has an effect similar to

that of physical dispersion, but is caused by truncation error.  When physical dis-

persion is small or negligible, numerical dispersion becomes a serious problem,

leading to the smearing of concentration fronts which should have a sharp

appearance (Figure 1a).  The second type of numerical problem is artificial
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oscillation, also referred to as overshoot and undershoot, as illustrated in Fig-

ure 1b.  Artificial oscillation is typical of some higher-order schemes designed to

eliminate numerical dispersion and tends to become more severe as the

concentration front becomes sharper.

The MT3DMS code has several solution options designed to overcome both

the numerical dispersion and artificial oscillation problems.  The method of

characteristics is highly effective for eliminating numerical dispersion in strongly

advection-dominated problems.  The third-order TVD method, implemented with

a universal flux limiter, minimizes both numerical dispersion and artificial

oscillation.  When numerical dispersion is not a significant problem, as in cases

where a fine model grid is used or physical dispersion is large, the standard

finite-difference method can be used for greater computational efficiency.

Figure 1.   Illustration of common numerical errors
    in contaminant transport modeling
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Dispersion

Dispersion mechanism

Dispersion in porous media refers to the spreading of contaminants over a

greater region than would be predicted solely from the average groundwater

velocity vectors (Anderson 1979 and 1984).  Dispersion is caused by mechanical

dispersion, a result of deviations of actual velocity on a microscale from the aver-

age groundwater velocity, and by molecular diffusion driven by concentration

gradients.  Molecular diffusion is generally secondary and negligible, compared

with the effects of mechanical dispersion, and only becomes important when

groundwater velocity is very low.  The sum of mechanical dispersion and

molecular diffusion is termed hydrodynamic dispersion, or simply dispersion.

Although the dispersion mechanism is generally understood, the represen-

tation of dispersion phenomena in a transport model is the subject of intense

continuing research.  The treatment of mechanical dispersion as a Fickian process

(in effect, addictive to diffusion) represents a pragmatic approach through which

realistic transport calculations can be made without fully describing the hetero-

geneous velocity field, which, of course, is impossible to do in practice.  While

many different approaches and theories have been developed to represent the dis-

persion process, Equation 1 is still the basis for most field-scale simulations

(Zheng and Bennett 1995).  In MT3DMS, the newly implemented dual-domain

advection-diffusion formulation may be used as an alternative to the standard

advection-dispersion formulation (see Dual-Domain Mass Transfer section).

Dispersion coefficient

The hydrodynamic dispersion tensor, Dij , for an isotropic porous medium, is

defined, according to Bear (1972 and 1979), in the following component forms

*D
v

v

v

v

v

v
D z

T
y

T
x

Lxx +α+α+α=
222

(10a)

*D
v

v

v

v

v

v
D z

T
x

T
y

Lyy +α+α+α=
222

(10b)
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v

v

v

v

v
D

y
T

x
T

z
Lzz +α+α+α=

222

(10c)

v

vv
)(DD

yx
TLyxxy α−α== (10d)
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v

vv
)(DD zx

TLzxxz α−α== (10e)

v

vv
)(DD

zy
TLzyyz α−α== (10f)

where

zzyyxx D,D,D = principal components of the dispersion

tensor, L
2
T

-1

zyzxyzyxxzxy D,D,D,D,D,D =.cross terms of the dispersion tensor, L
2
T

-1

Lα = longitudinal dispersivity, L

Tα = transverse dispersivity, L

*D = effective molecular diffusion coefficient,

L
2
T

-1

zyx v,v,v = components of the velocity vector along the

x, y, and z axes, LT
-1

222
zyx vvvv ++= = magnitude of the velocity vector, LT

-1

When the velocity vector is aligned with one of the coordinate axes, all the cross

terms become zero.

Strictly speaking, the dispersion tensor defined by two independent dispersi-

vities for isotropic media as in Equations 10a to 10f is not valid for anisotropic

porous media, which require five independent dispersivities (Bear 1979).   How-

ever, it is generally not feasible to obtain all five dispersivities in the field.  As a

practical alternative, the usual practice in transport modeling is to assume that the

isotropic dispersion coefficient is also applicable to anisotropic porous media.

In addition to the isotropic dispersion described above, the MT3DMS transport

model supports an alternative form which allows the use of two transverse dis-

persivities, a horizontal transverse dispersivity, αTH , and a vertical transverse

dispersivity, αTV , as proposed by Burnett and Frind (1987):

*D
v

v

v

v

v

v
D z

TV
y

TH
x

Lxx +α+α+α=
222

(11a)

*D
v

v

v

v

v

v
D z
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x

TH
y

Lyy +α+α+α=
222

(11b)
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*D
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v
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v
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TV

x
TV

z
Lzz +α+α+α=

222

(11c)

v

vv
)(DD

yx
THLyxxy α−α== (11d)

v

vv
)(DD zx

TVLzxxz α−α== (11e)

v

vv
)(DD

zy
TVLzyyz α−α== (11f)

Equations 11a to 11f become equivalent to Equations 10a to 10f when the two

transverse dispersivities are set equal.

In Equations 10 and 11, the components of the dispersion coefficient tensor

are defined in terms of the groundwater seepage velocity, v.  When the porosity is

spatially varying, it is more convenient to define an apparent dispersivity tensor

as

ijij DD̂ θ= (12)

where the apparent dispersion coefficient, D̂ , can be obtained by using the

components of the specific discharge q, instead of the linear velocity v, and

replacing *D  with *Dθ  in Equations 10 and 11.

Sinks and Sources

The fluid sink/source term of the governing equation, ssCq , represents

solute mass entering the model domain through sources or leaving the model

domain through sinks.  The term Cqs′  may be viewed as the “internal” sink/

source term which represents the change in solute mass storage caused by the

change in transient groundwater storage.  It does not cause mass to leave or enter

the model domain.

Sinks or sources may be classified as areally distributed sinks or sources or

as point sinks or sources.  The areally distributed sinks or sources include

recharge and evapotranspiration.  The point sinks or sources include wells,

drains, and rivers.  Constant-head and general head dependent boundaries in the

flow model are also treated as point sinks or sources because they function in

exactly the same fashion as wells, drains, or rivers in the transport model.

For sources, it is necessary to specify the concentration of source water.  For

sinks, the concentration of sink water is generally equal to the concentration of



12 Chapter 2   Fundamentals of Contaminant Transport Modeling

groundwater in the aquifer at the sink location and cannot be specified.

However, there is one exception where the concentration of sinks may differ

from that of groundwater.  The exception is evapotranspiration, which may be

assumed to take only pure water away from the aquifer so that the concentration

of the evapotranspiration flux is zero.

Chemical Reactions

The MT3DMS code is capable of handling equilibrium-controlled linear or

nonlinear sorption, nonequilibrium (rate-limited) sorption, and first-order reac-

tion that can represent radioactive decay or provide an approximate representa-

tion of biodegradation.  The general formulation designed to model rate-limited

sorption can also be used to model kinetic mass transfer between the mobile and

immobile domains in a dual-domain advection-diffusion model.  More sophisti-

cated chemical reactions can be modeled through add-on reaction packages.

Equilibrium-controlled linear or nonlinear sorption

Sorption refers to the mass transfer process between the contaminants

dissolved in groundwater (aqueous phase) and the contaminants sorbed on the

porous medium (solid phase).  It is generally assumed that equilibrium conditions

exist between the aqueous-phase and solid-phase concentrations and that the

sorption reaction is fast enough, relative to groundwater velocity, to be treated as

instantaneous.  The functional relationship between the dissolved and sorbed

concentrations under a constant temperature is referred to as the sorption iso-

therm.  Equilibrium-controlled sorption isotherms are generally incorporated into

the transport model through the use of the retardation factor as defined in Equa-

tion 6.  Three types of equilibrium-controlled sorption isotherms (linear,

Freundlich, and Langmuir) are considered in the MT3DMS transport model.

a. The linear sorption isotherm assumes that the sorbed concentration (C )

is directly proportional to the dissolved concentration (C):

CKC d= (13)

where Kd  is the distribution coefficient, L
3
M

-1
.  The retardation factor is

thus given by

d
bb K

C

C
R

θ
ρ

+=
∂
∂

θ
ρ

+= 11 (14)

b. The Freundlich isotherm is a nonlinear isotherm which can be expressed

in the following form,

a
f CKC = (15)
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where

fK = Freundlich constant, ( )a13ML −

a = Freundlich exponent, dimensionless

Both Kf
 
and a are empirical coefficients.  When the exponent a is equal to

unity, the Freundlich isotherm is equivalent to the linear isotherm.  The

retardation factor for the Freundlich isotherm is defined accordingly as

111 −
θ
ρ

+=
∂
∂

θ
ρ

+= a
f

bb CaK
C

C
R (16)

c. Another nonlinear sorption isotherm is the Langmuir isotherm, which is

described by the equation,

CK1

CSK
C

l

l

+
= (17)

where

lK = Langmuir constant, L
3
M

-1

 S = total concentration of sorption sites available, MM
-1

The retardation factor defined for the Langmuir isotherm is then

( ) 











+θ
ρ

+=
∂
∂

θ
ρ

+=
2

1
11

CK

SK

C

C
R

l

lbb (18)

Nonequilibrium sorption

When the local equilibrium assumption is not valid, it is assumed that the

sorption process can be represented through a first-order reversible kinetic

reaction as follows:









−β=

∂
∂

ρ
d

b
K

C
C

t

C
(19)

where

β = first-order mass transfer rate between the dissolved and sorbed

phases, T
-1

Kd = distribution coefficient for the sorbed phase as defined previously

for the linear sorption

Equation 19 needs to be solved simultaneously with the transport governing

equation to obtain solutions of solute transport affected by nonequilibrium
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sorption.  As the mass transfer rate β increases (i.e., the sorption process becomes

increasingly faster), the nonequilibrium sorption approaches the equilibrium-

controlled linear sorption as defined in Equation 13.  For very small values of β,

the exchange between the aqueous and solid phases is so slow that sorption

becomes essentially negligible.

Radioactive decay or biodegradation

The first-order irreversible rate reaction term included in the governing

equation, ( )CC bρλ+θλ− 21 , represents the mass loss of both the dissolved

phase ( )C  and the sorbed phase ( )C .  The rate constant is usually given in

terms of the half-life,

( ) 212 /t/ln=λ (20)

where t1/2 is the half-life of radioactive or biodegradable materials (i.e., the time

required for the concentration to decrease to one-half of the original value).

For radioactive decay, the reaction generally occurs at the same rate in both

phases.  For biodegradation, however, it has been observed that certain reactions

occur only in the dissolved phase.  That is why two different rate constants may

be needed.  It should be noted that various biodegradation processes in the

subsurface are usually more complex than that described by the first-order

irreversible rate reaction.  Other reaction packages for MT3DMS are either

currently available or under development for modeling more complex types of

biochemical and geochemical reactions.

Dual-Domain Mass Transfer

As discussed previously, solute transport in fractured media or extremely

heterogeneous porous media may be conceptualized as a dual-domain system;

transport is primarily by advection through the fractures or zones of high

hydraulic conductivity filled with mobile water (mobile domain) whereas

transport is primarily by diffusion through the nonfractured matrix or zones of

low hydraulic conductivity filled with immobile or relatively stagnant water

(immobile domain).  The governing equations for the dual-domain system can be

expressed, without explicit consideration of sorption, as follows:

( )

imimim,mmm,msss

mim
ij

m
ijm

i

im
im

m
m

CCCqCq

Cv
xx

C
D

xt

C
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θλ−θλ−′−+

θ
∂
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−




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

∂
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∂
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∂
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∂
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(21a)

( ) imimim,imm
im

im CCC
t

C
θλ−−ζ=

∂
∂

θ 1 (21b)
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where

  Cm = dissolved concentration in the mobile domain (referred to as the

mobile liquid phase), ML
-3

 Cim = dissolved concentration in the immobile domain (referred to as the

immobile liquid phase), ML
-3

  !m = porosity of the mobile domain, dimensionless

  !im = porosity of the immobile domain, or the difference between the total

and mobile porosities, dimensionless !im = ! - !m , dimensionless

"1,m = first-order reaction rate for the mobile liquid phase, T
-1

"1,im = first-order reaction rate for the immobile liquid phase, T
-1

ζ = first-order mass transfer rate between the mobile and immobile

domains, T
-1

Equation 21a is a statement of mass conservation for the total mass, while

Equation 21b is for the mass in the immobile domain.  If sorption must be

considered for solute transport in a dual-domain system, Equations 21a and 21b

can be rewritten as

( )

( )

( ) imbim,mbm,imimim,mmm,

msssmim
ij

m
ijm

i

im
b

im
im

m
b
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∂

−










∂
∂

θ
∂
∂

=

∂
∂

ρ−+
∂

∂
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∂
∂
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∂

∂
θ

1

1

2211

(21c)

( )

( ) ( ) imbim,imimim,imm

im
b

im
im

CfCCC

t

C
f

t

C

ρ−λ−θλ−−ζ=

∂
∂

ρ−+
∂

∂
θ

1

1

21

(21d)

where

mC = sorbed concentration in the mobile domain (referred to as the mobile

sorbed phase), MM
-1

imC = sorbed concentration in the immobile domain (referred to as the

immobile sorbed phase), MM
-1
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f = fraction of sorption sites that are in contact with the mobile liquid

  phase dimensionless (f may be approximately set equal to θθm )

m,2λ = first-order reaction rate for the mobile sorbed phase, T
-1

im,2λ =  first-order reaction rate for the immobile sorbed phase, T
-1

.

If a linear equilibrium-controlled sorption isotherm can be assumed,

Equations 21c and 21d are simplified as follows, assuming that the sorption

coefficient is the same in the mobile and immobile domains:

( )

( ) imdbim,mdbm,imimim,mmm,ms

ssmim
ij

m
ijm

i

im
imim

m
mm

CKfCKfCCCq
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
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∂
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θ+

∂
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θ

12211

.  (21e)

( ) ( ) imdbim,imimim,imm
im

imim CKfCCC
t

C
R ρ−λ−θλ−−ζ=

∂
∂

θ 121                   (21f)

where

mdbm KfR θρ+=1 =  retardation factor for the mobile domain,

     dimensionless

( ) imdbim KfR θρ−+= 11 = retardation factor for the immobile domain,

dimensionless

With the dual-domain conceptual model, the dispersion coefficient Dij in

Equations 21a, 21c, and 21e may be set equal or close to molecular diffusion

coefficient, since mechanical dispersion is introduced through mass transfer

between the mobile and immobile domains.  As the mass transfer rate ζ
increases, i.e., the exchange between the mobile and immobile domains becomes

increasingly fast, the dual-domain model functions more and more like a single-

domain model whose porosity approaches the total porosity of the porous

medium.  On the other end of the spectrum, as the mass transfer rate ζ
approaches zero, the dual-domain model also becomes equivalent to a single-

domain model but with the porosity of the single-domain model approaching the

porosity of the mobile domain.

Initial Conditions

The governing equation of the transport model describes the transient

changes of solute concentration in groundwater.  Therefore, initial conditions are

necessary to obtain a solution of the governing equation.  The initial condition in

general form is written as
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( ) ( ) 0=Ω= t ; onz,y,xct,z,y,xC o (22)

where ( )zyxco ,,  is a known concentration distribution and Ω  denotes the entire

model domain.  If nonequilibrium sorption or dual-domain mass transfer is

simulated, it may also be necessary to define initial concentration for the sorbed

or immobile phase.

Boundary Conditions

The solution of the governing equation also requires specification of

boundary conditions.  Three general types of boundary condition are considered

in the MT3DMS transport model: (a) concentration known along a boundary

(Dirichlet Condition), (b) concentration gradient known across a boundary

(Neumann Condition); and (c) a combination of (a) and (b) (Cauchy Condition).

a. For the Dirichlet boundary condition, the concentration is specified along

the boundary for the entire duration of the simulation,

( ) ( ) 0 , on,,,,,, 1 ≥Γ= ttzyxctzyxC (23)

where 1Γ  denotes the specified-concentration boundary, and ( )tzyxc ,,,

is the specified concentration along 1Γ .  The specified concentration may

be set to vary with time.

In a flow model, a Dirichlet boundary is a specified-head boundary which

acts as a source or sink of water entering or leaving the model domain.

Similarly, a specified-concentration boundary in a transport model acts as a

source providing solute mass to the model domain or as a sink taking solute

mass out of the model domain.  A specified-head boundary in the flow

model may or may not be a specified-concentration boundary in the

transport model.

b. For the Neumann boundary condition, the concentration gradient is

specified across the boundary, or

                                                (24)

where ( )tzyxf i ,,,  is a known function representing the dispersive flux

normal to the boundary 2Γ .  A special case is a no-dispersive-mass-flux

boundary where ( ) 0,,, =tzyxf i .

c. For the Cauchy boundary condition, both the concentration value and the

concentration gradient are specified, i.e.,

0,on),,,( 2 ≥Γ=
∂
∂

θ ttzyxf
x

C
D i

j
ij
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( ) 0 , on,,, 3 ≥Γ=−
∂
∂

θ ttzyxgCq
x

C
D ii

j

ij (25)

where ( )tzyxgi ,,,  is a known function representing the total flux

(dispersive and advective) normal to the boundary 3Γ .  For a physically

impermeable boundary, both dispersive and advective fluxes are equal to

zero so that ( ) 0,,, =tzyxgi .  It is customary to assume that the advective

flux dominates over the dispersive flux so that the above equation can be

simplified as

( ) ,,, tzyxgCq ii =− (26)

Equation 26 can be handled readily in the transport model, similarly to the

sink/source term.
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3 Overview of Solution
Techniques

Introduction

Numerical solution of the advection-dispersion equation as described in

Chapter 2 has been referred to as an “embarrassingly” difficult problem (Mitchell

1984; Leonard 1988).  The fundamental difficulty stems from the fact that the

spatial first derivative term (advection) and the spatial second derivative term

(mechanical dispersion and molecular diffusion) co-exist in the transport-

governing equation.  While numerous techniques have been developed within

and outside the groundwater modeling community in the last 3 decades, there is

still not a single technique that can yield completely satisfactory solutions under

general hydrogeologic conditions.  Zheng and Bennett (1995) provide an

introduction to some of the more commonly used transport solution techniques

and discuss their relative strengths and limitations.

Most numerical methods for solving the advection-dispersion-reaction equa-

tion can be classified as Eulerian, Lagrangian, and mixed Eulerian-Lagrangian

(Neuman 1984).  In the Eulerian approach, the transport equation is solved with a

fixed grid method such as the standard finite-difference or finite-element method.

The Eulerian approach is mass conservative, offers the advantage and conve-

nience of a fixed grid, and handles dispersion/reaction dominated problems effec-

tively.  For advection-dominated problems which exist under many field

conditions, however, an Eulerian method may be susceptible to excessive

numerical dispersion or artificial oscillation.  To overcome these problems,

restrictively small grid spacing and time-steps may be required.

In the Lagrangian approach, the transport equation (both the advection and

dispersion terms) is solved in either a deforming grid or deforming coordinate in

a fixed grid through particle tracking, as in the random walk method.  The

Lagrangian approach provides a highly efficient solution to advection-dominated

problems virtually free of numerical dispersion.  However, without a fixed grid

or coordinate system, a Lagrangian method can lead to numerical instability and

computational difficulties in nonuniform media with multiple sinks/sources and

complex boundary conditions (Yeh 1990).  Velocity interpolation needed in

particle tracking can also lead to local mass balance errors and solution

anomalies (LaBolle, Fogg, and Tompson 1996).  In addition, the concentration
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solution obtained generally has a “rough” appearance that requires posterior

smoothing and interpretation.

The mixed Eulerian-Lagrangian approach attempts to combine the advan-

tages of both the Eulerian and the Lagrangian approaches by solving the advec-

tion term with a Lagrangian method (particle tracking) and the dispersion and

reaction terms with a Eulerian method (finite-difference or finite-element).

However, some commonly used Eulerian-Lagrangian procedures, such as the

method of characteristics, do not guarantee mass conservation.  Since particle

tracking is required, mixed Eulerian-Lagrangian methods also suffer from some

of the same numerical difficulties that plague the Lagrangian methods.  In addi-

tion, the mixed Eulerian-Lagrangian methods may not be as computationally

efficient as either the purely Eulerian or the purely Lagrangian methods.

In recent years, a class of transport solution techniques, sometimes collec-

tively referred to as the total-variation-diminishing (TVD) methods (Harten 1983,

1984), have been developed, mainly in the computational fluid dynamics (CFD)

community.  The term TVD refers to the property shared by these methods that

the sum of concentration differences between adjacent nodes diminishes over

successive transport steps, a necessary condition if the transport solution is to

remain largely free of spurious oscillations.  The TVD methods are essentially

higher-order finite-difference (or finite-volume) methods, and as such, they

belong to the Eulerian family of solution techniques and are inherently mass con-

servative.  Because a higher-order method usually minimizes numerical disper-

sion at the expense of introducing spurious oscillations, TVD schemes are

typically implemented with numerical procedures (termed flux limiters) to

suppress or eliminate spurious oscillations while preserving the sharp concentra-

tion fronts.  Compared with the standard finite-difference method with either

upstream or central-in-space weighting, TVD schemes are generally much more

accurate in solving advection-dominated problems, albeit with a greater

computational burden.  Compared with some Lagrangian or mixed Eulerian-

Lagrangian methods such as the method of characteristics, TVD schemes are not

as effective in eliminating numerical dispersion while preserving concentration

“peaks”, but their mass conservation property, smaller memory requirements, and

some other advantages make TVD schemes arguably the best compromise

between the standard finite-difference method and the particle tracking based

Lagrangian or mixed Eulerian-Lagrangian methods.

MT3DMS includes the standard finite-difference method, several mixed

Eulerian-Lagrangian methods, and a third-order TVD method with a universal

flux limiter.  These solution options treat the dispersion, sink/source, and reaction

terms in exactly the same fashion, using the block-centered finite-difference

method, either explicitly or implicitly.  They differ, however, in the way the

advection term is solved.  Thus, the remainder of this chapter will focus on the

different approaches used to solve the advection term; the finite-difference

solution of dispersion, sink/source, and reaction terms, similar to that of the flow

equation, is discussed in detail in the next chapter.
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Standard Finite-Difference Method

The general transport equation described in Chapter 2 can be written as
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where L(C) denotes the operator for various nonadvection terms including

dispersion/diffusion, fluid sink/source, and chemical reactions.  Applying the

finite difference algorithm, the first partial derivatives representing the three

components of the advection term at any finite difference cell (e.g., (i, j, k) (see

Figure 2)) can be approximated by the concentration values at the cell interfaces,

as given below:
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where jx∆ , iy∆ , kz∆  are the dimensions of cell (i, j, k) in the x, y, and z

directions, respectively; and j+½, i+½, and k+½ denote the cell interfaces

normal to the x, y, and z directions, respectively.

How the interface concentration is determined is what distinguishes one

solution technique from another.  In the standard finite-difference method, the

interface concentration is evaluated using either the upstream or the central-in-

space weighting scheme.  For the upstream weighting scheme, the interface con-

centration between two neighboring nodes in a particular direction, (e.g., x) is set

equal to the concentration at the upstream node along the same direction, i.e.,


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kjixkji
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The upstream weighting scheme results in oscillation-free solutions.  However,

the solution of the advection term is only accurate to the first order, and as a

result, it can lead to significant numerical dispersion when applied to advection-

dominated problems, since the truncation error resulting from the advection

solution is of the same order and could overwhelm the second-derivative physical

dispersion term (Zheng and Bennett 1995).
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Figure 2. Index system used for the finite-difference (finite-volume)
grid (the interfaces between node (i, j, k) and the six
adjacent nodes are shown as shaded surfaces)

For the central-in-space weighting scheme, the interface concentration is set

equal to the weighted average of the concentrations on the two sides of the

interface, i.e.,

( ) kjixkjixkji CCC ,,,1,,2/1, 1 α−+α= −− (30)

where ( )jjjx xxx ∆+∆∆=α −1  is the spatial weighting factor along the x

direction.  This weighting is equivalent to linear interpolation.  When the grid

spacing is regular, 5.0=α x .  With the central-in-space weighting scheme, the

solution of the advection term is accurate to the second order, and as a result, it

does not lead to any numerical dispersion since the solution of the dispersion

term is also accurate to the second order.  However, if the transport problem is

advection dominated, the central-in-space weighting scheme can lead to

excessive artificial oscillation, which is typical of higher-order truncation errors.

Because of the dual problems of numerical dispersion and artificial

oscillation, the standard finite-difference method is suitable only for solving

transport models not dominated by advection (i.e., when either the physical

dispersivity is large or the grid spacing is made sufficiently fine).  Several
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sources have indicated that when the grid Peclet number is smaller than four (see

Zheng and Bennett 1995), the standard finite-difference method with either

upstream or central-in-space weighting is reasonably accurate and thus can be

used with confidence.  In addition, because the standard finite-difference method

is generally more computationally efficient than other methods, it may be useful

for obtaining first approximations in the initial stages of a modeling study.

Third-Order TVD Method

A large number of TVD schemes for solving advection-dominated transport

problems can be found in the literature (Harten 1983, 1984; Osher and

Chakravarthy 1984, 1986; Yee 1987; Cox and Nishikawa 1991).  The MT3DMS

code is implemented with a third-order TVD scheme based on the ULTIMATE

algorithm (Universal Limiter for Transient Interpolation Modeling of the

Advective Transport Equations) (Leonard 1988; Leonard and Niknafs 1990,

1991) which is in turn a descendant of the earlier QUICKEST algorithm

(Quadratic Upstream Interpolation for Convective Kinematics with Estimated

Streaming Terms) (Leonard 1979).  With the ULTIMATE scheme, the interface

concentrations are determined through a third-order polynomial interpolation of

nodal concentrations, supplemented by a universal flux limiting procedure to

minimize unphysical oscillations which may occur if sharp concentration fronts

are involved.  This third-order ULTIMATE scheme is mass conservative, without

excessive numerical dispersion, and essentially oscillation-free.  The

ULTIMATE scheme was significantly superior to some popular second-order

TVD schemes (Leonard 1988) and was considered to be possibly the most

accurate practical method available (Roache 1992).  The basic ideas of the

ULTIMATE scheme in one dimension are presented below; general 3-D

equations are provided in the next chapter.

Consider a one-dimensional (1-D) form of Equation 27 in a uniform flow

field (Figure 3),
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Assume a finite-difference grid with regular spacing superimposed by a local

coordinate system with the origin at nodal point j.  Further assume that the

velocity is positive from left to right (Figure 3).  The concentration at nodal point

j (x=0) at time level n+1 due to advection alone can be directly written as

( ) ( )0,,01 tvCtCC n
j ∆−=∆=+ (32)

where t∆  is the transport step size between the old time level n (t=0) and the

new time level n+1 )( tt ∆= .  Equation 32 can be understood by imagining a

particle originating at a distance of tv∆  upstream (to the left) of the nodal point

j.  After a time increment t∆ , the particle reaches the nodal point j.  The concen-

tration carried by the particle is thus the concentration at the nodal point j.



24 Chapter 3   Overview of Solution Techniques

Because ( )0,tvC ∆−  at the old time level generally does not coincide with a

nodal point, it must be determined through interpolation from the concentrations

at the nearby nodes.  A general third-order polynomial formula can be used for

this purpose, which, in 1-D form, can be written as

( ) 320 dxcxbxa,xC +++= (33)

where a, b, c, and d are coefficients which can be related to the nodal concentra-

tions by noting that
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Also note that four nodal points are needed to determine the four coefficients in

Equation 33.  Among the four nodal points selected are the node j under con-

sideration, the two nodes in the immediate vicinity of node j, and one additional

node on the upstream side.  If the velocity were from right to left, the node j+2

instead j-2 would have been selected.  Thus, the polynomial interpolation as used

in the ULTIMATE scheme is third order, biased toward the upstream direction.

Substituting Equation 34 into 33, we can determine the coefficients in Equation

33 as follows:

Figure 3.   Illustration of the nodal points involved in
 the ULTIMATE scheme in one dimension

j
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The solution of Equation 32 can thus be obtained from Equations 33 and 35 as
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where xtvCr ∆∆= .  Compared with the explicit finite-difference solution in

terms of interface concentrations,
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it can be seen that in the ULTIMATE scheme, the interface concentrations, in

one dimensional form, are determined by
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where the first term corresponds to the standard finite-difference solution with

central-in-space weighting, the second term is referred to as the GRADIENT

term, and the third term as the CURVATURE term.  Note that in two-

dimensional (2-D) or 3-D space, the equations for the ULTIMATE scheme are

much more complex than Equation 38, with more than one GRADIENT and

CURVATURE term and additional TWIST terms (Chapter 4).  However, the

basic ideas remain the same and the more complex equations can be derived

following the same procedures as outlined above.
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The interface concentrations as determined in Equation 38 can lead to

unphysical oscillations if sharp concentration fronts are involved, as in

advection-dominated problems.  To circumvent this problem, the ULTIMATE

scheme employs a universal flux limiter to make adjustments to the interface

concentrations, after they are first determined from polynomial interpolation,

according to certain rules.  The following is a brief description of how the

universal flux limiter works, based on Leonard and Niknafs (1990).

Consider Figure 4 which shows three nodes (the two nodes j and j+1

straddling the interface in question, j+½, and the adjacent upstream node j-1).  If

the concentration at interface j+½ lies between the two neighboring nodal con-

centrations, the concentration profile is locally monotonic and no spurious

oscillation has resulted from interpolation.  On the other hand, if the concentra-

tion profile is not monotonic, it is likely due to spurious oscillation, and some

numerical procedure (i.e., a flux limiter) may be needed to remove the

oscillation.  Thus, the first step in implementing a flux limiter is to check the

local monotonicity after the interface concentration is determined.  For this

purpose, we normalize all concentrations as shown in Figure 4 according to
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Note from Equation 39, in terms of normalized concentrations,
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If the concentration profile across the three nodes as shown in Figure 4 is

monotonic, the following conditions must hold:
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Equations 40 and 41 are a necessary condition for the concentration profile to be

locally monotonic, but they alone are not enough to guarantee overall computa-

tional monotonicity.  For this, consider the explicit finite-difference solution at

node j as shown in Equation 37 but now in terms of normalized variables,
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In order to ensure local monotonicity, 1+n
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Figure 4. Diagram showing a monotonic concentration distribution in the
immediate vicinity of the interface j+1/2 under consideration
(concentrations are normalized according to Equation 39)

The worst-case condition is
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The right-hand inequality in Equation 44 is ensured because, as seen in

Equation 42 when n
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.  The left-hand

inequality in Equation 44 implies, using Equation 42,
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Equations 40 and 46 constitute the universal limiter constraints on the interface

concentration 2/1

~
+jC  with respect to the nodal concentration n

jC
~

, when n
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~
 is

within the monotonic range:
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Figure 5.   Illustration of the universal
                 limiter constraints used in the
                 ULTIMATE scheme

Figure 5 is a graphical illustration

of the universal limiter constraints.

The shaded region is bounded by

the constraints as given in

Equations 40 and 46.  If the

normalized interface concentration

21 /j
C
~

+  lies within the shaded

region, the universal limiter

constraints are satisfied (i.e., the

concentration profile is locally

monotonic without spurious

oscillations).  If 
21 /j

C
~

+  lies outside

the shaded region, some strategies

may be devised to adjust 
21 /j

C
~

+  in

order to suppress the spurious

oscillation and maintain the

computational monotonicity.  The

simplest strategy is to set 
21 /j

C
~

+

equal to the concentration at the

closest upstream node,
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In summary, the ULTIMATE scheme as described above consists of the

following basic steps:

a. Construct an explicit estimate for the normalized interface concentration

value 21 /jC +  using Equation 38.

b. Compute the corresponding normalized value 21 /jC
~

+  according to

Equation 39, and also normalize concentrations at the two nodes

straddling the interface and the adjacent upstream node.

c. If the point (
21 /j

n
j C

~
,C

~
+ ) lies within the shaded region of Figure 5,

proceed with the unadjusted 21 /jC + .

d. If the point (
21 /j

n
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~
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~
+ ) lies outside this region, adjust 21 /jC

~
+

according to Equation 48.

e. Reconstruct (unnormalize) ( )1121121 −++−+ −+= jj/jj/j
CCC

~
CC .

f. Repeat for each finite-difference cell (control-volume) interface.
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Mixed Eulerian-Lagrangian Methods

MT3DMS is implemented with several mixed Eulerian-Lagrangian methods

as in the original MT3D code, including the forward-tracking method of charac-

teristics (MOC), the backward-tracking modified method of characteristics

(MMOC), and a hybrid of these two methods (HMOC).  This section provides a

brief description of the basic principles and associated equations behind each of

these methods.  More detailed information on computer implementation of these

methods is presented in the next chapter.

To use the Eulerian-Lagrangian approach, the transport governing equation,

presented as Equation 1 in Chapter 2, needs to be expressed in Lagrangian form.

First, the advection term can be expanded as follows:
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Substituting Equation 49 into Equation 1 and dividing both sides by the

retardation factor, the governing equation becomes
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where Rvv ii =  represents the "retarded" velocity of a contaminant particle.

Equation 50 is an Eulerian expression in which the partial derivative,

tC ∂∂ , represents the rate of change in solute concentration at a fixed point in

space.  Equation 50 can also be expressed in Lagrangian form as

( ) C
R

C
R

CC
R

q

x

C
D

xRDt

DC b
s

s

j
ij

i θ
ρλ

−
λ

−−
θ

−










∂
∂

θ
∂
∂

θ
= 211

(51)

where the substantial derivative, ii xCvtCDtDC ∂∂+∂∂= , represents the rate

of change in solute concentration along the pathline of a contaminant particle (or

a characteristic curve of the velocity field).

By introducing the finite-difference algorithm, the substantial derivative in

Equation 51 can be approximated as

t
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so that Equation 51 becomes

RHStCC *n
m

n
m ×∆+=+1 (53)
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where

1+n
mC = solute concentration for node m at new time level n+1;

*n
mC = solute concentration for node m at new time level n+1 due to

advection alone, also referred to as intermediate time level *n

t∆ = time increment between old time level n  and new time level n+1

RHS = finite-difference approximation to the terms on the right-hand side

of Equation 51.  The finite-difference approximation is explicit if

the concentration at the old time level 
nC  is used in the calculation

of RHS; it is implicit if the concentration at the new time level 
1+nC

is used

Equation 53 constitutes the basic algorithm of the mixed Eulerian-

Lagrangian methods as implemented in the MT3DMS code.  In these methods,

the term *n
mC  in Equation 53, which accounts for the effect of advection, is

solved with a Lagrangian method in a moving coordinate system, while the

second term in Equation 53, which accounts for the effects of dispersion,

sink/source mixing, and chemical reactions, is solved with either the explicit or

implicit finite-difference method on a fixed Eulerian grid.

Depending on the use of different Lagrangian techniques to approximate the

advection term, the mixed Eulerian-Lagrangian methods may be loosely classi-

fied as the front-tracking MOC (Garder, Peaceman, and Pozzi 1964; Konikow

and Bredehoeft 1978; Zheng 1993; Konikow, Goode, and Hornberger 1996); the

backward-tracking MMOC (Russell and Wheeler 1983; Cheng, Casulli, and

Milford 1984; Roache 1992; Healy and Russell 1993; Yeh et al. 1993); and a

combination of these two (Neuman 1981 and 1984; Farmer 1987; Yeh, Chang,

Short 1992).  Numerical schemes representative of each of these methods are

implemented in the MT3DMS code.  The concepts and the fundamental ideas

behind these methods are briefly discussed below; their numerical implemen-

tation is discussed in detail in Chapter 4.

Method of characteristics (MOC)

The MOC was originally applied to transport in porous media by Garder,

Peaceman, Pozzi  (1964) for calculation of miscible displacement in reservoir

simulation.  This method was later made popular by the U.S. Geological Survey

2-D transport model (Konikow and Bredehoeft 1978) and has been widely used

in field studies.  The MOC uses a conventional particle-tracking technique for

solving the advection term.  At the beginning of the simulation, a set of moving

particles is distributed in the flow field either randomly or with a fixed pattern.  A

concentration and a position in the Cartesian coordinate system are associated

with each of these particles.  Particles are tracked forward through the flow field

using a small time increment.  At the end of each time increment, the average
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intermediate concentration at cell m due to advection alone over the time

increment, *n
mC , is evaluated from the concentrations of moving particles which

are located within that cell (Figure 6).  This intermediate concentration is used to

calculate changes in concentration due to dispersion and other processes over that

time increment.  If a simple arithmetical averaging algorithm is used, this average

intermediate concentration is expressed by the following equation:
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where

mNP = number of particles within cell m

n
pC = concentration of the 

thp  particle at the old time level (n)

Figure 6.   Illustration of the MOC

Strictly speaking, Equation 54 is applicable only if the model grid is regular.

Other averaging algorithms can be used to handle an irregular grid more

accurately.  Zheng (1993) presents a volume-based averaging algorithm as

0

11

>= ∑∑
==

m

NP

p

p

NP

p

n
pp

*n
m NP  ifVCVC

mm

(55)

where Vp is the volume of the cell in which the pth
 particle is first generated.  In

a regular grid, Equation 55 reduces to Equation 54.

m
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After completing the evaluation of *n
mC  for all cells, a weighted concentra-

tion, n̂
mC , is calculated based on *n

mC
 
and the concentration at the old time level

n
mC ,

( ) n
m

*n
m

n̂
m CCC ω−+ω= 1 (56)

where ω  is a weighting factor between 0.5 and 1. n̂
mC  is then used to calculate

the second term in Equation 53, or the changes in concentration due to

dispersion, sink/source mixing, and chemical reactions (the terms on the right-

hand side of Equation 51) with either the explicit or implicit finite-difference

method.  If the explicit finite-difference method is used, then

( )n̂
m

n
m CRHStC ×∆=∆ +1 (57)

The use of the weighted concentration in Equation 57 represents an averaged

approach because the processes of dispersion, sink/source mixing, and/or

chemical reactions occur throughout the time increment.

The concentration for cell m  at the new time level (n+1) is then the sum of

the *n
mC  and 1+∆ n

mC  terms.  The concentrations of all moving particles are also

updated to reflect the change due to dispersion, sink/source mixing, and chemical

reactions.  This completes the calculation of one transport step for the MOC.  The

procedure is repeated until the end of a desired time period is reached.

One of the most desirable features of the MOC technique is that it is virtually

free of numerical dispersion caused by spatial truncation errors.  The major

drawback of the MOC technique is that it can be slow and requires a large

amount of computer memory when it is necessary to track a large number of

moving particles, especially in three dimensions.  The MOC technique can also

lead to large mass balance discrepancies under certain situations because the

discrete nature of the particle-tracking-based mixed Eulerian-Lagrangian solution

techniques does not guarantee local mass conservation at a particular time-step.

In the MT3DMS code, the computer memory requirement for the MOC

technique is dramatically reduced through the use of a dynamic approach for

particle distribution.  The mass balance discrepancy problem is also mitigated to

some degree through the use of consistent velocity interpolation schemes and

higher-order particle-tracking algorithms.  However, it should be pointed out that

the MOC technique can still result in significant mass balance errors if the model

grid is highly irregular.  When this happens, it is more appropriate to the use the

TVD scheme or the standard finite-difference method if numerical dispersion is

not a concern.
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Modified method of characteristics (MMOC)

The MMOC was originally developed to approximate the advection term

accurately without sacrificing a great deal of computational efficiency (Russell

and Wheeler 1983; Cheng, Casulli, and Milford 1984).  The MMOC technique is

similar to the MOC technique except in the treatment of the advection term.

Unlike the MOC technique, which tracks a large number of moving particles

forward in time and keeps track of the concentration and position of each

particle, the MMOC technique places one fictitious particle at the nodal point of

the fixed grid at each new time level (n+1).  The particle is tracked backward to

find its position at the old time level (n).  The concentration associated with that

position is used to approximate the *n
mC  term, is the intermediate concentration

due to the effect of advection during the period since the preceding time level

(Figure7):

Figure 7.   Illustration of the MMOC

( ) ( )dxCxCC m
n

p
n*n

m −== (58)

where

px = position which a particle starting from nodal point m reaches

when it is tracked backward along the reverse pathline over the

time increment t∆

mx = position vector of nodal point m

m

p
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d = characteristic nodal displacement, or the distance along a particle

path from mx   to px

( )p
n xC = concentration at position px  at the old time level (n), generally

interpolated from concentrations at neighboring nodal points

The MMOC technique uses one particle for each finite-difference cell,

whereas the MOC technique generally requires several particles per cell.

Therefore, the MMOC technique, used in conjunction with a simple lower-order

interpolation scheme, is normally faster than the MOC technique.  Furthermore,

because the MMOC technique starts particles at nodal points at each new time

level, there is no need to store the particle identities in computer memory.

Hence, for problems in which the MOC technique requires a large number of

particles, the MMOC technique requires much less computer memory.  The

MMOC technique is also free of artificial oscillations if implemented with a

lower-order interpolation scheme such as linear interpolation (also referred to as

bilinear in two dimensions or trilinear in three dimensions).  However, with a

lower-order interpolation scheme, the MMOC technique introduces considerable

numerical dispersion, especially for sharp front problems.  Higher-order

interpolation schemes can be used to eliminate or reduce numerical dispersion.

For example, Cheng, Casulli, and Milford  (1984) used a quadratic interpolation

scheme in 2-D simulations and pointed out that it is free of numerical dispersion.

However, it is computationally less efficient than the linear scheme and can lead

to severe artificial oscillations for sharp front problems.  Healy and Russell

(1989) tested several interpolation schemes for 1-D problems and concluded that

a mixed linear/quadratic scheme can minimize both numerical dispersion and

artificial oscillations.  The drawback is a much higher computational require-

ment, especially in a multidimensional simulation, than the linear scheme, and it

does not conserve mass as well, thereby offsetting much of the computational

efficiency of the MMOC technique.  For these reasons, the MMOC technique in

the MT3DMS transport model is implemented only with a lower-order interpola-

tion scheme and is intended only for use in situations where sharp fronts are not

present so that any numerical dispersion error resulting from the solution scheme

is insignificant.

Hybrid method of characteristics (HMOC)

As described in the preceding discussions, either the MOC or the MMOC

scheme may be utilized to solve the mixed Eulerian-Lagrangian equation.  The

selection of the methods is based on such considerations as field conditions

(whether the concentration field has sharp or smooth fronts) and computer

resources available (generally the MOC solution requires more memory space

and longer execution time).  A third option is to use a hybrid of the two methods;

this option is referred to here as the HMOC.

The HMOC technique attempts to combine the strengths of the MOC and the

MMOC techniques by using an automatic adaptive scheme conceptually similar

to the one proposed by Neuman (1984).  The fundamental idea behind this
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scheme is automatic adaptation of the solution process to the nature of the

concentration field.  When sharp concentration fronts are present, the advection

term is solved by the MOC technique through the use of moving particles

distributed dynamically around each front.  Away from such fronts, the advection

term is solved by the MMOC technique, with fictitious particles placed at the

nodal points tracked directly backward in time.  When a front dissipates due to

dispersion and chemical reactions, the forward tracking stops automatically and

the corresponding particles are removed.  By selecting an appropriate criterion

for controlling the switch between the MOC and MMOC schemes, the adaptive

procedure can provide accurate solutions to transport problems over the entire

range of Peclet numbers from 0 to ∞ , with virtually no numerical dispersion,

while at the same time using far fewer particles than would be required by the

MOC scheme alone.

Under certain circumstances, the choice for the adaptive criterion used in the

HMOC scheme may not be obvious, and the adaptive procedure may not lead to

an optimal solution.  In these cases, manual selection of either the MOC or the

MMOC scheme may be more efficient.  Thus, all three solution schemes are

included in the current version of the MT3DMS code.

Summary of Available Solution Options

A unique aspect of MT3DMS is the multitude of solution options available in

a single code as listed in Table 1.  As discussed in the preceding sections, the

advection term can be solved with the particle-tracking-based Eulerian-

Lagrangian methods, the standard finite-difference method, or the third-order

TVD (ULTIMATE) method.  In the current version, the TVD option is always

explicit, subject to a stability constraint.  Whether the standard finite-difference

solution is explicit or implicit depends on whether the Generalized Conjugate

Gradient Solver (GCG) package is selected by the user (Chapter 4).  If the GCG

package is selected, the implicit finite-difference method is used to solve the

advection term, without any stability constraints, using either the upstream or the

central-in-space weighting.  If the GCG package is not selected, the explicit

finite-difference method is used instead, subject to the usual stability constraint.

When the explicit finite-difference method is used, only the upstream weighting

is available since the explicit scheme with central-in-space weighting is uncon-

ditionally unstable.  The dispersion, sink/source, and reaction terms are solved

together implicitly if the GCG package is selected, or explicitly if the GCG

package is not selected.  The MT3DMS code is structured in such a way that the

developers of the add-on reaction packages for MT3DMS can implement their

packages either implicitly or explicitly.
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Table 1
Solution Options Available in the MT3DMS Code

Group
Solution Options for
Advection

1

Solution Options for
Dispersion, Sink/Source,
and Reaction

1

A Particle-tracking-based Eulerian-Lagrangian methods

•   MOC

•   MMOC

•   HMOC

Explicit finite-difference
method

B Particle Tracking Based Eulerian-Lagrangian Methods

•   MOC

•   MMOC

•   HMOC

Implicit finite-difference
method

C Explicit Finite-Difference Method

•   Upstream weighting

Explicit finite-difference
method

D Implicit Finite-Difference Method

•   Upstream weighting

•   Central-in-space weighting

Implicit finite-difference
method

E Explicit 3
rd
-order TVD (ULTIMATE) Explicit finite-difference

method

F Explicit 3
rd
-order TVD (ULTIMATE) Implicit finite-difference

method

1
   New options are showing in italics.
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4 Numerical Implementation

Spatial Discretization

The MT3DMS transport model follows the same spatial discretization

convention as used by the United States Geological Survey modular 3-D finite-

difference groundwater flow model, referred to as MODFLOW (McDonald and

Harbaugh 1988; Harbaugh and McDonald 1996).  An aquifer system is

discretized into a mesh of blocks, or cells, the locations of which are described in

terms of rows (I), columns (J), and layers (K) as illustrated in Figure 8.  Follow-

ing the convention used in Figure 8, the width of cells in the row direction, at a

given column, J, is designated jr∆ ; the width of cells in the column direction, at a

given row, I, is designated ic∆ ; and the thickness of cells in a given layer, K, is

designated kv∆ .  Thus a cell with indices (i, j, k) has a volume of kij vcr ∆∆∆ .

While the flow model does not require the designation of x, y, and z

coordinate axes, the transport model does.  In the MT3DMS model, an

assumption is made that the x, y, and z coordinate axes are oriented along the

row, column, and layer directions, respectively.  The origin of the Cartesian

coordinate system is located at the upper, left corner of the cell at the first row,

first column, and first layer, or cell (1,1,1), as illustrated in Figure 9.  Because the

convention followed in both the MT3DMS and MODFLOW models is to number

layers from the top down, the z axis is pointed downward in the direction of

decreasing elevation.  With the Cartesian coordinate system, jr∆ along the row

direction  is equivalent to jx∆  along the x axis; ic∆ along the column direction is

equivalent to iy∆
 
along the y axis; and kv∆  along the layer direction is

equivalent to kz∆
 
 along the z axis.

The fixed grid system of the transport model is based on the block-centered

formulation as illustrated in Figure 10.  The block-centered formulation places a

point, called a node, at the center of the cell, where the concentration or hydraulic

head is calculated.  The chemical and hydraulic parameters such as dispersivities

or hydraulic conductivities are assumed to be uniform over the extent of a cell.
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Figure 8.   Spatial discretization of an aquifer system (after McDonald and Harbaugh 1988)
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As shown in Figures 8 and 9, an aquifer system is normally divided areally

by two sets of parallel, orthogonal lines and vertically by parallel, horizontal

planes so that each cell formed by the discretization is a rectangular block.  To

allow flexibility in handling geologic units of varying thickness, the MT3DMS

transport model, as in MODFLOW, permits the use of a deformed mesh in the

vertical direction as illustrated in Figure 11.  The deformed vertical discretiza-

tion, however, can introduce some numerical discretization error, especially in

the transport simulation.  Therefore, when the MT3DMS model is used with

highly deformed vertical discretization, the simulation results should be

evaluated carefully to ensure their accuracy.

Figure 9. Cartesian coordinate system used in the MT3DMS transport model
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Figure 10.   Diagram showing the block-centered grid system
                              (after McDonald and Harbaugh 1988)

Temporal Discretization

In most flow models, such as MODFLOW, simulation time is usually

divided into “stress periods” -- time intervals during which all external stress

parameters (i.e., sink/source) are constant.  Stress periods are, in turn, divided

into time-steps if the simulation is transient.  The time-steps within each stress

period usually form a geometric progression.  The length of each time-step is

normally calculated by the program using the user-specified length of the stress

period, the number of time-steps, and a time-step multiplier.

In the MT3DMS model, transport simulation is based on the head solution

provided by a separate flow model.  The length of the time-step used for the head

solution is generally too large to be used as the length of the time-step for the

transport solution, because the transport solution has either stability constraints

and/or accuracy requirements that are more restrictive than those for the flow

solution.  Each time-step of the head solution is, therefore, divided further into

smaller time increments, called transport steps, during which heads are con-

sidered constant.  The length of each transport step can be specified in the model

input, or determined by the model with an automatic step-size control procedure.

The discretization of time is illustrated in Figure 12.
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Figure 11.   Schemes of vertical discretization (after McDonald and Harbaugh 1988)
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Figure 12.   Discretization of simulation time in the transport model (top:  simulation is
divided into stress periods and time steps; bottom:  time step is further
divided into transport steps)

Generally, the flow and transport models should have the same number of

stress periods.  The number of time steps used in obtaining the flow solution in

each stress period, referred to as “flow time step”, should be specified in the

transport model so that the velocity field and sink/source information can be

updated in the transport model properly.  Only when the flow model is steady-

state with only one stress period and one time step, does the MT3DMS code

allow the flow and transport models to have different numbers of stress periods.

This is because, when the flow model is steady state, the velocity and sink/source

information needs to be updated only once at the beginning of the simulation.  In

this case, the transport model is allowed to have as many stress periods as

necessary to accommodate time-varying sink/source concentrations, while the

flow rates of sinks/sources remain unchanged.
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Implementation of the Finite-Difference Method

Implicit finite-difference formulation

As derived in Chapter 2, the Eulerian form of the transport equation, under

the local equilibrium assumption, can be written as,

( ) CCCqCqCq
xx

C
D

xt

C
R bsssi
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where ijij DD θ=ˆ  is the apparent dispersion coefficient tensor, and all other

terms have been defined in Chapter 2.  If nonequilibrium sorption or dual-

porosity mass transfer is considered, a second equation is required to define the

rate of change in the sorbed or immobile concentration as discussed later in

subparagraph e “Chemical Reaction Component”.

Applying the implicit finite-difference algorithm for node (i,j,k), the time

derivative in Equation 59 can be approximated as follows,
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,,,, (60)

where index n represents the old time level with known concentrations, and index

n+1 represents the new time-level with unknown concentrations.

The advection term in Equation 59, expressed in component form, can be

approximated as

 (61)

where 2/1±αxj , 2/1±α yi , and 2/1±α zk  are the spatial weighting factors for the

advection term.  If the upstream weighting scheme is used, the weighting factors

are defined by
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If the central-in-space weighting scheme is used, the weighting factors are

defined by
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The dispersion term in Equation 59, expressed in component form, can be

approximated as follows
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where xω , yω , and zω  are the spatial weighting factors used to compute the

concentration value at a cell interface when evaluating a dispersion cross term,

defined as
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Substituting Equations 60, 61, and 64 into 59 and multiplying both sides by

kij zyx ∆∆∆  (i.e., the volume of cell (i,j,k)) yields the following general finite-

difference equation for cell (i,j,k),
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where A is the coefficient matrix and b is the right-hand-side vector containing

all the known quantities.  The 19 coefficients in the coefficient matrix A and the

entries in vector b are listed below in five groups; basic, advection, dispersion,

sink/source, and chemical reaction.

a. Basic component.  The basic components of matrix A and right-hand-side

vector b stem from the approximation of the time derivative, i.e.,

tzyxRA kijkjikjikji
∆∆∆∆θ−= ,,,,

1
,,

(67)

tCzyxRb
n
ijkkijijkijkijk ∆∆∆∆θ−= (68)

where the retardation factor kjiR ,,  is set equal to one if sorption is not

present or is not controlled by local equilibrium.  When nonlinear sorption

is simulated, kjiR ,,  is updated with the concentration values calculated in

the preceding iteration.

For inactive and constant-concentration cells, we always have
n

kji
n

kji
CC

,,
1
,,

=+  which is obtained by setting

1
1

,,
−=

kji
A (69)

n
kjikji Cb

,,,, −= (70)

b. Advection component.  The contributions to the coefficient matrix A from

advection are listed below:

( )
( ) ( ) 2/1,,2/112/1,,2/1,,2/12/1
1

,,2/12/1,2/1,2/11,2/1,2/1
1

,,

−−α−+++α−−−α−+

++
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kjziQkzkjziQkzkjyiQ
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A
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2/1,,2/1
2

,, −−α= kjizkzkji
QA (71b)
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( ) 2/1,,2/1
3

,,
1 ++α−−= kjzikzkji

QA (71c)
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α= (71d)
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QA ,2/1,2/1

6
,, −−α= (71f)

( ) kjxijxkji
QA ,2/1,2/1

7
,,

1 ++α−−= (71g)

where Q is the volumetric flow rate across a cell interface between two

neighboring cells, equal to the specific discharge times the interface area.

For example, kikjxikjxi zyqQ ∆∆= ++ ,2/1,,2/1,  is the volumetric flow rate

across the interface (i,j+1/2,k) between node (i,j,k) and (i,j+1,k).  The

volumetric flow rates across each cell interface are known from the flow

model.

c. Dispersion component.  The contributions to the coefficient matrix A

from dispersion are list below:
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where D
~

 represents the “dispersion conductance”, defined as the apparent

dispersion coefficient D̂  times the cross section area across which the dis-

persion flux is evaluated, divided by the distance over which the concen-

tration gradient is calculated.  For example, the dispersion conductances

for the dispersive flux across the interface (i,j+1/2,k) are defined as

follows:
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Similar expressions for the dispersion conductances at other interfaces can

be defined.

     The components of the apparent dispersion coefficient are calculated

from the Darcy flux (specific discharge) components and the dispersivities

according to equations given in Chapter 2.  For example, the values of

xyxx DD ˆ,ˆ , and xzD̂
 
are evaluated at the cell interfaces between (i, j, k) and

(i, j+1, k) along the x direction.  The x-component of the Darcy flux is

known directly from the flow model.  The y- and z-components are

interpolated from Darcy fluxes at the interfaces along the y- and

z-directions (Figure 13):

  (74a)

    (74b)

                                                                   (74c)

     The longitudinal and transverse dispersivities are entered into the model

on a cell-by-cell basis.  Their values at the cell interfaces are interpolated

accordingly using the cell weighting factors:

                                (74d)

                           (74e)

                           (74f)

The values of xyxx DD ˆ,ˆ , and xzD̂  at the cell interface (i, j +1/2, k) can be

computed as

  (74g)

( ) kjiyxTHLxy qqqD
kjikjikjikjikji ,2/1,/ˆ

,2/1,,2/1,,2/1,,2/1,,2/1, ++++++
α−α=  (74h)
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  Figure 13.     Evaluation of the velocity components at the cell interfaes in the x-direction
for calculating components of the dispersion coefficients Dxx, Dxy, and Dxz
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Similarly, the components of yyyx DD ˆ,ˆ , and yzD̂  are calculated at the cell

interfaces along the y-direction and zyzx DD ˆ,ˆ , and zzD̂  at the cell

interfaces along the z-direction, using the same procedure as listed from

Equations 74a through 74i.

d. Sink/source component.  The contributions to the coefficient matrix A and

the right-hand-side vector from sinks/sources are listed below:

),,(),,(

1

,, kjiskjiskji QQA ′−= −
(75)

),,(),,(,, kjiskjiskji CQb
+−= (76)

where

)0( ),,(),,(),,(
>∆∆∆=+

kjiskijkjiskjis
qzyxqQ  is the volumetric flow

rate of a fluid source

)0( ),,(),,(),,( <∆∆∆=−
kjiskijkjiskjis qzyxqQ  is the volumetric flow

rate of a fluid sink

kijkjiskjis zyxqQ ∆∆∆′=′ ),,(),,(  is the rate of transient groundwater

storage change

Both Qs and sQ′  are known from the flow model.

e. Chemical reaction component.  The contributions to the coefficient matrix

A and the right-hand-side vector b from chemical reactions depend on

how the sorbed concentration is handled.

For equilibrium-controlled linear sorption, 1
,,

1
..

++ = n
kjid

n
kji

CKC , and it can be

incorporated into the coefficient matrix:

dkijkjibkjikijkjikjikji
KzyxzyxA ∆∆∆ρλ−∆∆∆θλ−= ),,(),,(2,,),,(1

1
,,

(77)

     For equilibrium-controlled nonlinear sorption, the sorbed concentration

is approximated by the solute concentration calculated in the preceding

iteration so that it can be lumped into the right-hand-side vector:

kijkjikjikji
zyxA ∆∆∆θλ−= ,,),,(1

1
,,

(78)

1
,,),,(),,(2,,
+∆∆∆ρλ= n

kjikijkjibkjikji Czyxb
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     For nonequilibrium sorption modeled as first-order kinetic mass trans-

fer, a second equation is needed to define the sorbed, as discussed in

Chapter 2:

CCCL
t

C

t

C
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∂
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ρ+
∂
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θ 21)( (79)

( ) CKCC
t

C
bdb ρλ−−β=

∂
∂

ρ 2 (80)

where L(C) is the operator for all nonreaction terms.

The implicit finite-difference approximation for Equations 79 and 80 at

cell (i,j,k), considering only the reaction terms, can be expressed as
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Coupling of the two equations leads to the following terms in the

coefficient matrix and the right-hand-side vector:

( )

( )),,(),,(2),,(,,),,(),,(
2

,,

,,,,),,(1
1

,,

kjibkjikjidkjikjibkijkjidkji

kijkjikjikjikji

KtzyxK

zyxA

ρλ+β+∆ρ∆∆∆β+

∆∆∆β+θλ−=
 (83)

( )tKtCzyxKb kjibkjikjidkjikjib
n

kjikjibkijkjidkjikji ∆ρλ+∆β+ρρ∆∆∆β−= ),,(),,(2),,(,,),,(,,),,(),,(,,,,
 (84)

The dual-domain mass transfer between the mobile and immobile domains

can be implemented in a similar fashion.

f. Solution of the matrix equations.  Equation 66 can be written for each

active node in the model, and the result is a large system of linear

equations, in the form of

bAC n =+1 (85)

The MT3DMS code includes a general-purpose iterative solver based on

the generalized conjugate gradient methods for solving the matrix Equa-

tion 85.  The matrix solver is implemented in a new package named

Generalized Conjugate Gradient (GCG) Solver.  The basic features of the

GCG solver are outlined below; a more detailed description of the iterative

algorithm behind the GCG package is provided in Appendix A.
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        The basic iterative algorithm implemented in the GCG package has

three preconditioning options, Jacobi, Symmetric Successive Over Relaxa-

tion (SSOR), and the Modified Incomplete Cholesky (MIC).  The MIC

preconditioner usually takes fewer iterations to converge than Jacobi or

SSOR, but it requires significantly more memory to operate.  The basic

iterative algorithm is accelerated by the Lanczos/ORTHOMIN accelera-

tion scheme (Jea and Young 1983; Young and Mai 1988) if the coefficient

matrix A is nonsymmetric, as in the case of fully implicit finite-difference

formulation.  The use of the Lanczos/ORTHOMIN acceleration scheme

can greatly increase the convergence speed of an iterative solution.  If the

coefficient matrix A is symmetric, which is the case when the advection

term is solved by the third-order TVD method or a particle-tracking-based

method, the Lanczos/ORTHOMIN acceleration scheme is equivalent to

the standard conjugate gradient (CG) acceleration, similar to that

implemented in the PCG2 package for MODFLOW (Hill 1992).

        The GCG solver has two iteration loops, an inner loop and an outer

loop.  Within the inner loop, the solver will continue to iterate toward the

solution until the user-specified convergence criterion is satisfied or the

user-specified maximum number of inner iterations allowed is reached.

All the coefficients in matrix A and the right-hand-side vector remain

unchanged during inner iterations.  If some of these coefficients are

dependent on the concentrations being solved, as in the case of nonlinear

sorption, they must be updated after a certain number of inner iterations

are completed.  This updating is accomplished by setting the maximum of

outer iterations to a value greater than one.   When a new outer iteration

begins, all the coefficients that are concentration-dependent are updated

with the newly calculated concentrations.  When it takes only one inner

iteration to converge in an outer cycle, the solution is considered to be

globally converged and the simulation proceeds to the next transport step.

        The coefficient matrix A is a sparse matrix with 19 nonzero diagonals,

for a 3-D problem, if all cross terms of the dispersion tensor are kept in the

matrix, as shown in Equation 66.  The GCG package is implemented with

an option to lump all dispersion cross terms to the right-hand-side vector.

In other words, the concentrations associated with the dispersion cross

terms are assigned to the values calculated in the previous iteration so that

they become known quantities and thus can be moved to the right-hand-

side vector.  With this option, the coefficient matrix contains only nine

nonzero diagonals for a 3-D problem.  The use of this option of lumped

dispersion cross terms reduces the memory requirement of the GCG solver

by nearly two-thirds and generally leads to faster convergence.  The loss of

accuracy is generally insignificant.  Although usually not necessary, the

number of outer iterations can be set to be greater than one so that the

lumped dispersion cross terms are updated as the converged solution is

obtained.
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Explicit finite-difference formulation

In the original MT3D code, dispersion, sink/source, and reactions are solved

explicitly without using an iterative solver.  The advection term can be solved by

either a particle-tracking-based method or the explicit finite-difference method.

The explicit finite-difference method is retained in MT3DMS as an alternative to

the implicit method.  The explicit finite-difference method can be expressed as

( ) ( ) ( ) ( )n
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n
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n
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n
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n
kji

n
kji

kjikji CLCLCLCL
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−
θ

+
,,

1
,,

,,,, (86)

where LADV, LDSP, LSSM, and LRCT represent the finite-difference operators for the

advection, dispersion, sink/source, and chemical reaction terms, respectively.

Because the known concentrations at the old time level n are used to evaluate the

finite-difference operators, the concentration at the new time level n+1 at cell

(i,j,k) can be directly calculated in one step as
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,,,,
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1
,,

.(87)

The explicit solution is subject to various stability constraints on the size

(length) of the transport time-step.  These stability constraints are listed below for

different transport components,

a. Advection

zvyvxv

R
t

zyx ∆+∆+∆
≤∆ (88a)

b. Dispersion
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c. Sink/source

sq

R
t

θ
≤∆ (88c)

d. Chemical reaction

21

1

λ+λ
≤∆t                                                                                            (88d)
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When the explicit method is used, the stability constraint for each transport

component is calculated for each active cell, and the minimum is taken as the

maximum allowed step size for solving that particular transport component.  The

actual transport step size used in the simulation is then determined from the

maximum step sizes allowed for individual transport components.

The explicit method is simple and does not need the significant amount of

memory required by an iterative solver.  It is also computationally efficient for

certain advection-dominated problems in which the transport step sizes are

limited not by stability constraints but by accuracy considerations.  However, for

transport problems with fine grid spacing, large dispersion coefficients, and/or

strong sink/source terms, the stability constraints could lead to exceedingly small

transport steps for the explicit method.  Under these circumstances, the GCG

solver described above should be used for greater computational efficiency.  In

addition, for problems of strongly nonlinear sorption, the explicit method may

require such a small step size that the implicit method is much more effective.

Implementation of the Third-Order TVD Method

General equations

The basic ideas behind the third-order TVD scheme (ULTIMATE) have been

presented in Chapter 3.  This section describes the implementation of the general,

three-dimensional form of the ULTIMATE scheme.

In the ULTIMATE scheme, the advection term is solved independently of

other terms which are solved either implicitly or explicitly with the standard

finite-difference method as described in the previous discussions.  If the implicit

finite-difference method is used for solving the nonadvective terms, the

concentration change due to advection, after being solved with the ULTIMATE

scheme, is lumped to the right-hand-side vector b, and the contributions to the

coefficient matrix from the advection term are set equal to zero.  On the other

hand, if the explicit finite-difference method is used for solving the nonadvective

terms, the concentration change due to advection, after being solved with the

ULTIMATE scheme is added to the total concentration change at the cell in

question.

The three-dimensional transport equation considering advection alone is as

follows:
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C
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∂
−

∂
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−
∂
∂

−=
∂
∂

θ (89)

Applying the explicit finite-difference algorithm, Equation 89 can be written, at

cell (i,j,k), as follows (Figure 14):
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Figure 14.   Definition of six surrounding interfaces of cell (i, j, k)
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Rearranging terms, we obtain the new solution at new time level n+1 for cell

(i, j, k)
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where the Courant number, γ, is defined as

Top: (i,j,k-1/2)

Bottom: (i,j,k+1/2)

Front: (i +1/2,j,k)

Back: (i-1/2,j,k)

Left: (i,j -1/2,k)

Right: (i,j +1/2,k)
Node 

i,j,k
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Applying the same procedure for third-order polynomial interpolation of nodal

concentrations as described in Chapter 3, the concentration value at the left

interface can be derived as
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where dx, dy, and dz (unit, L) are all defined at the left interface face (i, j-1/2, k)

as,
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(94)

The left face value in Equation 93 has 10 terms; one average term, three first-

order derivatives, and six mixed second-order derivative terms, together

constituting the third-order approximation.  The first term on the right-hand side

of Equation 93 is a weighted average face value

( ) n
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n
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,,,1,,2/1, 1 ω−+ω= −− (95)
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where ω is a weighting factor given by
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The normal gradient across the left face is defined as
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where jx∆ is the distance between the centers of the two cells (i, j-1, k) and

(i, j, k)
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The upwinding gradient along the y-direction depends on the directions of the

velocities:
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Similarly, the upwinding gradient along the z-direction is given by
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Based on the first-order derivatives, various second-order derivatives can be

calculated. The computation of the upwinding second-order derivatives

(curvatures) along the x direction requires three cells: two neighboring cells and

one upstream cell.  It is written in the form of first-order derivatives:
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The other two curvatures along the y and z directions are given as
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Finally, there are three upwinding mixed second-order derivatives (twist terms).

The two along the x axis are given by
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The one that is normal to the x-axis is given by
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The computation of each twist term requires four cells.  Other interface values at

right, back, front, top, and bottom can be evaluated in a similar manner.

After all the six interface concentration values are evaluated using the above

equations, the universal flux limiter as described in Chapter 3 is applied to adjust

these values, if necessary, in order to limit spurious oscillations that may have

arisen from higher-order interpolation.  The interface concentrations, including

any necessary adjustments, are then used in Equation 91 to compute the concen-

tration at node (i,j,k) for the new time level (n+1) due to advection alone.
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Mass balance considerations and stability constraint

To conserve mass, the continuity of interface values is assumed.  That is, the

concentration at the left interface of one cell is identical to that at the right

interface of the adjacent cell. Therefore, at each cell only three interface values

are computed and stored.  The other three interface values can be obtained from

previous calculations.

Special attention must be addressed to the concern that mass balance errors

could arise when cell thicknesses in the same model layer vary spatially.  The

Courant numbers must be adjusted in this case.  In emphasizing the spatially

variable cell thickness, we use ∆zi,j,k instead of ∆zk.  The Courant numbers at left

and front interfaces are adjusted as
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The other four Courant numbers remain unchanged as given in Equation 92.

The ULTIMATE scheme as implemented in MT3DMS is explicit, thus, the

transport step size is subject to a stability constraint, which is given as

zvyvxv

R
t

zyx ∆+∆+∆
≤∆ (110)

Equation 110 is applied to every active cell in the model grid and the minimum

∆t is used as the maximum allowed step size for the ULTIMATE scheme.

Implementation of the Eulerian-Lagrangian
Methods

Velocity interpolation

Both the MOC and the MMOC involve the use of a particle-tracking

technique to approximate the advective component of the transport process.

Since any particle-tracking technique requires the evaluation of velocity at an

arbitrary point from hydraulic heads calculated at nodal points, it is necessary to

use a velocity interpolation scheme in the particle-tracking calculations.

The velocity interpolation scheme used in this transport model is simple

piecewise linear interpolation (Pollock 1988; Zheng 1988).  This scheme

assumes that a velocity component varies linearly within a finite-difference cell

with respect to the direction of that component.  Thus, the x-component of the

Darcy flux at an arbitrary point within cell (i,j,k) can be expressed in terms of the

fluxes on cell interfaces in the same direction (Figure 15):



Chapter 4   Numerical Implementation 61

  Figure 15.   Velocity interpolation scheme used in particle tracking

( ) ( ) kjixkjixPPPx qqzyxq ,2/1,,2/1,1,, +− α+α−= (111)

where

( ) ( )1,2/1,,,,2/1,,2/1, −−−− −−−= jjkjikjikjikji xxhhKq , the flux, or the specific

discharge, through the interface between cells (i, j-1, k) and

(i, j, k), and kjiK ,2/1, −  is the harmonic mean of hydraulic con-

ductivity between the two cells.  The flux at the cell interface

is calculated in the flow model and directly used in the

transport model

( ) ( )jjkjikjikjikji xxhhKq −−−= ++++ 1,,,2/1,,2/1,,2/1, , the flux through the

interface between cells (i,j,k) and (i, j+1, k)
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( ) jjpx xxx ∆−=α − 2/1 , the linear interpolation factor for the

x component

PPP zyx ,, = Cartesian coordinates of the particle location

2/1±jx = .x coordinates of the left and right interfaces of the cell (i, j, k)

jx = x coordinates of the node (i, j, k)

jx∆ = cell width along the x-axis at cell (i, j, k)

The x-component of the linear or pore water velocity, xv , is then obtained from:
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= (112)

where kji ,,θ  is the porosity value at cell (i,j,k).

Similarly, the y- and z-components of the velocity are calculated as

( ) ( ) kjiykjiyPPPy qqzyxq ,,2/1,,2/11,, +− α+α−= (113)

( )
( )

kji

PPPy
PPPy

zyxq
zyxv

,,

,,
,,

θ
= (114)
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=α − 2/1  is the linear interpolation factor for the

y-component; and

( ) ( ) 2/1,,2/1,,1,, +− α+α−= kjizkjizPPPz qqzyxq (115)
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zyxv

,,

,,
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where ( ) kkPz zzz ∆−=α − 2/1  is the linear interpolation factor for the

z-component.

The velocity field generated with this scheme is consistent with the block-

centered finite-difference formulation of the three-dimensional flow equation and

thus conserves mass locally within each finite-difference block.  It also preserves

the velocity discontinuities caused by changes in hydraulic conductivities present

in heterogeneous media.



Chapter 4   Numerical Implementation 63

It is noted that this velocity scheme differs from the multilinear scheme used

in earlier MOC models (Garder, Peaceman, and Pozzi 1964; Konikow and

Bredehoeft 1978).  The multilinear scheme in a three-dimensional flow field

assumes that velocity components vary linearly in all three directions and thus

generates a continuous velocity field in every direction.  Goode (1990) notes that

the multilinear scheme may result in more satisfactory results in homogeneous

media.  However, the multilinear scheme is not consistent with the cell-by-cell

mass balance described by the block-centered finite-difference formulation and

does not preserve the velocity discontinuities present in heterogeneous media,

unlike the piecewise linear scheme.  Because of this and because the piecewise

linear scheme is computationally much more efficient, the piecewise linear

scheme has been utilized in the MT3DMS model.

Particle tracking

With the velocity field known, a numerical tracking scheme can be used to

move particles from one position to another to approximate the advection of the

contaminant front.  Traditionally, the first-order Euler algorithm has been used

for particle tracking (Konikow and Bredehoeft 1978; Goode and Konikow 1989):
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where

111 ,, +++ nnn zyx = particle coordinates at the new time level ( )n +1

nnn zyx ,, = coordinates at the old time level ( )n

zyx vvv ,, = linear velocities evaluated at ( )nnn zyx ,,

R = retardation factor resulting from the incorporation of

sorption isotherms into the transport equation

∆t = size of the transport step, which is generally expressed in

terms of the Courant number, γ
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where the Courant number represents the number of cells a particle will be

allowed to move in any direction in one transport step.  The particle tracking is

forward if the sign of ∆t  is positive, and backward if the sign of ∆t  is negative.

A uniform step size, ∆t , is used for all moving particles during each

transport step in the particle-tracking calculations.  For particles located in areas

of relatively uniform velocity, the first-order Euler algorithm may have sufficient

accuracy.  However, for particles located in areas of strongly converging or

diverging flows, for example, near sources or sinks, the first-order algorithm may

not be sufficiently accurate unless ∆t  is very small.  In these cases, a higher-

order algorithm such as the fourth-order Runge-Kutta method may be used.  The

basic idea of the fourth-order Runge-Kutta method is to evaluate the velocity four

times for each tracking step: once at the initial point, twice at two trial midpoints,

and once at a trial end point (Figure 16).  A weighted velocity based on values

evaluated at these four points is used to move the particle to the new position

( 111 ,, +++ nnn zyx ).  This process may be expressed as follows:
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Figure 16. Fourth-order Runge-Kutta method (In each step,
the velocity is evaluated four times: once at the
initial point, twice at trial midpoints, and once at
a trial endpoint.  From these velocities a
weighted velocity is calculated which is used
to compute the final position of the particle
(shown as a filled dot))

The fourth-order Runge-Kutta algorithm is more accurate than the Euler

algorithm and permits the use of larger tracking steps.  However, the

computational effort required by the fourth-order Runge-Kutta algorithm is

considerably more than that required by the Euler algorithm, making the former

less efficient than the latter for three-dimensional simulations when a very large

number of particles are used.  For these reasons, the MT3DMS model provides

three options: a first-order Euler algorithm, a fourth-order Runge-Kutta

algorithm, and a combination of these two.  These options, when used properly,

allow sufficient accuracy throughout the finite-difference grid without using

exceedingly small step sizes.

MOC procedure

The first step in the MOC is to generate representative particles in the finite-

difference grid.  Instead of placing a uniform number of particles in every cell of

the grid, a dynamic approach is used in the MT3DMS transport model to control

the distribution of moving particles.  The number of particles placed at each cell

is normally set either at a high level or at a low level, according to the so-called

“relative cell concentration gradient,” or, DCCELL, defined as:
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minminmin is the minimum concentration in

the immediate vicinity of the cell (i, j, k)

CMAX = maximum concentration in the entire grid

CMIN = minimum concentration in the entire grid

With the dynamic approach, the user defines the criterion, DCEPS, which is

a small number near zero;  the higher number of particles, NPH, is placed in cells

where the relative concentration gradient is greater than DCEPS, and the lower

number of particles, NPL, in cells where the relative concentration gradient is

less than DCEPS.



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≤=
>=

. if      ,
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,,,,

,,,,

DCEPSDCCELLNPLNP

DCEPSDCCELLNPHNP

kjikji

kjikji
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where kjiNP ,,  is number of particles placed in cell (i, j, k).

Initially, if the concentration gradient at a cell is zero or small (i.e., the

concentration field is relatively constant near that cell), the number of particles

placed in that cell is NPL, which may be zero or some small integer number; this

is done because the concentration change due to advection between that cell and

the neighboring cells will be insignificant.  If the concentration gradient at a cell

is large, which indicates that the concentration field near that cell is changing

rapidly, then the number of particles placed in that cell is NPH.

As particles leave source cells or accumulate at sink cells, it becomes

necessary to insert new particles at sources or remove particles at sinks.  At

nonsource or nonsink cells, it also becomes necessary to insert or remove

particles as the cell concentration gradient changes with time.  This is done in the

dynamic insertion-deletion procedure by specifying the minimum and maximum

numbers of particles allowed per cell, called NPMIN and NPMAX, respectively.

When the number of particles in any cell, (source or nonsource), becomes smaller

than the specified minimum, NPMIN, new particles equal to NPL or NPH are

inserted into that cell without affecting the existing particles.  On the other hand,

when the number of particles in any cell, (sink or nonsink), exceeds the specified

maximum, or NPMAX, all particles are removed from that cell and replaced by a

new set of NPH particles to maintain mass balance.  To save computer storage,

memory space occupied by the deleted particles is reused by newly inserted

particles.

Figure 17 illustrates the dynamic particle distribution approach in contrast

with the uniform approach in simulating two-dimensional solute transport from a

continuous point source in a uniform flow field.  Whereas the uniform approach

inserts and maintains an approximately uniform particle distribution throughout

the simulated domain, the dynamic approach adjusts the distribution of moving

particles dynamically, adapting to the changing nature of the concentration field.
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 Figure 17.   Comparison of the uniform and dynamic approaches in controlling the
 distribution of moving particles

In many practical problems involving contaminant transport modeling, the

contaminant plumes may occupy only a small fraction of the finite-difference

grid, and the concentrations may be changing rapidly only at sharp fronts.  In

these cases, the number of total particles used is much smaller than that required

in the uniform particle distribution approach, thereby dramatically increasing the

efficiency of the MOC model with little loss in accuracy.

Particles can be distributed either with a fixed pattern or randomly, as con-

trolled by the user-specified option (Figure 18).  If the fixed pattern is chosen, the

user determines not only the number of particles to be placed per cell, but also

the pattern of the particle placement in plan view and the number of vertical

planes on which particles are placed within each cell block.  If the random

pattern is chosen, the user only needs to specify the number of particles to be

placed per cell.  The program then calls a random number generator and distri-

butes the required number of particles randomly within each cell block.  (The

selection of these options is discussed in Chapter 6: Input Instructions).  The

fixed pattern may work better if the flow field is relatively uniform.  On the other

hand, if the flow field is highly nonuniform with many sinks or sources in largely

heterogeneous media, the random pattern may capture the essence of the flow

field better than the fixed pattern does.
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Figure 18.   Initial placement of moving particles

Each particle is associated with a set of attributes, that is, the x-, y-, and z-

coordinates and the concentration.  The initial concentration of the particle is

assigned as the concentration of the cell where the particle is initialized.  At the

beginning of each transport step, all particles are moved over the time increment,

t∆ , using the particle-tracking techniques described previously.  The x-, y-, and

z-coordinates of the moving particles are then updated to reflect their new

positions at the end of the transport step.  The average concentration of a finite-

difference cell at the end of the transport step due to advection alone, 
*

,,
n

kji
C , can

be obtained from the concentrations of all particles that are located at that cell.  If

a simple arithmetic averaging algorithm is used, the average concentration is

expressed by the following equation:
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If the grid spacing is irregular, the volume-based averaging algorithm of Zheng

(1993) is used as follows:
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(a) Example of initial

particle placement

with fixed pattern (8

particles are placed

on 2 vertical planes).

(b) Example of initial

particle placement

with random pattern

(8 particles are placed

randomly in the cell).
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where Vl is the volume of the cell in which the 
thl  particle is first generated.  If

the number of particles at the cell is zero, then the average concentration after

particle tracking is set equal to the cell concentration at the previous time level

because the concentration change at that cell over the time increment is either

negligible or dominated by an external source:

0 if   , ,,,,,,

*

== kji
n

kji
n

kji
NPCC (124)

It is necessary to locate the cell indices of any particle in the tracking and

averaging calculations as described above.  If the finite-difference grid is regular,

it is straightforward to convert particle coordinates ( )PPP zyx ,,
 
to cell indices

( )JP IP KP, ,  according to the following formulas:

( )
( )
( )








+∆=
+∆=
+∆=
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1/

1/

zzINTKP

yyINTIP

xxINTJP

P

P

P

(125)

where INT(x) is a FORTRAN function, equal to the truncated value of x; and

∆ ∆ ∆x y z, ,
 
are the uniform grid spacings along the x-, y-, and z-axes.  If the

finite-difference grid is irregular, the coordinates of the particle in any direction

(e.g., x) must be compared with those of cell interfaces in the same direction to

determine in which cell the particle is located.

After the
 

*

,,
n

kji
C  term is evaluated at every cell, it is used to calculate the

concentration change due to dispersion, sink/source mixing, and/or chemical

reactions ( )1
,,

+∆ n
kji

C  using the finite-difference method as discussed previously.

The concentration of all active particles is then updated by adding the

concentration change ( )1
,,

+∆ n
kji

C  calculated at the cell where each particle is

located.  Therefore, for moving particles located at cell (i, j, k),

1
,,

1 ++ ∆+= n
kji

n
l

n
l

CCC (126)

where 1+n
l

C  is the concentration of the 
thl  particle which is located at cell (i, j, k)

at the new time level.  If 1
,,

+∆ n
kji

C  is positive, Equation 126 is applied directly.

However, if 1
,,

+∆ n
kji

C  is negative, the concentration of the moving particle may

become negative if its concentration at the old time level, n
l

C , is zero or small.

When this happens, all particles in the cell are removed and replaced by a new set

of particles which are assigned the concentration of the cell.
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MMOC procedure

The first step in the MMOC procedure is to move a particle located at the

nodal point of the cell backward in time using the particle-tracking techniques.

The purpose of this backward tracking is to find the position from which a

particle would have originated at the beginning of the time-step so as to reach the

nodal point at the end of the time-step.  The concentration associated with that

position, denoted as( )!, !, !x y z , is the concentration of the cell due to advection

alone over the time increment t∆ .

The position ( )!, !, !x y z  generally does not coincide with a nodal point.  Thus, it is

necessary to interpolate the concentration at ( )!, !, !x y z  from concentrations at

neighboring nodal points.  The interpolation scheme used in the MT3DMS

transport model is first-order polynomial interpolation, also referred to as bilinear

in two dimensions or trilinear in three dimensions.  The general equation for first-

order polynomial interpolation is as follows, assuming that x̂  is located between

nodes 1−jx  and x j , ŷ  is between 1−iy and yi , and ẑ  is between 1−kz  and zk

(Figure 19):

Figure 19.   Interpolation of the concentration at point P
from the concentrations at neighboring
nodes using the trilinear scheme in three
dimensions
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where yx ωω , , and zω  are interpolation factors as given below:
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If the x-, y-, or z-dimension is not simulated, the weighting factor in the

respective direction is zero.  If any cell is inactive, the cell is skipped in the

calculation.  The low-order interpolation represented by Equation 127 is

computationally very efficient and has small mass balance error.  It is also

virtually free of artificial oscillation.  However, this linear scheme leads to

numerical dispersion.  As the concentration fronts become sharper, the amount of

numerical dispersion increases.  However, in the MT3DMS transport model, the

MMOC scheme is only intended for problems with relatively smooth concentra-

tion fronts (sharp front problems are handled by the MOC or TVD technique).

When the concentration field is relatively smooth, the numerical dispersion

resulting from the MMOC technique is insignificant.

Sinks or sources create special problems for the MMOC scheme and thus

have to be treated differently.  First, examine a sink cell with inward hydraulic

gradients on all of the cell interfaces as illustrated in Figure 20.  If the sink is

symmetric, the velocity at the nodal point is zero.  Therefore, instead of placing

one particle at the nodal point, the MT3DMS program places multiple particles

within the cell.  The number and distribution of these particles are controlled by

the user-specified options in a manner similar to those described in the MOC

procedure.  Each particle is tracked backward over ∆t , and its concentration is

interpolated for neighboring nodes.  The cell concentration is then averaged from

the concentrations of all particles, based on the inverse-distance algorithm:
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where d l  is the distance between the nodal point and the position where the l th

particle is initially placed.  The inverse-distance algorithm differs from the

simple average algorithm used in the MOC scheme in that the former gives more

weight to particles that are located closer to the node whereas the latter gives the

same weight to all particles in the same cell.

Next, consider a source cell with outward hydraulic gradients on all cell

interfaces.  Backward tracking will cause particles placed in the source cell to

converge toward the nodal point so that:
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Figure 20.    Special treatment of sink cells in the MMOC
scheme
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With the MMOC scheme, particles are restarted at each time-step, so there is

no need to store the particle locations and concentrations in computer memory.

Thus, the MMOC solution normally requires far less computer memory and is

generally more efficient computationally than the MOC solution.

HMOC procedure

The forward-tracking MOC scheme is well suited for sharp front problems

(pure advection or largely advection-dominated problems) because it virtually

eliminates numerical dispersion.  The MOC scheme implemented with dynamic

particle distribution is also very efficient computationally for many practical

problems where the contaminant plume occupies only a small fraction of the

finite-difference grid, and the concentration field is changing rapidly only at

sharp fronts.  However, as the degree of advection domination over dispersion

and chemical reactions decreases, the advantage of the MOC scheme is less

obvious because as physical dispersion increases, numerical dispersion becomes

less of a problem.  Furthermore, as large physical dispersion causes the

contaminant plume to spread through a large portion of the simulated domain, the

number of moving particles needed by the MOC scheme can become very large

for a three-dimensional simulation, pushing the memory requirement beyond the

limits of many personal computers.   The backward-tracking MMOC scheme

tends to complement the MOC scheme for smooth front problems because the

MMOC scheme requires far less computer memory and is generally more

efficient computationally.
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If the flow field and the dispersivity parameters are relatively constant, and

the spatial discretization is fairly regular, it may be straightforward to select

either the MOC or the MMOC scheme to be used in the simulation based on the

grid Peclet number:

 or zx, yi
D

xv
Pe

ii

ii
i ,; =

∆
= (131)

where all the terms have been defined previously.  The MOC scheme is suitable

for problems with large grid Peclet numbers while the MMOC scheme can be

used for problems with small grid Peclet numbers.  As a rule of thumb, the MOC

scheme may be used effectively for problems with a grid Peclet number greater

than 10 while the MMOC scheme may be used for problems with a grid Peclet

number smaller than 0.1 without introducing any significant amount of numerical

dispersion.  It should be pointed out that this rule of thumb is based on a limited

number of numerical experiments and may not be true for all situations.

Under certain circumstances, the use of the MOC scheme alone may require

too much computer memory and execution time while the use of the MMOC

scheme may lead to noticeable numerical dispersion, so that neither provides a

satisfactory solution.  In these cases, a hybrid scheme, HMOC, combining the

MOC and MMOC schemes may work best.  The fundamental idea behind the

HMOC scheme is to combine the strengths of the MOC and the MMOC

techniques by using an automatic adaptive procedure which applies MOC in

areas of steep concentration gradients and MMOC in areas of low concentration

gradients.  The automatic selection is based on the sharpness of the concentration

fronts, measured by the relative concentration gradient between the cell being

considered and its neighboring cells as defined in Equation 120.  The

implementation of the hybrid scheme is through the use of a user-specified

criterion DCHMOC:
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At the beginning of each transport step, the value of DCCELL calculated at

each cell is compared to DCHMOC .  If DCHMOCDCCELL kji >,, , the

advection term at that cell is solved using the MOC technique with the aid of

moving particles.  If there are no particles present at that cell, new particles are

inserted.  On the other hand, if DCHMOCDCCELL kji ≤,, , the advection term at

that cell is solved using the MMOC technique.  If there are still particles present

at that cell, these particles are removed.  The DCHMOC  criterion is empirical,

but values between 0.001 and 0.01 have been found to be generally adequate for

the test problems discussed in Chapter 7.  By selecting an appropriate valve for

DCHMOC, the adaptive procedure can provide accurate solutions to the transport

problems over the entire range of mesh Peclet numbers from 0 to ∞  with

virtually no numerical dispersion, while at the same time using far fewer moving

particles than would be required by the MOC scheme alone.
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Mass Budget Calculations

A mass budget is calculated at the end of each transport step and accumu-

lated to provide summarized information on the total mass into or out of the

groundwater flow system.  The discrepancy between the total mass in and out

also serves as an indicator of the accuracy of the simulation results.

Sources that release mass into the aquifer system, and sinks that remove mass

from the aquifer system, include constant-concentration boundaries, constant-

head boundaries, general-head-dependent boundaries, wells, drains, rivers,

recharge, evapotranspiration, and chemical reactions.  In addition, mass release

from aquifer storage and mass accumulation in aquifer storage are also con-

sidered as sources and sinks, inasmuch as release from mass storage effectively

adds mass to the groundwater flow system and accumulation in mass storage

effectively removes mass from the groundwater flow system.  The difference is

that the changes in mass storage do not involve mass entering or leaving the

aquifer as with other types of sources or sinks.  The mass accumulated in or

released from mass storage includes the solution phase (solute mass) and the

solid phase (sorbed mass) if sorption is simulated.

The difference between the total mass in and out is calculated, as a percent

error, using the following formula:

( )
( ) 100

OUTIN5.0

OUTIN
Y(%)DISCREPANC ×

+
−

= (133)

where IN  is total mass into the groundwater flow system from external sources

plus mass release from storage as a result of the decrease in solute and sorbed

concentrations, and OUT is total mass out of the groundwater flow system

through sinks plus mass accumulation in storage as a result of the increase in

solute and sorbed concentrations.  DISCREPANCY is the percentage

discrepancy between IN  and OUT.  Generally, the mass balance error is an

indication of the validity of a numerical solution, and it should be small for the

numerical solution to be acceptable.

Equation 133 is a robust estimator of mass discrepancy errors in a flow or

transport model and is applicable under any circumstance.  However, because the

total mass in the aquifer at any particular time is not explicitly included in

Equation 133, it is possible that in some cases Equation 133 fails to provide a

true measure of mass conservation (i.e., the total mass in the aquifer at any

particular time should be equal to the initial mass in the aquifer, plus the mass

gained through all sources, minus the mass lost through all sinks.  For this

reason, an alternative mass discrepancy indicator is also used in MT3DMS,

which is defined as

[ ] 100
)+(SINK + )+(SOURCE5.0

)+(SINK )+(SOURCE
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to
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where

Mt = total mass (dissolved and sorbed) in the aquifer at time t

Mo = initial mass (dissolved and sorbed) in the aquifer at the

beginning of the simulation

SOURCE = total mass into the aquifer from all external sources

SINK = total mass out of the aquifer from all external sinks

If the standard finite-difference method or the third-order TVD method is

used, the mass balance discrepancy should be small, generally much less than

1 percent.  If this is not the case, it is likely that either the solution has not

converged or some errors have occurred.  This is because the standard finite-

difference method or the third-order TVD method starts from a mass balance

statement for each model cell, and thus for the solution to be valid, the mass

balance discrepancy must be small.

Due to the discrete nature of moving particles, however, a particle-tracking-

based solution does not guarantee that the mass into a cell will equal the mass out

of that cell in a particular transport step.  This can best be illustrated in the

following example.  Assume that a well, as shown in Figure 21 is continuously

injecting water of a certain concentration at a fixed rate into Cell 1, which has the

same concentration as the injected water.  All cells except Cell 1 have zero initial

concentration.  Suppose that four moving particles are placed at Cell 1.   It is

obvious that it takes some time before the particles move into Cell 2.  Until that

time (denoted as t0 ), there is no change in the aquifer mass storage, but there is

flow of mass into the aquifer from the injection well.  Therefore, if the transport

step size selected for the simulation is smaller than t0 , the mass balance

discrepancy is 200 percent for the first step, because the OUT  term is equal to 0

while the IN term is not.  This, of course, does not mean the solution is incorrect;

it is simply a characteristic of moving particle methods and of the selection of the

step sizes.  As the simulation goes on, the mass balance error should decrease to

near zero as the increase in mass storage, due to the increase in aquifer concen-

trations, approximates the mass entering the aquifer from the injection well.

Therefore, it is generally not very meaningful to look at the mass balance at a

particular step with moving particle methods; rather, it is the averaged and

accumulated mass balance information that is more indicative of the overall

acceptability of the simulation.
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Uniform

Flow

Flow Rate (Q)=1

Concentration (C)=1

C=1 C=0 C=0 C=0

Cell 1                       Cell 2                             Cell 3                        Cell 4

Injection Well

Figure 21.   Illustration of the mass balance problem associated with an Eulerian-
Lagrangian technique due to the discrete nature of moving particle
methods   
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5 Program Structure
and Design

Overall Structure

The computer program of the MT3DMS transport model uses a modular

structure similar to that implemented in the U.S. Geological Survey modular

three-dimensional finite-difference groundwater flow model, or MODFLOW

(McDonald and Harbaugh 1988; Harbaugh and McDonald 1996).  Like the

MODFLOW model, the MT3DMS model consists of a main program and a large

number of highly independent subroutines, called modules, which are grouped

into a series of “packages.”  Each of these packages deals with a single aspect of

the transport simulation.  The similarity between MT3DMS and MODFLOW in

the program structure and design is intended to facilitate the use of the MT3DMS

transport model in conjunction with MODFLOW, one of the most widely used

flow models.

The general procedures performed in the transport model for a typical

simulation run are illustrated in Figure 22.  The simulation time is divided into

“stress periods”, also referred to as “pumping periods”, within which the stress

(i.e., the sink/source) parameters are constant.  Each stress period, in turn, is

divided into a series of time-steps.  The hydraulic heads and fluxes at each time

step are solved by the flow model and used by the transport model.  Since the

transport model generally has more stringent requirements on the time-step size

than the flow model does, the length of each time-step for the flow solution may

exceed the limitation required for accuracy or stability in the transport solution.

Thus, each time-step used in obtaining the flow solution is further divided into a

number of smaller time increments, termed transport steps, within which the

hydraulic heads and fluxes are assumed to be constant.

Prior to entering the stress period loop, the program executes three proce-

dures which pertain to the simulation as a whole (Figure 22).  In the Define

procedure, the simulation problem is defined, that is, the size of the model, the

number of stress periods, the number of species if the simulation is multispecies,

and the various transport options to be used in the simulation are specified.  In

the Allocate procedure, computer memory is allocated for the data arrays whose

dimensions depend on the parameters specified in the Define procedure.  In the

Read & Prepare procedure, input data that are constant throughout the simulation
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 Figure 22.   General procedures for a typical transport simulation
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are read and processed.  These input data include spatial and temporal

discretization information, boundary conditions, initial conditions, transport

parameters, solution parameters, and output control options.

The first procedure within the Stress Period Loop is the Stress procedure

which obtains timing information for the current stress period: the length of the

stress period, the number of time-steps within the stress period, and the length of

each time-step.  A second Read & Prepare procedure then reads and prepares

input data which are constant within the current stress period (i.e., the concen-

trations of those sources or sinks that need to be specified).  The transport model

obtains the location, type, and flow rates of all sources and sinks simulated in the

flow model from an unformatted flow-transport link file saved by the flow

model.  Source concentrations are automatically set equal to zero unless the user

specifies a different concentration through this Read & Prepare procedure.  Sink

concentrations are always set equal to the concentration in the aquifer at the sink

location, except for evapotranspiration, whose concentration can be specified

through this “Read & Prepare” procedure.

Within the Flow Time-Step Loop, a third Read & Prepare procedure reads

and processes the hydraulic heads and flow terms saved by the flow model,

automatically incorporating the specified hydrologic boundary conditions.  The

Coefficient procedure then calculates certain coefficients that are constant within

each time step of the head solution, such as the dispersion coefficient.

Within the Transport Time-Step Loop, the Advance procedure determines an

appropriate step size for use in the current transport time-step.  Depending on the

choice of explicit or implicit solution schemes, different procedures follow the

Advance procedure.  If an explicit scheme is chosen, the Solve procedure solves

each transport component directly in one step without any iteration. If an implicit

scheme is chosen, the program enters the Iteration Loop.  Within the Iteration

Loop, another Coefficient procedure updates nonlinear coefficients that vary with

each iteration, the Formulate procedure updates and prepares the coefficient

matrices for the iterative solver, and the Approximate procedure solves the linear

equations.  The Budget procedure calculates and prepares global mass balance

information, and the Output procedure saves simulation results as needed

according to the user-specified output control options.

The general procedures outlined in the preceding discussion are implemented

for each of the four components in the transport equation: advection, dispersion,

sink/source mixing, and chemical reactions.  The implementation is done through

the use of individual modules, or highly independent subroutines, each of which

performs one particular procedure.  For example, the advection component is

implemented through five modules named ADV3AL, ADV3RP, ADV3SV,

ADV3FM, and ADV3BD, respectively, where ADV indicates the transport

component (advection) for which these modules are implemented.  The number 3

indicates the current version number of the computer code.  AL (abbreviation for

Allocate), RP (abbreviation for Read & Prepare), SV (abbreviation for Solve

explicitly), FM (abbreviation for Formulate), and BD (abbreviation for Budget)

indicate the procedures these modules perform.  These modules, which are called

by the main program, are termed primary modules to distinguish them from
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secondary modules, which are used only inside the primary modules to which

they belong.  The primary modules ADV3AL, ADV3RP, ADV3SV, ADV3FM,

and ADV3BD and their associated secondary modules are grouped into a

“package”, called the Advection Package (abbreviated as ADV) (Figure 23).

Dispersion, sink/source mixing, and chemical reactions are similarly

implemented and grouped into the Dispersion Package (DSP), Sink & Source

Mixing Package (SSM), and Chemical Reaction Package (RCT).

In addition to the four transport component packages, the MT3DMS model

program includes four additional packages: the Basic Transport Package (BTN),

the Flow Model Interface Package (FMI), the Generalized Conjugate Gradient

Package (GCG), and the Utility Package (UTL).  The BTN handles basic tasks

that are required by the transport model as a whole.  Among these tasks are

definition of the simulation problem, specification of the initial and boundary

conditions, determination of appropriate transport step size, preparation of global

mass balance information, and output of simulation results.  The FMI interfaces

with a flow model to obtain the flow solution from the flow model.  Currently,

the interfacing is done through an unformatted disk file containing hydraulic

heads and various flow and sink/source terms solved by the flow model.  This

file is read and processed in the form needed by the transport model.  The GCG

solves the matrix equations resulting from the implicit finite-difference solution

based on the generalized conjugate gradients methods.  The UTL contains several

utility modules which are called upon by other modules to perform general

computer input and output tasks.

All of the primary modules contained in the MT3DMS transport model as

organized by package and procedure are shown in Figure 23.  All the packages

documented in this manual are listed in Table 2.  A significant difference

between MT3DMS and the original MT3D code is the addition of the GCG

solver package and the Formulate modules into other transport packages to

formulate the matrix coefficients needed by the GCG solver.

Memory Allocation

The amount of computer memory required to run a specific model is

dynamically allocated in MT3DMS at run time.  MT3DMS uses two one-

dimensional arrays called the “X” array (for real variables) and the “IX” array

(for integer variables) to store individual data arrays whose dimensions depend

on the problems to be simulated.  The sizes of individual arrays are calculated

and accumulated by the Allocate procedure of their respective packages; the

accumulated sizes serve as pointers indicating the locations of individual arrays

within the X or IX array.  At the end of all Allocate procedures, the accumulated

sizes of the individual arrays are set equal to the required dimensions for the X

and IX arrays which are then allocated dynamically using the ALLOCATE

statement of FORTRAN-90.  If the computer system does not have sufficient

memory, an error message is issued and the program execution is terminated.
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Packages

Procedures BTN FMI ADV DSP SSM RCT GCG

Define (DF) BTN3DF

Allocate (AL) BTN3AL FMI3AL ADV3AL DSP3AL SSM3AL RCT3AL GCG3AL

Read & Prepare

 (RP)
1 BTN3RP ADV3RP DSP3RP RCT3RP GCG3RP

Stress (ST) BTN3ST

Read & Prepare

(RP)
2 SSM3RP

Read & Prepare

(RP)
3 FMI3RP

Coefficient

(CF)
4 DSP3CF

Advance (AD) BTN3AD

Solve (SV) BTN3SV ADV3SV DSP3SV SSM3SV RCT3SV

Coefficient

(CF)
5 RCT3CF

Formulate (FM) BTN3FM ADV3FM DSP3FM SSM3FM RCT3FM

Approximate

(AP)
GCG3AP

Budget (BD) BTN3BD ADV3BD DSP3BD SSM3BD RCT3BD

Output (OT) BTN3OT

Note:
1
This Read & Prepare Procedure reads and processes input data that are constant

throughout the entire simulation.
2
This Read & Prepare Procedure reads and processes input data that are constant

within each stress period.
3
This Read & Prepare Procedure reads and processes input data that are constant

within each time step of the flow solution.
4
This Coefficient Procedure calculates coefficients that are constant within each

time step of the flow solution.
5
This Coefficient Procedure updates nonlinear reaction coefficients during each

outer iteration of the matrix solver.

                   Figure 23.  Primary modules of MT3DMS as organized by procedures and packages
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Table 2
Packages Included in the MT3DMS Transport Model

Package Name Abbreviation Package Description

Basic
Transport

BTN Handles basic tasks that are required by the entire
transport model.  Among these tasks are definition of the
problem, specification of the boundary and initial
conditions, determination of the step size, preparation of
mass balance information, and printout of the simulation
results.

Flow Model
Interface

FMI Interfaces with a flow model.  Currently, the interfacing is
done through an unformatted disk file containing heads
and flow terms.  The FMI Package reads the contents of
this file and prepares heads and flow terms in the form
needed by the transport model.

Advection ADV Solves the concentration change due to advection with
an explicit scheme or formulates the coefficient matrix of
the advection term for the matrix solver.

Dispersion DSP Solves the concentration change due to dispersion
explicitly or formulates the coefficient matrix of the
dispersion term for the matrix solver.

Sink & Source
Mixing

SSM Solves the concentration change due to sink/source
mixing explicitly or formulates the coefficient matrix of all
sink/source terms for the matrix solver.

Chemical
Reactions

RCT Solves the concentration change due to reaction
explicitly or formulates the coefficient matrix of the
reaction term for the matrix solver.

Generalized
Conjugate
Gradient Solver

GCG Solves the matrix equations resulting from the implicit
solution of the transport equation.

Utility UTL Contains utility modules that are called upon by primary
modules to perform such general-purpose tasks as
input/output of data arrays.

The dimensions of the X and IX arrays required for a specific problem

depend on the type and number of packages used.  The exact sizes of the X and

IX arrays can be calculated according to the instructions in Appendix B.  They

can also be known by simply running the program, which will always print out

the required X and IX array sizes, even if the program stops execution because

the computer system does not have enough memory for the required X and IX

array sizes.  As a general rule, a simulation using the implicit matrix solver

requires additional memory ranging from 15 to 46 times the total number of

model nodes, compared with the same simulation without using the implicit

matrix solver.  The additional memory required by the particle-tracking-based

solution schemes is approximately equal to 4 to 8 times the maximum total

number of moving particles and the number of mobile species.

The MT3DMS model program is written for 3-D simulation.  When the

program is used for 1- or 2-D applications some arrays are not needed, and, to

save memory storage, these arrays are not allocated space in the X or IX array.
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For example, array ZP is intended for storing the vertical coordinates of moving

particles.  If the program is used to simulate a two-dimensional problem in plan

view, ZP is not needed and thus is not allocated storage space, and, as a result, it

is never used or operated upon in any way in the program.  This is important to

keep in mind when the user wants to modify the computer code.

Input Structure

Like the original MT3D code, the input structure of the MT3DMS code is

designed to gather input data from as many different files as needed in a

simulation.  This structure is similar in many ways to that of MODFLOW.

Therefore, the users who are familiar with MODFLOW should find it very easy

and straightforward to understand and prepare input for the MT3DMS model.  In

addition, the input structure of MT3DMS is compatible with that of MT3D so

that any input files prepared previously for MT3D can still be used by MT3DMS

without any modification.  However, it should be pointed out that without

making any changes to the old input files, most of the new features added to

MT3DMS cannot be utilized.

The BTN is always used in every simulation.  Thus, an input file for the BTN

is required every time the program is run.  In the input file to the BTN, there is a

record containing the logical TRNOP array.  Each element of the TRNOP array

corresponds to a major option, generally a package (Figure 24).  An option is

invoked by setting the value of its corresponding TRNOP element to T (for True)

and turned off by setting the value to F (for False).  When an option is used, an

input file containing data exclusively for that option is then required.  For

example, the second element of the TRNOP array corresponds to the Dispersion

Option (or Package).  If it is necessary to simulate dispersion, the second TRNOP

array element must be entered as T.  An input file containing dispersion

parameters must be created and read by the program.

In addition to the main input file for the BTN and the input files for the

various transport component packages which are used, the transport model

always requires another input file which contains saturated thickness, fluxes

across cell interfaces, and the location and flow rate of sinks and/or sources,

including transient groundwater storage.  This file is generated by a flow model

used in conjunction with the transport model, and read by the FMI of the

MT3DMS model.  The structure and form of this file are described in Chapter 6

and Appendix C.

In the standard ANSI FORTRAN language, a data file must be opened with a

FORTRAN unit number and a file name before it can be accessed by the pro-

gram.  This is done in the subroutine OPENFL which is included in the Utility

Package.  The file names can be entered interactively from the monitor screen or

through a response file in a batch mode as discussed in the next chapter.  The unit

numbers associated with major input files are preset in the main program.  They

can be changed, if necessary, by modifying the following parameter statement in

the main program:
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Note:

1.  The Advection Option is used; an input file is needed for the Advection

(ADV) Package;

2.  The Dispersion Option is used; an input file is needed for the Dispersion

(DSP) Package;

3.  The Sink & Source Option is used; an input file is needed for the Sink &

Source Mixing (SSM) Package;

4.  The Chemical Reaction Option is not used; an input file is not needed for the

Chemical Reaction (RCT) Package;

5.  The Generalized Conjugate Gradient Solver is used; an input file is needed for

the Generalized Conjugate Gradient (GCG) Package;

6-10. Reserved for future add-on packages.

 Figure 24.   Specification of the transport components and solver to be included using the
     logical TRNOP array (the TRNOP array is entered in the input file to the BTN)
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PARAMETER (INBTN=1,INADV=2,INDSP=3,INSSM=4,INRCT=8,

INGCG=9,INUHF=10)

where

INBTN = unit number for the Basic Transport Package

INADV = unit number for the Advection Package

INDSP = unit number for the Dispersion Package

INSSM = unit number for the Sink & Source Mixing Package

INRCT = unit number for the Chemical Reaction Package

INGCG = unit number for the Generalized Conjugate Gradient Package

INUHF = unit number for the unformatted flow-transport link file, read by

the Flow Model Interface Package

Once the unit number associated with a package is used in the simulation, it must

not be used again elsewhere.

Output Structure

The MT3DMS program generates a standard output file and several optional

output files.  The standard output file is generated every time the model is run.

The optional output files are generated only if they are requested.  The amount,

type, and frequency of information to be written on the output files are controlled

by the user-specified options in the input file to the Basic Transport Package.

The functions of these output files are listed below:

a. The Standard Output File contains echo of input data (so that they can be

checked to ensure they have been read in properly), printout of calculated

concentrations for each species, and some other useful information such

as model-calculated parameters and mass budgets, at user-specified times

and at the end of each stress period.

b. The Unformatted Concentration File, one for each species, (default name:

MT3Dnnn.UCN where nnn is the species index number) contains

concentrations saved at user-selected times in the unformatted (binary)

form for postprocessing purposes or for a continuation run.

c. The Observation File, one for each species (default name:

MT3Dnnn.OBS where nnn is the species index number) contains

concentrations versus total elapsed time at user-specified observation

points at every transport step or at a user-specified interval.
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d. The Mass Budget Summary File, one for each species, (default name:

MT3Dnnn.MAS where nnn is the species index number) contains a

one-line summary of mass budgets at every transport step or at a user-

specified interval.

e. The Model Grid Configuration File (default name: MT3D.CNF) contains

model spatial discretization information to be used by the postprocessor

for graphic presentation (Appendix D).

Note that the formats and structures of the default files, MT3Dnnn.UCN,

MT3Dnnn.OBS, and MT3Dnnn.MAS, are identical to those of single-species

counterparts, MT3D.UCN, MT3D.OBS, and MT3D.MAS, as saved by the

original MT3D code.  Thus, they can be processed by the same existing graphical

interface software packages and other postprocessing programs without any

changes.

The unit numbers associated with these output files are preset in the

following parameter statement in the main program:

PARAMETER (IOUT=16,ICNF=17,IUCN=200,IOBS=400,IMAS=600)

where

IOUT = unit number for the Standard Output File

ICNF = unit number for the Model Grid Configuration File, MT3D.CNF

IUCN = starting value for the unit number of the Unformatted

Concentration File, MT3Dnnn.UCN.  The unit number for

Species #nnn is set equal to (IUCN+nnn).  For example, the

Unformatted Concentration File for Species #001 is

MT3D001.UCN, saved on unit 201

IOBS = starting value for the unit number of the Observation File,

MT3Dnnn.OBS.  The unit number for Species #nnn is set equal

to (IOBS+nnn).  For example, the Observation File for Species

#001 is MT3D001.OBS, saved on unit 401

IMAS = starting value for the unit number of the Mass Balance Summary

File, MT3D001.MAS.  The unit number for Species #nnn is set

equal to (IMAS+nnn).  For example, the Mass Budget Summary

File for Species #001 is MT3D001.MAS, saved on unit 601

These unit numbers can be changed, if necessary, by modifying the above

parameter statement.
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Computer Program Description (Version 3.5)

The computer program of the MT3DMS transport model is written in the

standard FORTRAN 77 language as defined by the American National Standards

Institute (ANSI).  However, several useful FORTRAN-90 extensions have been

utilized in the code, including the following statements:

IMPLICIT NONE

ALLOCATABLE

ALLOCATE

DO…ENDDO

CYCLE

EXIT

Thus, the source code is intended for compiling by a standard FORTRAN 90

compiler, although some FORTRAN 77 compilers, such as the Lahey F77L3

compiler, support all of these extensions.

All real data are declared single precision in the source code.  If it is

necessary to run the model in double precision, simply change the statement

IMPLICIT NONE in every subroutine of the MT3DMS code to IMPLICIT

DOUBLE PRECISION (A-H,O-Z).  Also, the user must modify the LKMT3

package added to MODFLOW or other flow models to save the flow terms in

double precision.

The main program and all the subroutines of the MT3DMS program

(including primary and secondary modules) are described briefly in the following

sections.  For more information, the user may refer to the extensively commented

source code.

Main program – MAIN350

The main program controls the overall execution of the entire program.  A

flowchart showing all the primary modules called by the main program is pro-

vided in Figure 25.  The basic steps of the main program for each simulation are:

a. Assign unit numbers to major input and output files and open these files.

b. Define the simulation problem in terms of layers, rows, columns, stress

periods, and major transport options to be used.

c. Calculate the required sizes of the X and IX arrays to store all individual

data arrays.

d. Allocate memory for the required sizes of the X and IX arrays.  If the

computer does not have enough memory, stop.
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Figure 25.   Flowchart for the main program of the MT3DMS code (Continued)

Note:

See the next page for the connections to

and from A and B.
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e. Read and process input data which are constant throughout the

simulation.

f. For each stress period:

(1) Obtain stress period timing information.

(2) Read and process the concentrations of sources or sinks that need to

be specified.

(3) For each flow time-step:

(a) Read saturated thicknesses, flows across cell interfaces, and the

locations and flow rates of sinks and/or sources.

(b) Calculate coefficients that are constant within the current time-

step.

(c) For each transport time-step:

(i) Determine an appropriate step size for the current transport

step.

(ii) Either solve each component of the transport equation

explicitly or formulate the coefficient matrices of each

transport component for the iterative solver.

(iii) Prepare mass balance information.

(iv) Print or save simulation results.

(v) If the number of transport steps exceeds the specified

maximum, stop.

g. End program.

Basic transport package – BTN350

The BTN Package consists of nine primary modules, each of which is

described below in the order of execution.

BTN3DF: Define the simulation problem by reading the number of layers,

rows, columns, and stress periods as well as the total number of

species and the transport options to be used.

BTN3AL: Allocate space for basic data arrays needed by the model as a

whole.

BTN3RP: Read and prepare basic data arrays used by the entire model.
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BTN3ST: Read stress period timing information.

BTN3AD: Determine an appropriate step size for each transport step.

BTN3FM: Reset and formulate matrix coefficients for the next step of implicit

solution.

BTN3SV: Reset arrays and prepare for the next step of explicit solution.

BTN3BD: Prepare global mass balance information.

BTN3OT: Print and save simulation results according to the user-specified

options.

Advection package – ADV350

The ADV Package consists of five primary modules and a number of

secondary modules:

ADV3AL: Allocate space for data arrays needed by the Advection Package.

ADV3RP: Read and prepare input data needed for solving the advection term.

ADV3FM: Formulate matrix coefficients related to the advection term if the

implicit finite-difference method is used.

ADV3SV: Solve the advection term using (a) one of the particle-tracking-

based Eulerian-Lagrangian methods, (b) the explicit finite-difference

method, or (c) the third-order TVD method.  This primary module

includes the following secondary modules, which are named

according to the functions they perform:

SADV3F: Solve the advection term using the explicit upstream

finite-difference method.

SADV3U: Solve the advection term using the third-order TVD

method (ULTIMATE).  A function named CFACE is

called by SADV3U to evaluate interface concentrations

using the third-order interpolation algorithm.

SADV3M: Solve the advection term using the forward-tracking

MOC.

SADV3B: Solve the advection term using the backward-tracking

MMOC.

SADV3Q: Compute mass flux into or out of a finite-difference

cell based on finite-difference formulation.



92 Chapter 5   Program Structure and Design

The following subroutines are called by the secondary modules SADV3M

and SADV3B:

VPOINT: Interpolate particle velocity at an arbitrary point based on

the piecewise linear scheme.

EULER: Perform particle tracking with the first-order Euler

algorithm.

RK4: Perform particle tracking with the fourth-order Runge-Kutta

algorithm.

PARMGR: Manage the distribution of moving particles dynamically,

inserting or deleting particles as necessary.

CNGRAD: Calculate Relative Concentration Gradient between a cell

and its neighboring cells.

GENPTN: Insert particles in a finite-difference cell according to fixed

patterns.

GENPTR: Insert particles in a finite-difference cell randomly.

CPOINT: Calculate concentration at an arbitrary point from

neighboring nodes with the first-order polynomial

interpolation.

ADV3BD: Prepare budget information relevant to the advection term if

the implicit scheme is used.

Dispersion package – DSP350

The DSP Package consists of six primary modules, each of which is

described below in the order of execution:

DSP3AL: Allocate space for data arrays needed by the Dispersion Package.

DSP3RP: Read and prepare dispersion parameters.

DSP3CF: Calculate components of the hydrodynamic dispersion coefficient.

DSP3FM: Formulate matrix coefficients related to the dispersion term if the

implicit scheme is used.

DSP3SV: Solve the dispersion term using the explicit finite-difference

formulation.

DSP3BD: Prepare budget information relevant to the dispersion term if the

implicit scheme is used.
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Sink & source mixing package – SSM350

The SSM Package consists of  five primary modules, each of which is

described below in the order of execution:

SSM3AL: Allocate space for data arrays needed by the Sink & Source Mixing

Package.

SSM3RP: Read and prepare concentrations of sources and/or sinks that need to

be specified.

SSM3FM: Formulate matrix coefficients related to the sink/source term if the

implicit scheme is used.

SSM3SV: Solve the concentration change due to sink/source mixing using the

explicit finite-difference formulation.

SSM3BD: Prepare budget information relevant to the sink/source term if the

implicit scheme is used.

Chemical reaction package – RCT350

The RCT Package consists of six primary modules and a secondary module:

RCT3AL: Allocate space for data arrays needed by the Chemical Reaction

Package.

RCT3RP: Read and prepare chemical reaction parameters.

RCT3CF: Calculate nonlinear reaction coefficients that vary with each iteration

if the implicit scheme is used.

RCT3FM: Formulate matrix coefficients related to the reaction term if the

implicit scheme is used.

RCT3SV: Solve the concentration change due to chemical reactions using the

explicit finite-difference formulation.

RCT3BD: Prepare budget information relevant to the reaction term if the

implicit scheme is used.

Both RCT3RP and RCT3SV use the following secondary module:

SRCT3R: Calculate sorbed concentration and retardation factor for the

specified sorption isotherm.
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Generalized conjugate gradient solver package – GCG350

The GCG Package consists of the following primary modules:

GCG3AL: Allocate space for data arrays needed by the Generalized Conjugate

Gradient Solver Package.

GCG3RP: Read and prepare matrix solution parameters.

GCG3AP: Solve the matrix equations resulting from the implicit solution of the

transport equation.

Flow model interface package – FMI350

The FMI Package consists of three primary modules and three secondary

modules:

FMI3AL: Read the header in the unformatted flow-transport link file and

obtain essential information about the flow model.

FMI3RP1: Read and prepare saturated thickness and fluxes across cell interfaces

in the column, row, and layer directions on a cell-by-cell basis by

calling secondary module READHQ.

FMI3RP2: Read and prepare the locations and flow rates of the various

sink/source terms by calling secondary modules READPS (for

reading point sinks or sources) and READDS (for reading areally

distributed sinks or sources).

Utility package – UTL350

The UTL consists of the following utility subroutines called upon by other

modules to perform general computer input/output tasks:

OPENFL: Open an input or output file.

RARRAY: Read a one- or two-dimensional REAL data array using the block,

zonal, list-directed, unformatted, or any user-specified format.

IARRAY: Read a one- or two-dimensional INTEGER data array with the block,

zonal, list-directed, unformatted, or any user-specified format.

RPRINT: Print a one- or two-dimensional REAL data array with the wrap or

strip format.

IPRINT: Print a one- or two-dimensional INTEGER data array with the wrap

or strip format.
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6 Input Instructions

General Information

The MT3DMS code uses a combination of formatted, list-directed, and

unformatted input forms and calls two general array readers to enter data arrays.

These input forms and the array readers are described in this section for easy

reference in the preparation of input files.

Input forms

a. Formatted.  If an input value is entered using the formatted form, the

type of value and the space it occupies must agree with its format

specifier.  Four types of input variables are used in the program:  integer,

real, character, and logical.

(1) In the input instructions to be followed, the format specifier for

integer variables is written as Iw where I implies that the variable

must have the form of an integer (it must not contain a decimal point

or exponent), and w is the number of spaces reserved for the variable.

If the input value is less than w spaces wide, the unoccupied spaces

are treated as blanks by default.  It is always good practice to enter

the value right-justified.

(2) The format specifier for real variables is written as Fw.d where w is

the number of spaces reserved for the entire input value, with the

fractional part taking d spaces.  When a decimal point is present in

the actual input field, it overrides the d specified in the format.

Thus, even though the specifier for real variables is written as

F10.0 in the input instructions, input values can be entered in such

forms as 12.345 or 0.12345.  Furthermore, input values in the

exponential form, such as 1.2345E-5, are also acceptable.

(3) The format specifier for the character variable is written as Aw where

w is the number of spaces reserved for the character variable.  If the

character string is less than w characters wide, unfilled spaces are

treated as blanks.
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(4) Finally, the format specifier for the logical variables is written as Lw

where w is the number of spaces reserved for the logical variable.

The logical variable must be entered either as T (for True) or as F

(for False), leaving unoccupied spaces blank.

b.  List-directed (free format).  List-directed input (also referred to as free

format) has several characteristics.

(1) A list-directed record is a sequence of values separated by either

commas or blanks with multiple blanks allowed.

(2) A list-directed record terminates when the number of the input

values equals the number of items in the input list or until a slash (/)

is encountered.

(3) A list-directed record may occupy several lines of an input file, but

each new record should start at a new line.

(4) List-directed input permits the use of a repeat count in the form, n*d

where n is an unsigned-nonzero integer constant, and the input n*d

causes n consecutive values of d to be entered.

c.  Unformatted (binary).  An unformatted file is a sequence of unformatted

records in the form of binary characters.  An unformatted file cannot be

visually examined, but it is smaller in size and faster to process than a

formatted file.  The model program uses the unformatted form to enter

the flow solution saved by a flow model and writes the calculated

concentrations to an unformatted file for postprocessing purposes.

Array readers RARRAY and IARRAY

Most of the input data to be entered to the model by the user will consist of

one- or two-dimensional real or integer arrays.  Three-dimensional arrays are

treated as a series of two-dimensional arrays, each of which corresponds to an

individual model layer and is entered in sequence according to the layer number.

In the MT3DMS model, arrays are entered as an "array-control record", plus,

optionally, a series of records containing the array elements.  If all the elements

of an array have the same value, the value is specified on the control record and it

is not necessary to read the associated array.  If the array elements vary, records

containing the array values are read using the various input forms as specified on

the array-control record.  To perform these tasks, two utility subroutines,

RARRAY for reading one- or two-dimensional real arrays, and IARRAY for

reading one- or two-dimensional integer arrays, are provided in the program.

These two array readers are compatible to array readers U2DREL and U2DINT

provided in the MODFLOW model (McDonald and Harbaugh 1988).  However,

RARRAY and IARRAY also permit the input of array values by block, zonal,

and list-directed (or free)  formats.
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For each array to be entered, RARRAY or IARRAY reads an array-control

record first on the unit reserved for the major option which calls the array reader.

For example, unit 1 is preset for the Basic Transport Package, thus, RARRAY or

IARRAY reads the array-control record in the input file for the Basic Transport

Package from unit 1.  The content and form of the array control record are as

follows:

FOR REAL ARRAY READER (RARRAY):

Record: IREAD CNSTNT FMTIN IPRN

Format: I10 F10.0 A20 I10

FOR INTEGER ARRAY READER (IARRAY):

Record: IREAD ICONST FMTIN IPRN

Format: I10 I10 A20 I10

a. IREAD determines how array values are read.

(1) If IREAD = 0, every element in array will be set equal to the value

CNSTNT for RARRAY or to ICONST for IARRAY.

(2) If IREAD = 100, an array of input values follows the control record.

The array values are read in the format specified in the third field of

the array-control record (FMTIN) from the same unit used for

reading the array-control record (Figure 26).

(3) If IREAD = 101, an array of values organized in “block” format

follows the array-control record.  The block format consists of a

record specifying the number of blocks, NBLOCK, followed by

NBLOCK records of input values (all in free format), specifying the

first row (I1), last row (I2), first  column (J1), and last column (J2) of

each block as well as the value (ZZ/IZ) to be assigned to the cells

within the block (ZZ is a real value for RARRAY and IZ is an

integer value for IARRAY), as shown below:

NBLOCK (free format)

I1,  I2,  J1,  J2,  ZZ/IZ (block 1) (free format)

I1,  I2,  J1,  J2,  ZZ/IZ (block 2) (free format)

......

I1,  I2,  J1,  J2,  ZZ/IZ (block NBLOCK) (free format)

If a subsequent block overlaps any preceding blocks, the subsequent

block overrides the preceding blocks.  It is always good practice to

have the first block cover the entire grid and allow subsequent blocks

to override portions of the grid as this averts the possibility that any

portion of the grid will be left unassigned (Figure 26).
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Figure 26.  Illustration of the various input forms used by RARRAY and IARRAY

IREAD CNSTNT FMTIN IRPN

100 0. (10F5.1) 3

2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2

10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2

23.5 23.5 23.5 23.5 23.5 23.5 23.5 0.4 0.4 0.4

23.5 23.5 23.5 23.5 23.5 23.5 23.5 0.4 0.4 0.4

23.5 23.5 23.5 23.5 23.5 23.5 23.5 0.4 0.4 0.4

23.5 23.5 23.5 23.5 23.5 23.5 23.5 0.4 0.4 0.4

23.5 23.5 23.5 23.5 23.5 23.5 23.5 0.4 0.4 0.4

0 0 0 0 0 0 0 0.4 0.4 0.4

   An array of 10 by 10 is read with the user-specified format (10F5.1) (IREAD=100).

101 0. (FMTIN not used) 3

        5          <-------------        NBLOCK

1 10 1 10 0

1 2 1 10 2.1

3 4 1 10 10.2

5 9 1 7 23.5

5 10 8 10 0.4

   The same array as shown in (a) is read using the block format (IREAD=101).

102 0. (10F5.0) 3

     4            <---------NZONE

2.1 10.2 23.5      0.4           <----------   ZV(NZONE)

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 4 4 4

3 3 3 3 3 3 3 4 4 4

0 0 0 0 0 0 0 4 4 4

   The same array as shown in (a) is read using the zonal format (IREAD=102).

   Note that format  (10F5.0) is used to read the zone indicators).

103 0. (FMTIN not used) 3

20*2.1   20*10.2   7*23.5   3*0.4    7*23.5   3*0.4     7*23.5     3*0.4     7*23.5     3*0.4 ,7*23.5

, 3*0.4      7*0     3*0.4

   (d) The same array as shown in (a) is read using the list-directed format

             (IREAD=103).
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(4) If IREAD = 102, an array of values organized in “zonal” format fol-

lows the array-control record.  Each zone represents one value of the

input variable, and each zone is identified by a zone number -- an

integer which may actually be thought of as a code for the corre-

sponding value of the input variable.  The zonal format consists of a

record specifying the number of zones, NZONE, followed by an

array of values for the input variables, ZV(NZONE) or IZV

(NZONE), which are listed in sequence according to zone numbers

(1, 2, 3, ..., etc.); ZV is a real array for RARRAY and IZV is an

integer array  for IARRAY as explained below.  Following ZV/IZV

is the zone indicator array A(NCOL,NROW)/IA(NCOL,NROW)

specifying the zone number assigned to each node (cell) in a given

layer of the model.  The elements in this array are actually always

integers (i.e., the integer codes identifying the zone for each cell).

However, they are stored in the array reserved for the input variable

itself and thus follow the format of the input variable.  Hence, the

zone indicators are read using the format as specified in the third

field of the array-control record (FMTIN) which must be a real

format specifier for RARRAY and an integer format specifier for

IARRAY.  If the zone indicator for a cell is equal to zero, the value

for that cell is set to zero (Figure 26).

The zonal format for RARRAY:

NZONES (free format)

ZV(1),.ZV(2),........, ZV(NZONE) (free format)

A(NCOL,NROW)  (using format FMTIN)

The zonal format for IARRAY:

NZONE (free format)

IZV(1), IZV(2), ........., IZV(NZONE) (free format)

IA(NCOL,NROW)     (using format FMTIN)

(5) If IREAD = 103, an array of values follows the array-control record.

The array values are read using list-directed or free format

(Figure 26).

(6) If IREAD = any value other than 0, 100, 101, 102, and 103, array

values are read from a separate file.

(a) If IREAD > 0, it is the unit number on which the external file is

read using the format specified in FMTIN.

(b) If IREAD < 0, the absolute value of IREAD gives the unit

number on which the array values are read from an external

unformatted file.  The unformatted file contains one record of

header, followed by an unformatted record of NCOL*NROW

values.

b. CNSTNT/ICONST is a constant.  Its use depends on the value of IREAD.
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(1) If IREAD = 0, every element in the array is set equal to

CNSTNT/ICONST.

(2) If IREAD z 0, and CNSTNT/ICONST z 0, elements in the array are

multiplied by CNSTNT/ICONST.

c. FMTIN is the user-specified format to read array values or the zonal

indicator array.  The format must be enclosed in parentheses; for

example, (15F5.0) for real values and (15I5) for integer input values.

d. IPRN is a flag indicating whether or not the array being read should be

printed out for checking, and it also serves as a code  indicating the for-

mat that should be used in printing.  It is used only if IREAD is not equal

to zero.  IPRN is set to zero if the specified value exceeds those defined

in Table 3.  If IPRN is less than zero, the array will not be printed.

Table 3
Printing Formats Corresponding to the IPRN Code (after McDonald
and Harbaugh 1988)

IPRN RARRAY IARRAY

0 10G11.4 10I11

1 11G10.3 60I1

2 9G13.6 40I2

3 15F7.1 30I3

4 15F7.2 25I4

5 15F7.3 20I5

6 15F7.4

7 20F5.0

8 20F5.1

9 20F5.2

10 20F5.3

11 20F5.4

12 10G11.4

Units of Input and Output Variables

The MT3DMS code uses any consistent units for input and output variables.

In the input file to the Basic Transport Package, the user decides the units for

time, length, and mass.  Then, any input variable or constant should be entered in

units consistent with the three basic units.  For example, suppose that day (d) is

chosen as unit for time, feet (ft) for length, and pound (lb) for mass.  Then,

hydraulic heads should have the unit of ft, solute concentration the unit of lb/ft
3
,

dispersivity the unit of ft, distribution coefficient for linear sorption the unit of

ft
3
/lb, reaction rate for the first-order kinetic reactions the unit of d

-1
, and so on.
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Similarly, if SI units are preferred, and second (s), centimeter (cm), and gram (g)

are selected as the units for time, length, and mass, respectively, hydraulic heads

should have the unit of cm, concentration the unit of g/cm3, dispersivity the unit

of cm, distribution coefficient for linear sorption the unit of cm3/g, reaction rate

for the first-order kinetic reactions the unit of s
-1

, and so on.  It should be empha-

sized that the unit names entered by the user are used in MT3DMS for identifica-

tion purposes only and do not affect the model simulation results in any way.

A special note is necessary on the unit for concentration.  It is possible that

the use of consistent units sometimes results in concentration values being

extremely large or small, making the model results more vulnerable to numerical

round-off errors.  Furthermore, it is more convenient to work with a commonly

used unit such as ppm rather than a consistent but otherwise cumbersome unit

such as lb/ft
3
.  In the MT3DMS code, it is permissible to use any unit for

concentration if no nonlinear sorption or other types of nonlinear reaction is

simulated.  The unit for output concentration will be identical to that of input

concentration.  The user should note that the mass calculated by the model has

the unit of concentration times flow rate multiplied by time.  Thus, if inconsistent

units have been used, a conversion factor must be used to convert the calculated

mass to the right unit, if the absolute values are important.  It is up to the user to

make the conversion.  It is also possible to work with relative concentrations.  In

that case, all concentrations entered into the model can be scaled according to the

maximum concentration (Co) of either aquifer or fluid sources.  Subsequently, the

model simulates the changes in the relative concentration (C/Co).

Interface with the Flow Model

MT3DMS is designed to be used in conjunction with a block-centered finite-

difference flow model.  This allows the user to construct and calibrate a flow

model independently.  Prior to running MT3DMS, the saturated thickness, fluxes

across cell interfaces in all directions, and locations and flow rates of various

sinks/sources, including transient groundwater storage, as solved by the flow

model, should be saved in an unformatted “flow-transport link file”.  This file

should be saved in such a way that it can be retrieved by MT3DMS correctly

through the Flow Model Interface Package.  Appendix C, Linking MT3DMS

with a Flow Model, gives more detailed information on the structure and form of

the unformatted flow-transport link file.

Incorporating the LinkMT3D package into the MODFLOW code

In many cases, the U. S. Geological Survey modular three-dimensional

finite-difference groundwater flow model (MODFLOW) will be used for the

flow solution; a package has therefore been written for use with MODFLOW to

save the information needed by MT3DMS.  This package, currently in the third

version, is named LKMT3 and has already been incorporated into the version of

the MODFLOW code distributed with MT3DMS.  If it is preferred to use a

version of MODFLOW other than the one distributed with MT3DMS, the

LKMT3 package must be added into MODFLOW.
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To add the LKMT3 package into MODFLOW, insert the statements in file

LKMT3.INC into the MODFLOW main program between the following two

statements:

CALL BAS1OC (...)

IF(CNVG .EQ. 0) STOP

This can be accomplished by using the INCLUDE statement of FORTRAN, i.e.,

CALL BAS1OC (...)

INCLUDE ‘LKMT3.INC’

IF(CNVG .EQ. 0) STOP

where the syntax for the INCLUDE statement may vary slightly from one

compiler to another.  Recompile the main program after the modification.  Next,

compile the source file for the LKMT3 package, i.e., LKMT3.FOR or

LKMT3.F90, and link it with the rest of MODFLOW files.

It should also be pointed out that the procedures described above are

intended for the 1988 version of MODFLOW (referred to as MODFLOW-88)

(McDonald and Harbaugh 1988).  Slightly different procedures are required to

add the LKMT3 package to a newer version of MODFLOW (referred to as

MODFLOW-96) (Harbaugh and McDonald 1996).  Refer to MODFLOW.TXT

included with the MT3DMS distribution files for more information.

Activating the LinkMT3D package in a MODFLOW simulation

To activate the LKMT3 package added to MODFLOW, the user must enter a

positive integer number in the 22nd element of the IUNIT array (i.e., IUNIT(22))

in the input file for the MODFLOW Basic Package.  This instructs the

MODFLOW program to save the unformatted flow-transport link file for use by

MT3DMS.  It also serves as the unit number on which the saturated thickness

and flow terms will be saved.  For this reason, the value entered must be a unique

number that has not been used by other input and output files.  If IUNIT(22) is

specified as zero, no file will be saved by the LKMT3 package.

Input Instructions for the Basic Transport
Package

Input to the BTN Package is read on unit INBTN=1, which is preset in the

main program.  Since the BTN package is needed for every simulation, this input

file is always required.  Note that underlined are new features introduced in the

current version.
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For each simulation:

A1 Record: HEADNG(1)

Format: A80

x HEADNG(1) is the first line of any title or heading for

the simulation run.  The line should not be longer than

80 characters.

A2 Record: HEADNG(2)

Format: A80

x HEADNG(2) is the second line of any title or heading for the

simulation run.  The line should not be longer than 80

characters.

A3 Record: NLAY, NROW, NCOL, NPER, NCOMP, MCOMP

Format: 6I10

x

x

x

x

x

x

NLAY is the total number of layers;

NROW is the total number of rows;

NCOL is the total number of columns;

NPER is the total number of stress periods;

NCOMP is the total number of chemical species included in

the current simulation.  For single-species simulation, set

NCOMP = 1;

MCOMP is the total number of “mobile” species.  MCOMP

must be equal to or less than NCOMP.  For single-species

simulation, set MCOMP=1.

Note that “mobile species” are involved in both transport and

reaction while “immobile” species equal to NCOMP-

MCOMP are involved in reaction only.  Also, for each

species included in NCOMP, MT3DMS automatically tracks

a sorbed or immobile counterpart if a sorption isotherm or

dual-domain mass transfer is specified through the Chemical

Reaction Package.  Thus, there is no need to define separate

“immobile” species to simulate sorption or a dual-domain

system.  The ability to define separate immobile species is

only intended for using MT3DMS with add-on reaction

packages.

A4 Record: TUNIT, LUNIT, MUNIT

Format: 3A4

x

x

x

TUNIT is the name of unit for time, such as DAY or HOUR;

LUNIT is the name of unit for length, such as FT or M;

MUNIT is the name of unit for mass, such as LB or KG.

Note that these names are used for identification purposes

only and do not affect the model outcome.

A5 Record: TRNOP(10)

(ADV  DSP  SSM  RCT  GCG  XXX  XXX  XXX  XXX

XXX)

Format: 10L2
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x TRNOP are logical flags for major transport and solution

options.  TRNOP(1) to (5) correspond to Advection,

Dispersion, Sink & Source Mixing, Chemical Reaction, and

Generalized Conjugate Gradient Solver packages,

respectively.  If any of these options is used, enter its

corresponding TRNOP element as T, otherwise as F.

TRNOP(6) through (10) are reserved for add-on packages.

A6 Record: LAYCON(NLAY)

Format: 40I2

x LAYCON is a 1-D integer array indicating the type of model

layers.  Each value in the array corresponds to one model

layer.  Enter LAYCON in as many lines as necessary if

NLAY > 40.

LAYCON = 0, the model layer is confined.  The layer

thickness DZ to be entered in a subsequent record will be

used as the saturated thickness of the layer.

LAYCON� 0, the model layer is either unconfined or

convertible between confined and unconfined.  The saturated

thickness, as calculated by the flow model and saved in the

flow-transport link file, will be read and used by the transport

model.  (Note that this type corresponds to the LAYCON

values of 1, 2, and 3 of MODFLOW; however, there is no

need to distinguish between these layer types in the transport

simulation.)

A7 Array: DELR(NCOL)

Reader: RARRAY

x DELR is a 1-D real array representing the cell width along

rows ( x' ) in the direction of increasing column indices (j).

Specify one value for each column of the grid.

A8 Array: DELC(NROW)

Reader: RARRAY

x DELC is a 1-D real array representing the cell width along

columns ( y� ) in the direction of increasing row indices (i).

Specify one value for each row of the grid.

A9 Array: HTOP(NCOL,NROW)

Reader: RARRAY

x HTOP is a 2-D array defining the top elevation of all cells in

the first (top) model layer, relative to the same datum as the

hydraulic heads.
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If the first model layer is unconfined, HTOP can be set most

conveniently to a uniform elevation above the water table

(Figure 27).  Note that the concentrations for the cells in the

first model layer are calculated at nodal points assumed to be

midway between HTOP and the bottom of the first layer.

Thus, HTOP should not be set much higher than the water

table.  Also note that the difference between HTOP and the

bottom elevation of the first layer must be equal to the layer

thickness DZ to be defined in the next record.

If the first model layer is confined, HTOP is equal to the

bottom elevation of the confining unit overlying the first

model layer (Figure 27).

A10 Array: DZ(NCOL,NROW)   (one array for each layer in the grid)

Reader: RARRAY

x DZ is the thickness of all cells in each model layer.  DZ is a

3-D array.  The input to 3-D arrays is handled as a series of

2-D arrays with one array for each layer, entered in the

sequence of layer 1, 2, ..., NLAY.  The thickness of the first

layer must be equal to the difference between HTOP and its

bottom elevation. When the grid is discretized into horizontal

layers, HTOP for the first layer and DZ within each layer are

uniform (Figure 28).  However, if a vertically distorted grid

is used, both HTOP and DZ may be variable for cells within

the same layer (Figure 28).

A11 Array: PRSITY(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x PRSITY is the “effective” porosity of the porous medium in

a single porosity system (see discussions in Chapter 2).  Note

that if a dual-porosity system is simulated, PRSITY should

be specified as the “mobile” porosity (i.e., the ratio of

interconnected pore spaces filled with mobile waters over the

bulk volume of the porous medium); the “immobile”

porosity is defined through the Chemical Reaction Package.

A12 Array: ICBUND(NCOL,NROW)   (one array for each layer)

Reader: IARRAY

x ICBUND is an integer array specifying the boundary

condition type (inactive, constant-concentration, or active)

for every model cell.  For multispecies simulation, ICBUND

defines the boundary condition type shared by all species.

Note that different species are allowed to have different

constant-concentration conditions through an option in the

Source and Sink Mixing Package.
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 Figure 27.   Illustration of array HTOP for (a) unconfined and (b) confined aquifer
layers
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(a) Array HTOP for an unconfined aquifer.

(b) Array HTOP for a confined aquifer.
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Figure 28.   Arrays HTOP and DZ for different vertical discretization schemes
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If ICBUND = 0, the cell is an inactive concentration cell for

all species.  Note that no-flow or “dry” cells are automatic-

ally converted into inactive concentration cells.  Further-

more, active cells in terms of flow can be treated as inactive

concentration cells to minimize the area needed for transport

simulation, as long as the solute transport is insignificant

near those cells.

If ICBUND < 0, the cell is a constant-concentration cell for

all species.  The starting concentration of each species

remains the same at the cell throughout the simulation.  (To

define different constant-concentration conditions for diffe-

rent species at the same cell location, refer to the Sink/Source

Mixing Package.)  Also note that unless explicitly defined as

a constant-concentration cell, a constant-head cell in the flow

model is not treated as a constant-concentration cell.

If ICBUND > 0, the cell is an active (variable) concentration

cell where the concentration value will be calculated.

(Enter A13 for each species)

A13 Array: SCONC(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x SCONC is the starting concentration (initial condition) at the

beginning of the simulation (unit, ML
-3

).  For multispecies

simulation, the starting concentration must be specified for

all species, one species at a time.

A14 Record: CINACT, THKMIN

Format: 2F10.0

x

x

CINACT is the value for indicating an inactive concentration

cell (ICBUND = 0).  Even if inactive cells are not anticipated

in the model, a value for CINACT still must be submitted.

THKMIN is the minimum saturated thickness in a cell,

expressed as the decimal fraction of the model layer thick-

ness (DZ) below which the cell is considered inactive.  The

default value is 0.01 (i.e., 1 percent of the model layer

thickness).

A15 Record: IFMTCN, IFMTNP, IFMTRF, IFMTDP, SAVUCN

Format: 4I10, L10

x IFMTCN is a flag indicating whether the calculated concen-

tration should be printed to the standard output text file and

also serves as a printing-format code if it is printed.  The

codes for print-formats are the same as those listed in

Table 3.
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x IFMTCN > 0, concentration is printed in the wrap form

                   (Figure 29).

                < 0, concentration is printed in the strip form

                   (Figure 29).

               = 0, concentration is not printed.

x IFMTNP is a flag indicating whether the number of particles

in each cell  (integers) should be printed and also serves as a

printing-format code if they are printed.  The convention is

the same as that used for IFMTCN.

x

x

IFMTRF is a flag indicating whether the model-calculated

retardation factor should be printed and also serves as a

printing-format code if it is printed.  The convention is the

same as that used for IFMTCN.

IFMTDP is a flag indicating whether the model-calculated,

distance-weighted dispersion coefficient should be printed

and also serves as a printing-format code if it is printed.  The

convention is the same as that used for IFMTCN.

x SAVUCN is a logical flag indicating whether the concentra-

tion solution should be saved in a default unformatted

(binary) file named MT3Dnnn.UCN, where nnn is the

species index number, for post-processing purposes or for

use as the initial condition in a continuation run.

If SAVUCN = T, the concentration of each species will be

saved in the default file MT3Dnnn.UCN.  In addition, the

model spatial discretization information will be saved in

another default file named MT3D.CNF to be used in con-

junction with MT3Dnnn.UCN for postprocessing purposes.

If SAVUCN = F, neither MT3Dnnn.UCN nor MT3D.CNF

is created.

A16 Record: NPRS

Format: I10

x NPRS is a flag indicating the frequency of the output and also

indicating whether the output frequency is specified in terms

of total elapsed simulation time or the transport step number.

Note that what is actually printed or saved is controlled by the

input values entered in the preceding record (Record A15).

If NPRS > 0, simulation results will be printed to the stan-

dard output text file or saved to the unformatted concentra-

tion file at times as specified in record TIMPRS(NPRS) to be

entered in the next record.

If NPRS  = 0, simulation results will not be printed or saved

except at the end of simulation.

If NPRS < 0, simulation results will be printed or saved

whenever the number of transport steps is an even multiple

of NPRS.
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Figure 29.   Illustration of wrap and strip forms of printed output for a layer containing 7 rows
                   and 17 columns (modified from McDonald and Harbaugh 1988)

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8 9 10

1 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

2 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

3 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

4 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

5 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

6 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

7 1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56

1234.56 1234.56 1234.56

(a) WRAP FORM

1 2 3 4 5 6 7 8 9 10

1 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

2 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

3 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

4 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

5 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

6 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

7 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

11 12 13 14 15 16 17

1 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

2 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

3 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

4 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

5 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

6 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

7 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56 1234.56

(b) STRIP FORM
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(Enter A17 only if NPRS > 0)

A17 Record: TIMPRS(NPRS)

Format: 8F10.0

x TIMPRS is the total elapsed time at which the simulation

results are printed to the standard output text file or saved in

the default unformatted (binary) concentration file

MT3Dnnn.UCN.  Note that if NPRS > 8, enter TIMPRS in

as many lines as necessary.

A18 Record: NOBS, NPROBS

Format: 2I10

x

x

NOBS is the number of observation points at which the

concentration of each species will be saved at the specified

frequency in the default MT3Dnnn.OBS where nnn is the

species index number.

NPROBS is an integer indicating how frequently the

concentration at the specified observation points should be

saved in the observation file MT3Dnnn.OBS.

Concentrations are saved every NPROBS step.

(Enter A19 NOBS times if NOBS > 0)

A19 Record: KOBS, IOBS, JOBS

Format: 3I10

x KOBS, IOBS, and JOBS are the cell indices (layer, row,

column) in which the observation point or monitoring well is

located and for which the concentration is to be printed at

every transport step in file MT3Dnnn.OBS.  Enter one set of

KOBS, IOBS, JOBS for each observation point.

A20 Record: CHKMAS, NPRMAS

Format: L10, I10

x CHKMAS is a logical flag indicating whether a one-line

summary of mass balance information should be printed, for

checking and postprocessing purposes, in the default file

MT3Dnnn.MAS where nnn is the species index number.

If CHKMAS = T, the mass balance information for each

transport step will  be saved in file MT3Dnnn.MAS.

If CHKMAS = F, file MT3Dnnn.MAS is not created.

x NPRMAS is an integer indicating how frequently the mass

budget information should be saved in the mass balance

summary file MT3Dnnn.MAS.  Mass budget information is

saved every NPRMAS step.



112 Chapter 6  Input Instructions

For each stress period

A21 Record: PERLEN, NSTP, TSMULT

Format: F10.0, I10, F10.0

x

x

x

PERLEN is the length of the current stress period.  If the

flow solution is transient, PERLEN specified here must be

equal to that specified for the flow model.  If the flow

solution is steady-state, PERLEN can be set to any desired

length.

NSTP is the number of time-steps for the transient flow

solution in the current stress period.  If the flow solution is

steady-state, NSTP = 1.

TSMULT is the multiplier for the length of successive time-

steps used in the transient flow solution; it is used only if

NSTP > 1.

If TSMULT > 0, the length of each flow time-step within the

current stress period is calculated using the geometric

progression as in MODFLOW.  Note that both NSTP and

TSMULT specified here must be identical to those specified

in the flow model if the flow model is transient.

If TSMULT �  0, the length of each flow time-step within

the current stress period is read from the record TSLNGH

(see A22).  This option is needed in case the length of time-

steps for the flow solution is not based on a geometric

progression in a flow model, unlike MODFLOW.

(Enter A22 if TSMULT� 0)

A22 Record: TSLNGH(NSTP)

Format: 8F10.0

x TSLNGH provides the length of time-steps for the flow

solution in the current stress period.  This record is

needed only if  the length of time-steps for the flow

solution is not based on a geometric progression.  Enter

TSLNGH in as many lines as necessary if NSTP > 8.

A23 Record: DT0, MXSTRN, TTSMULT, TTSMAX

Format: F10.0, I10, 2F10.0

x DT0 is the user-specified transport step size within each

time-step of the flow solution.  DT0 is interpreted

differently depending on whether the solution option

chosen is explicit or implicit:
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x

For explicit solutions (i.e., the GCG solver is not used),

the program will always calculate a maximum transport

step size which meets the various stability criteria.  Set-

ting DT0 to zero causes the model-calculated transport

step size to be used in the simulation.  However, the

model-calculated DT0 may not always be optimal.  In

this situation, DT0 should be adjusted to find a value that

leads to the best results.  If DT0 is given a value greater

than the model-calculated step size, the model-calculated

step size, instead of the user-specified value, will be used

in the simulation.

For implicit solutions (i.e., the GCG solver is used), DT0

is the initial transport step size.  If it is specified as zero,

the model-calculated value of DT0, based on the user-

specified Courant number in the Advection Package, will

be used.  The subsequent transport step size may increase

or remain constant depending on the user-specified

transport step size multiplier TTSMULT and the solution

scheme for the advection term.

MXSTRN is the maximum number of transport steps

allowed within one time step of the flow solution.  If the

number of transport steps within a flow time-step

exceeds MXSTRN, the simulation is terminated.

x

x

TTSMULT is the multiplier for successive transport

steps within a flow time-step if the GCG solver is used

and the solution option for the advection term is the

standard finite-difference method.  A value between 1.0

and 2.0 is generally adequate.  If the GCG package is not

used, the transport solution is solved explicitly as in the

original MT3D code, and TTSMULT is always set to 1.0

regardless of the user-specified input.  Note that for the

particle-tracking-based solution options and the third-

order TVD scheme, TTSMULT does not apply.

TTSMAX is the maximum transport step size allowed

when transport step size multiplier TTSMULT > 1.0.

Setting TTSMAX=0 imposes no maximum limit.

Input Instructions for the Advection Package

Input to the Advection Package is read on unit INADV = 2, which is preset

in the main program.  The input file is needed only if the Advection Package is

used; however, this package is needed under almost all circumstances.  Note that

underlined are new features introduced in the current version.
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For each simulation:

B1 Record: MIXELM, PERCEL, MXPART, NADVFD

Format: I10, F10.0, 2I10

x MIXELM is an integer flag for the advection solution

option.

MIXELM = 0, the standard finite-difference method

with upstream or central-in-space weighting, depending

on the value of NADVFD;

= 1, the forward-tracking method of characteristics

(MOC);

= 2, the backward-tracking modified method of

characteristics (MMOC);

= 3, the hybrid method of characteristics (HMOC) with

MOC or MMOC automatically and dynamically

selected;

= -1, the third-order TVD scheme (ULTIMATE).

x PERCEL is the Courant number (i.e., the number of

cells, or a fraction of a cell) advection will be allowed in

any direction in one transport step.

For implicit finite-difference or particle-tracking-based

schemes, there is no limit on PERCEL, but for accuracy

reasons, it is generally not set much greater than one.

Note, however, that the PERCEL limit is checked over

the entire model grid.  Thus, even if PERCEL > 1,

advection may not be more than one cell’s length at most

model locations.

For the explicit finite-difference or the third-order TVD

scheme, PERCEL is also a stability constraint which

must not exceed one and will be automatically reset to

one if a value greater than one is specified.

x

x

MXPART is the maximum total number of moving par-

ticles allowed and is used only when MIXELM = 1 or 3.

NADVFD is an integer flag indicating which weighting

scheme should be used; it is needed only when the

advection term is solved using the implicit finite-

difference method.

NADVFD = 0 or 1, upstream weighting (default);

= 2,central-in-space weighting.

(Enter B2 if MIXELM = 1, 2, or 3)

B2 Record: ITRACK, WD

Format: I10, F10.0

x ITRACK is a flag indicating which particle-tracking

algorithm is selected for the Eulerian-Lagrangian

methods.
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ITRACK = 1, the first-order Euler algorithm is used.

= 2, the fourth-order Runge-Kutta algorithm is used; this

option is computationally demanding and may be needed

only when PERCEL is set greater than one.

= 3, the hybrid first- and fourth-order algorithm is used;

the Runge-Kutta algorithm is used in sink/source cells

and the cells next to sinks/sources while the Euler

algorithm is used elsewhere.

x WD is a concentration weighting factor between 0.5 and

1.  It is used for operator splitting in the particle-

tracking-based methods.  The value of 0.5 is generally

adequate.  The value of WD may be adjusted to achieve

better mass balance.  Generally, it can be increased

toward 1.0 as advection becomes more dominant.

(Enter B3 if MIXELM = 1 or 3)

B3 Record: DCEPS, NPLANE, NPL, NPH,  NPMIN, NPMAX

Format: F10.0, 5I10

x DCEPS is a small Relative Cell Concentration Gradient

below which advective transport is considered

negligible.  A value around 10-5 is generally adequate.

x NPLANE is a flag indicating whether the random or

fixed pattern is selected for initial placement of moving

particles.

If NPLANE = 0, the random pattern is selected for initial

placement. Particles are distributed randomly in both the

horizontal and vertical directions by calling a random

number generator (Figure 18b).  This option is usually

preferred and leads to smaller mass balance discrepancy

in nonuniform or diverging/converging flow fields.

If NPLANE > 0, the fixed pattern is selected for initial

placement.  The value of NPLANE serves as the number

of vertical “planes” on which initial particles are placed

within each cell block (Figure 18a).  The fixed pattern

may work better than the random pattern only in

relatively uniform flow fields.  For two-dimensional

simulations in plan view, set NPLANE = 1.  For  cross

sectional or three-dimensional simulations, NPLANE = 2

is normally adequate.  Increase NPLANE if more

resolution in the vertical direction is desired.

x NPL is the number of initial particles per cell to be

placed at cells where the Relative Cell Concentration

Gradient is less than or equal to DCEPS.  Generally,

NPL can be set to zero since advection is considered

insignificant when the Relative Cell Concentration

Gradient is less than or equal to DCEPS.  Setting NPL

equal to NPH causes a uniform number of particles to be

placed in every cell over the entire grid (i.e., the uniform

approach).
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x NPH is the number of initial particles per cell to be

placed at cells where the Relative Cell Concentration

Gradient is greater than DCEPS.  The selection of NPH

depends on the nature of the flow field and also the

computer memory limitation.  Generally, a smaller

number should be used in relatively uniform flow fields

and a larger number should be used in relatively

nonuniform flow fields.  However, values exceeding 16

in two-dimensional simulation or 32 in three-

dimensional simulation are rarely necessary.  If the

random pattern is chosen, NPH particles are randomly

distributed within the cell block.  If the fixed pattern is

chosen, NPH is divided by NPLANE to yield the number

of particles to be placed per vertical plane, which is

rounded to one of the values shown in Figure 30.

x NPMIN is the minimum number of particles allowed per

cell.  If the number of particles in a cell at the end of a

transport step is fewer than NPMIN, new particles are

inserted into that cell to maintain a sufficient number of

particles.  NPMIN can be set to zero in relatively

uniform flow fields and to a number greater than zero in

diverging/converging flow fields.  Generally, a value

between zero and four is adequate.

x NPMAX is the maximum number of particles allowed

per cell.  If the number of particles in a cell exceeds

NPMAX, all particles are removed from that cell and

replaced by a new set of particles equal to NPH to

maintain mass balance.  Generally, NPMAX can be set

to approximately two times of NPH.

(Enter B4 if MIXELM = 2 or 3)

B4 Record: INTERP, NLSINK, NPSINK

Format: 3I10

x INTERP is a flag indicating the concentration

interpolation method for use in the MMOC scheme.

Currently, only linear interpolation is implemented.

Enter INTERP = 1.

x NLSINK is a flag indicating whether the random or fixed

pattern is selected for initial placement of particles to

approximate sink cells in the MMOC scheme.  The

convention is the same as that for NPLANE.  It is

generally adequate to set NLSINK equivalent to

NPLANE.

x NPSINK is the number of particles used to approximate

sink cells in the MMOC scheme.  The convention is the

same as that for NPH.  It is generally adequate to set

NPSINK equivalent to NPH.



Chapter 6   Input Instructions 117

Figure 30. Distribution of initial particles using the fixed pattern (if the fixed
pattern is chosen, the number of particles placed per cell (NPL or
NPH) is divided by the number of vertical “planes,” or NPLANE, to
yield the number of particles to be placed on each vertical plane,
which is then rounded to one of the values shown here)

Fixed pattern 1:

Particle number per plane: 1

Fixed pattern 2:

Particle number per plane: 4

Fixed pattern 3:

Particle number per plane: 5

Fixed pattern 5:

Particle number per plane: 9

Fixed pattern 6:

Particle number per plane: 16

Fixed pattern 4:

Particle number per plane: 8
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(Enter B5 if MIXELM = 3)

B5 Record: DCHMOC

Format: F10.0

x DCHMOC is the critical Relative Concentration

Gradient for controlling the selective use of either MOC

or MMOC in the HMOC solution scheme.

The MOC solution is selected at cells where the Relative

Concentration Gradient is greater than DCHMOC.

The MMOC solution is selected at cells where the

Relative Concentration Gradient is less than or equal to

DCHMOC.

Input Instructions for the Dispersion Package

Input to the Dispersion Package is read on unit INDSP = 3, which is preset in

the main program.  The input file is needed only if the Dispersion Package is

used in the simulation.

FOR EACH SIMULATION:

C1 Array: AL(NCOL,NROW)    (one array for each layer).

Reader: RARRAY

x AL is the longitudinal dispersivity, L� , for every cell of

the model grid (unit, L).

C2 Array: TRPT(NLAY)

Reader: RARRAY

x TRPT is a 1D real array defining the ratio of the

horizontal transverse dispersivity, �TH , to the

longitudinal dispersivity, � L .  Each value in the array

corresponds to one model layer.  Some recent field

studies suggest that TRPT is generally not greater than

0.1.

C3 Array: TRPV(NLAY)

Reader: RARRAY

x TRPV is the ratio of the vertical transverse dispersivity,

�TV , to the longitudinal dispersivity, � L .  Each value in

the array corresponds to one model layer.  Some recent

field studies suggest that TRPT is generally not greater

than 0.01.
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Set TRPV equal to TRPT to use the standard isotropic

dispersion model (Equation 10 in Chapter 2).  Otherwise,

the modified isotropic dispersion model is used

(Equation 11 in Chapter 2).

C4 Array: DMCOEF(NLAY)

Reader: RARRAY

x DMCOEF is the effective molecular diffusion coefficient

(unit, L2T-1). Set DMCOEF = 0 if the effect of

molecular diffusion is considered unimportant.  Each

value in the array corresponds to one model layer.

Input Instructions for the Sink & Source Mixing
Package

Input to the Sink & Source Mixing Package is read on unit INSSM = 4,

which is preset in the main program.  The input file is needed if any sink or

source option is used in the flow model, including the constant-head or general-

head-dependent boundary conditions.  The classification of the sink/source types

used in MT3DMS is the same as that used by MODFLOW (McDonald and

Harbaugh 1988).  Note that underlined are new features introduced in the current

version.

For each simulation:

D1 Record: FWEL, FDRN, FRCH, FEVT, FRIV, FGHB,

(FNEW(n), n=1,4)

Format: 10L2

x

x

x

x

x

x

x

FWEL is a logical flag for the Well option.

FDRN is a logical flag for the Drain option.

FRCH is a logical flag for the Recharge option.

FEVT is a logical flag for the Evapotranspiration

option.

FRIV is a logical flag for the River option.

FGHB is a logical flag for General-Head-Dependent

Boundary option.

FNEW are logical flags reserved for additional

sink/source options.  If any of these options is used in the

flow model, its respective flag must be set to T (True),

otherwise, set to F (False).

Note that when MODFLOW is used to obtain flow

solutions for MT3DMS, Version 2 and later of the

LKMT package for MODFLOW will store appropriate

values for these flags in the unformatted flow-transport

link file.  If these flags are not specified correctly here,

MT3DMS will issue a warning, reset the flags to correct

values, and proceed with the simulation.
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Also note that a commonly used add-on package to

MODFLOW, the Streamflow-Routing (STR) package is

supported through the River option.  This is done by

associating the River option in MT3DMS with the STR

package instead of the RIV package in MODFLOW.  For

this reason, the RIV and STR packages cannot be used

concurrently in the same MODFLOW simulation.

D2 Record: MXSS

Format: I10

x MXSS is the maximum number of all point sinks and

sources included in the flow model.  Point sinks and

sources include constant-head cells, wells, drains, rivers,

and general-head-dependent boundary cells.  Recharge

and evapotranspiration are treated as areally distributed

sinks and sources; thus, they should not be counted as

point sinks and sources.  MXSS should be set close to

the actual number of total point sinks and sources in the

flow model to minimize the computer memory allocated

to store sinks and sources.

For each stress period:

(Enter D3 if FRCH = T)

D3 Record: INCRCH

Format: I10

x INCRCH is a flag indicating whether an array containing

the concentration of recharge flux for each species will

be read for the current stress period.

If INCRCH �  0, an array containing the concentration

of recharge flux for each species will be read.

If INCRCH  < 0, the concentration of recharge flux will

be reused from the last stress period.  If INCRCH < 0 is

specified for the first stress period, then by default, the

concentration of positive recharge flux (source) is set

equal to zero and that of negative recharge flux (sink) is

set equal to the aquifer concentration.

(Enter D4 for each species if FRCH = T and INCRCH � 0)

D4 Array: CRCH(NCOL,NROW)

Reader: RARRAY
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x CRCH is the concentration of recharge flux for a

particular species.  If the recharge flux is positive, it acts

as a source whose concentration can be specified as

desired.  If the recharge flux is negative, it acts as a sink

(discharge) whose concentration is always set equal to

the concentration of groundwater at the cell where

discharge occurs.  Note that the location and flow rate of

recharge/discharge are obtained from the flow model

directly through the unformatted flow-transport link file.

(Enter D5 if FEVT = T)

D5 Record: INCEVT

Format: I10

x INCEVT is a flag indicating whether an array containing

the concentration of evapotranspiration flux for each

species will be read for the current stress period.

If INCEVT �  0, an array containing the concentration of

evapotranspiration flux for each species will be read.

If INCEVT< 0, the concentration of evapotranspiration

flux for each species will be reused from the last stress

period.  If INCEVT < 0 is specified for the first stress

period, then by default, the concentration of negative

evapotranspiration flux (sink) is set to the aquifer con-

centration, while the concentration of positive evapo-

transpiration flux (source) is set to zero.

(Enter D6 for each species if FEVT = T and INCEVT� 0)

D6 Array: CEVT(NCOL,NROW)

Reader: RARRAY

x CEVT is the concentration of evapotranspiration flux for

a particular species.  Evapotranspiration is the only type

of sink whose concentration may be specified externally.

Note that the concentration of a sink cannot be greater

than that of the aquifer at the sink cell.  Thus, if the sink

concentration is specified greater than that of the aquifer,

it is automatically set equal to the concentration of the

aquifer.  Also note that the location and flow rate of

evapotranspiration are obtained from the flow model

directly through the unformatted flow-transport link file.

D7 Record: NSS

Format: I10

x NSS is the number of point sources whose

concentrations need to be specified.  By default,

unspecified point sources are assumed to have zero

concentration.  (The concentration of point sinks is

always set equal to the concentration of groundwater at

the sink location.)
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Note that in MT3DMS, point sources are generalized to

include not only those associated with a flow rate in the

flow model, but also those independent of the flow

solution.  This type of “mass-loading” sources may be

used to include contaminant sources which have minimal

effects on the hydraulics of the flow field.

(Enter D8 NSS times if NSS > 0)

D8 Record: KSS,   ISS,   JSS,   CSS,   ITYPE,   (CSSMS(n), n=1,

NCOMP)

Format: 3I10, F10.0, I10, [free]

x

x

KSS, ISS, JSS are the cell indices (layer, row, column)

of the point source for which a concentration needs to be

specified for each species.

CSS is the specified source concentration or mass-

loading rate, depending on the value of ITYPE, in a

single-species simulation,.  (For a multispecies

simulation, CSS is not used, but a dummy value still

needs to be entered here.)

Note that for most types of sources, CSS is interpreted as

the source concentration with the unit of mass per unit

volume (ML
-3

), which, when multiplied by its

corresponding flow rate (L
3
T

-1
) from the flow model,

yields the mass-loading rate (MT
-1

) of the source.

For a special type of sources (ITYPE = 15), CSS is taken

directly as the mass-loading rate (MT
-1

) of the source so

that no flow rate is required from the flow model.

Furthermore, if the source is specified as a constant-

concentration cell (ITYPE = -1), the specified value of

CSS is assigned directly as the concentration of the

designated cell.  If the designated cell is also associated

with a sink/source term in the flow model, the flow rate

is not used.

x ITYPE is an integer indicating the type of the point

source as listed below:

ITYPE  = 1, constant-head cell;

= 2, well;

= 3, drain (note that in MODFLOW conventions, a

drain is always a sink, thus, the concentration for drains

cannot be specified if the flow solution is from

MODFLOW);

= 4, river (or stream);

= 5, general-head-dependent boundary cell;

= 15, mass-loading source;

= -1, constant-concentration cell.
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x (CSSMS(n), n=1, NCOMP) defines the concentrations of

a point source for multispecies simulation with

NCOMP>1.  In a multispecies simulation, it is necessary

to define the concentrations of all species associated with

a point source.  As an example, if a chemical of a certain

species is injected into a multispecies system, the

concentration of that species is assigned a value greater

than zero while the concentrations of all other species are

assigned zero.  CSSMS(n) can be entered in free format,

separated by a comma or space between values.

Several important notes on assigning concentration for

the constant-concentration condition (ITYPE = -1) are

listed below:

The constant-concentration condition defined in this

input file takes precedence to that defined in the Basic

Transport Package input file.

In a multiple stress period simulation, a constant-

concentration cell, once defined, will remain a constant-

concentration cell in the duration of the simulation, but

its concentration value can be specified to vary in

different stress periods.

In a multispecies simulation, if it is only necessary to

define different constant-concentration conditions for

selected species at the same cell location, specify the

desired concentrations for those species, and assign a

negative value for all other species.  The negative value

is a flag used by MT3DMS to skip assigning the

constant-concentration condition for the designated

species.

Input Instructions for the Chemical Reaction
Package

Input  to the Chemical Reaction Package is read on unit INRCT = 8, which is

preset in the main program.  The input file is needed only if chemical reactions

are simulated.  In addition, the option for modeling transport in a dual-domain

system is specified through this file.  Note that new features introduced in the

current version are underlined.
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For each simulation:

E1 Record: ISOTHM, IREACT, IRCTOP, IGETSC

Format: 4I10

x

x

ISOTHM is a flag indicating which type of sorption (or

dual-domain mass transfer) is simulated:

ISOTHM = 0, no sorption is simulated;

=1, Linear isotherm (equilibrium-controlled);

=2, Freundlich isotherm (equilibrium-controlled);

=3, Langmuir isotherm (equilibrium-controlled);

=4, First-order kinetic sorption (nonequilibrium);

=5, Dual-domain mass transfer (without sorption);

=6, Dual-domain mass transfer (with sorption).

IREACT is a flag indicating which type of kinetic rate

reaction is simulated:

IREACT = 0, no kinetic rate reaction is simulated;

IREACT = 1, first-order irreversible reaction.

Note that this reaction package is not intended for

modeling chemical reactions between species.  An add-on

reaction package developed specifically for that purpose

may be used.

x

x

IRCTOP is an integer flag indicating how reaction

variables are entered:

IRCTOP t 2, all reaction variables are specified as 3-D

arrays on a cell-by-cell basis.

IRCTOP < 2, all reaction variables are specified as a 1-D

array with each value in the array corresponding to a

single layer.  This option is mainly for retaining

compatibility with the previous versions of MT3D.

IGETSC is an integer flag indicating whether the initial

concentration for the nonequilibrium sorbed or immobile

phase of all species should be read when nonequilibrium

sorption (ISOTHM = 4) or dual-domain mass transfer

(ISOTHM  = 5 or 6) is simulated:

IGETSC = 0, the initial concentration for the sorbed or

immobile phase is not read.  By default, the sorbed phase

is assumed to be in equilibrium with the dissolved phase

(ISOTHM = 4), and the immobile domain is assumed to

have zero concentration (ISOTHM = 5 or 6).

IGETSC > 0, the initial concentration for the sorbed phase

or immobile liquid phase of all species will be read.

(Enter E2A if ISOTHM=1, 2, 3, 4, or 6; but not 5)

E2A Array: RHOB(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x RHOB is the bulk density of the aquifer medium (unit,

ML
-3

).
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(Enter E2B if ISOTHM = 5 or 6)

E2B Array: PRSITY2(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x PRSITY2 is the porosity of the immobile domain, i.e., the

ratio of pore spaces filled with immobile fluids over the

bulk volume of the aquifer medium, when the simulation

is intended to represent a dual-domain system.

(Enter E2C for each species if IGETSC > 0)

E2C Array: SRCONC(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x SRCONC is the user-specified initial concentration for

the sorbed phase of a particular species if ISOTHM = 4

(unit, MM
-1

).  Note that for equilibrium-controlled

sorption, the initial concentration for the sorbed phase

cannot be specified.

SRCONC is the user-specified initial concentration for

the immobile liquid phase if ISOTHM = 5 or 6

(unit, ML
-3

).

(Enter E3 for each species if ISOTHM > 0)

E3 Array: SP1(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x SP1 is the first sorption parameter.  The use of SP1

depends on the type of sorption selected (i.e., the value of

ISOTHM):

For linear sorption (ISOTHM = 1) and nonequilibrium

sorption (ISOTHM = 4), SP1 is the distribution

coefficient (Kd) (unit, L
3
M

-1
).

For Freundlich sorption (ISOTHM = 2), SP1 is the

Freundlich equilibrium constant (Kf) (the unit depends on

the Freundlich exponent a).

For Langmuir sorption (ISOTHM = 3), SP1 is the

Langmuir equilibrium constant (Kl) (unit, L
3
M

-1 ).

For dual-domain mass transfer without sorption

(ISOTHM = 5), SP1 is not used, but still must be entered.

For dual-domain mass transfer with sorption (ISOTHM

= 6), SP1 is also the distribution coefficient (Kd)

(unit, L
3
M

-1
).
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(Enter E4 for each species if ISOTHM > 0)

E4 Array: SP2(NCOL,NROW)   (one array for each layer)

Reader: RARRAY

x SP2 is the second sorption or dual-domain model

parameter.  The use of SP2 depends on the type of

sorption or dual-domain model selected:

For linear sorption (ISOTHM = 1), SP2 is read but not

used.

For Freundlich sorption (ISOTHM = 2), SP2 is the

Freundlich exponent a.

For Langmuir sorption (ISOTHM = 3), SP2 is the total

concentration of the sorption sites available ( S ) (unit,

MM
-1

).

For nonequilibrium sorption (ISOTHM = 4), SP2 is the

first-order mass transfer rate between the dissolved and

sorbed phases (unit, T
-1

).

For dual-domain mass transfer (ISOTHM = 5 or 6), SP2

is the first-order mass transfer rate between the two

domains (unit, T
-1

).

(Enter E5 for each species if IREACT > 0)

E5 Array: RC1(NCOL, NROW)   (one array for each layer)

Reader: RARRAY

x RC1 is the first-order reaction rate for the dissolved

(liquid) phase (unit, T
-1

).  If a dual-domain system is

simulated, the reaction rates for the liquid phase in the

mobile and immobile domains are assumed to be equal.

(Enter E6 for each species if IREACT > 0)

E6 Array: RC2(NCOL, NROW)   (one array for each layer)

Reader: RARRAY

x RC2 is the first-order reaction rate for the sorbed phase

(unit, T
-1

).  If a dual-domain system is simulated, the

reaction rates for the sorbed phase in the mobile and

immobile domains are assumed to be equal.  Generally, if

the reaction is radioactive decay, RC2 should be set equal

to RC1, while for biodegradation, RC2 may be different

from RC1.

Note that RC2 is read but not used, if no sorption is

included in the simulation.
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Input Instructions for the Generalized Conjugate
Gradient Solver Package

Input to the Generalized Conjugate Gradient (GCG) Package is read on unit

INGCG = 9, which is preset in the main program.  The input file is needed only if

the GCG solver is used for implicit solution schemes.  This package is a new

addition in MT3DMS.

For each simulation:

F1 Record: MXITER, ITER1, ISOLVE, NCRS

Format: Free

x

x

x

x

MXITER is the maximum number of outer iterations; it

should be set to an integer greater than one only when a

nonlinear sorption isotherm is included in simulation.

ITER1 is the maximum number of inner iterations; a

value of 30-50 should be adequate for most problems.

ISOLVE is the type of preconditioners to be used with the

Lanczos/ORTHOMIN acceleration scheme:

= 1, Jacobi

= 2, SSOR

= 3, Modified Incomplete Cholesky (MIC)

             (MIC usually converges faster, but it needs

             significantly more memory)

NCRS is an integer flag for treatment of dispersion tensor

cross terms:

= 0, lump all dispersion cross terms to the right-

              hand-side (approximate but highly efficient).

= 1, include full dispersion tensor (memory

              intensive).

F2 Record: ACCL, CCLOSE, IPRGCG

Format: Free

x ACCL is the relaxation factor for the SSOR option; a

value of 1.0 is generally adequate.

x

x

CCLOSE is the convergence criterion in terms of relative

concentration; a real value between 10
-4

 and 10
-6

 is

generally adequate.

IPRGCG is the interval for printing the maximum concen-

tration changes of each iteration.  Set IPRGCG to zero as

default for printing at the end of each stress period.
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Start of a Simulation Run

There are two ways to start a simulation run.  The first method is simply to

type the name of the executable file.  The program will prompt the user for the

names of various input and output files.  An example is given below, where

“C:\>” is the command prompt and “MT3DMS” is the name of the executable

file of the MT3DMS program:

C:\>MT3DMS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+                                                                +

+                               MT3DMS                           +

+             A Modular Three-Dimensional Transport Model        +

+ For Simulation of Advection, Dispersion and Chemical Reactions +

+                of Contaminants in Groundwater Systems          +

+                                                                +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Enter Name for Standard Output File:                 test1.m3d

Enter Name for Basic Transport Input File:           test1.btn

Enter Name for Advection Input File:                 test1.adv

Enter Name for Dispersion Input File:                test1.dsp

Enter Name for Sink & Source Input File:             test1.ssm

Enter Name for Chemical Reaction Input File:         test1.rct

Enter Name for GCG Solver Input File:                test1.gcg

Enter Name for Unformatted Flow-Transport Link File: test1.umt

Print out Heads and Flow Terms for Checking (Y/N)?   N

STRESS PERIOD NO.    1

TIME STEP NO.    1

FROM TIME =  0.00000     TO    100.00

Transport Step: 10   Step Size: 10.000

Total Elapsed Time:  100.000

Program Completed.

The second method is to create a response file which contains the names of

input and output files in the order required by the program.  The content of such a

response file (RUN.FIL) for the example shown above would be as follows:

test1.m3d
test1.btn
test1.adv
test1.dsp
test1.ssm
test1.rct
test1.gcg
test1.umt
N

Then, at the command prompt, type:
C:\>MT3DMS < RUN.FIL
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Continuation of a Previous Simulation Run

Sometimes it may be necessary to break a long simulation run into several

shorter ones.  For example, if the flow model has many stress periods and time-

steps, the unformatted head and flow file generated by the flow model can be

quite large.  If there is not enough disk space, one has to break the simulation

time into several intervals, with each interval having a separate head and flow

file.  Then, one needs to run the transport model once for each interval of the

flow solution.  The continuation of a previous simulation run in the MT3DMS

transport model is similar to the continuation of a flow simulation in the

MODFLOW flow model.

First, save the concentrations from the final step of the preceding run on the

default unformatted file MT3Dnnn.UCN.  Next, rename the file and use it as the

starting concentration file for the next run.  If there is more than one step of

concentrations saved in the MT3Dnnn.UCN file where nnn is the species index,

extract the concentrations at the last step using a program named SAVELAST

included with the MT3DMS distribution files (see Appendix D).  The array

reader which reads the starting concentrations (RARRAY) is capable of reading a

model-generated unformatted concentration file with no modification.  Because

mass budget terms are always set to zero at the start of a simulation run, the

printed budget on a simulation run represents only that single run.  Therefore, if a

total budget for a series of continuation runs is desired, the totals from each run

can be added externally.  Similarly, the model program keeps track of simulation

time only for single simulation runs; total simulation time for a series of

continuation runs must be calculated externally by adding the simulation times of

each run.
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7 Benchmark Problems and
Application Examples

This chapter describes several benchmark problems used to test the accuracy

and performance of the MT3DMS code.  Either analytical solutions or numerical

solutions by another code are available for these benchmark problems.  In

addition, a number of application examples are presented to illustrate how the

transport code may be applied to solving more complicated field problems.  All

the input files required to run these test problems are included with the MT3DMS

distribution files.  It is recommended that the users try these test problems first to

become familiarized with the various simulation options and input/output

structures of the MT3DMS code before applying it to solve their own problems.

One-Dimensional Transport in a Uniform Flow
Field

A relatively complete set of one-dimensional analytical solutions for solute

transport involving advection, dispersion, and some simple chemical reactions in

a steady-state uniform flow field is available in Van Genuchten and Alves

(1982).  The problem considered in this section involves the following initial and

boundary conditions:

� �

� �
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A numerical model consisting of 101 columns, 1 row, and 1 layer is used to

solve the problem for comparison with the analytical solution for the same initial

and boundary conditions as presented in Van Genuchten and Alves (1982).  The

model parameters used in the simulation are listed below:

Cell width along rows � ��x  = 10 m

Cell width along columns � ��y  = 1 m

Layer thickness � ��z  = 1 m
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Groundwater seepage velocity � �v  = 0.24 m/day

Porosity � �	  =  0.25

Simulation time
 
� �t = 2,000 days

In the flow model, the first and last columns are constant-head boundaries.

Arbitrary head values are used to establish the required uniform hydraulic

gradient.  In the transport model, the first column is a constant-concentration

boundary with a relative concentration of one.  The last column is set sufficiently

far away from the source to approximate an infinite one-dimensional flow

domain as assumed in the analytical solution.   Four simulations are run using

different values of dispersivity, � L , retardation factor, R, and decay rate

constant, O , as follows:

Case 1a: 0,0,0 ��� �� R Advection only

Case 1b: 0,0,m 10 ��� �� R Advection and dispersion

Case 1c: 0,5,m 10 ��� �� R Advection, dispersion, and

sorption

Case 1d:
-1

d 002.0,5,m 10 ��� �� R Advection, dispersion, sorption,

and decay

Note that in this example the linear sorption isotherm is assumed and that the

dimensionless retardation factor is defined for the model by specifying a uniform

bulk density of the porous medium and a uniform distribution coefficient of the

linear sorption isotherm (Chapter 2).

Cases 1a and 1b are solved using the MOC option with these solution

parameters: DCEPS = 10
-5

, NPLANE = 1, NPL = 0, NPH = 4, NPMIN = 0, and

NPMAX =  8.  These parameters imply that no particle (i.e., NPL = 0) is placed

in cells where the Relative Concentration Gradient (i.e., DCCELL) is equal to or

less than 10
-5

, considered negligible; and four particles (i.e., NPH = 4) are

inserted with a fixed pattern in one vertical plane (NPLANE = 1) into cells where

DCCELL > 10
-5

.  Since NPMIN = 0, new particles are added only after a cell

where DCCELL > 10
-5

 becomes void of any particle.  The fixed pattern and one

vertical plane are chosen for initial particle placement because of the one-

dimensional uniform flow field.  Cases 1c and 1d are solved using the MMOC

option.  The solution parameters needed for the MMOC option, NLSINK and

NPSINK, are set equivalent to NPLANE and NPH for the MOC option.

A close match between the analytical (solid lines) and numerical solutions

(symbols) is obtained for all cases (Figure 31).  Note that no numerical dispersion

is introduced even for the pure advection problem (Case 1a).  With a dispersivity

of 10 m, the concentration distribution for Case 1b is much smoother.  The

concentration front moves slower in Case 1c than in Case 1b because of the

sorption.  The transport is the slowest in Case 1d due to the combined effects of

sorption and radioactive decay.
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Figure 31. Comparison of the calculated concentrations with the analytical
solutions (solid lines) and numerical solutions (symbols) for the one-
dimensional test problem

We can examine the effect of different solution schemes on the solution

accuracy.  In Case 1a, the transport problem is purely advective (i.e., the grid

Peclet number is infinity ( f D' ' Lxxe xDxvP )).  This case represents a

severe test for the various transport solution techniques.  In Case 1b, the grid

Peclet number is one (i.e., 11010   ' xxe DxvP ), which indicates that the

transport problem is no longer advection dominated and can be solved by most

transport techniques without any major difficulty.

Figure 32a shows the comparison of the analytical solution with numerical

solutions based on the MOC, the third-order TVD scheme (ULTIMATE), and the

standard explicit finite-difference method with upstream weighting for the

advection term.  The MOC yields a solution identical to the analytical solution.

This demonstrates that the MOC scheme is most effective for the type of

problems in which advection is dominant.  While the ULTIMATE solution is not

as close to the analytical solution as the MOC solution, it does lead to dramatic

improvement over the upstream finite-difference solution.

Figure 32b shows the same comparison, but the grid Peclet number of the

transport problem is equal to one.  Because the transport problem is no longer

dominated by advection, the standard finite-difference method is reasonably
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(a) Purely advective case (Pe=� )

(b) Smooth case (Pe=1)

Figure 32. Comparison between the analytical solution and three different
numerical solutions for (a) purely advective cases and (b) smooth
cases
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accurate, as shown in the figure.  The more computationally intensive MOC and

ULTIMATE schemes lead to only marginal gains in the solution accuracy.  Thus,

the standard finite-difference method (either explicit or implicit) can be used

effectively for problems that are not dominated by advection (e.g., 4�eP ) even

though it is less accurate for strongly advection-dominated problems as

demonstrated in Figure 32a.

One-Dimensional Transport with Nonlinear or
Nonequilibrium Sorption

Nonlinear sorption

Grove and Stollenwerk (1984) present a computer code for modeling one-

dimensional advective-dispersive transport with nonlinear equilibrium-controlled

sorption and ion exchange.  In this section, the MT3DMS code is used to solve

the same test problems as described in Grove and Stollenwerk (1984) involving

the Freundlich and Langmuir isotherms.  The initial and boundary conditions of

the transport model are

� �
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where the concentration of source fluid, C(x = o, t), decreases to zero after a

specified time period, to.  The model parameters used in the simulation are

identical to those of Grove and Stollenwerk (1984) and are listed below:

Grid spacing � ��x  = 0.16 cm

Dispersivity � �L
  = 1 cm

Groundwater seepage velocity � �v  = 0.1 cm/s

Porosity � �	 = 0.37

Bulk density � �b� =1.587 g/cm
3

Freundlich equilibrium constant � �
fK  = 0.3 � �� �amggg "P

Freundlich sorption exponent � �a  = 0.7

Langmuir equilibrium constant � �
lK  = 100 5/mg

Langmuir sorption capacity � �S  = 0.003 ggP

Concentration of source fluid oC = 0.05 mg/5

Duration of source pulse � �
ot  = 160 seconds



Chapter 7   Benchmark Problems and Application Examples 135

Since the flow field is steady state, only one stress period is required for the flow

model.  However, to accommodate the change in source concentration, two stress

periods are used in the transport model.  The boundary conditions for the flow

model are constant-head at the two ends of the model domain with the values of

hydraulic head set arbitrarily to establish the desired Darcy flux.  The boundary

conditions for the transport model are specified total mass flux (third-type) on the

left and zero dispersive mass flux (second-type) on the right.  The third-type

boundary condition is approximated by specifying the advective mass flux (i.e.,

oqC of  where q is the rate of inflow or outflow across the boundary).  This is

accomplished in the test problem by setting the concentration of the inflow at the

constant-head node on the left to 0.05 mg/5 and zero for the first and second

stress periods, respectively.  The second-type boundary condition is handled by

setting it sufficiently far away from the source so that the plume does not reach it

within the specified simulation time.

As pointed out in the input instructions, for linear sorption, inconsistent units

may be used for sorption constants as long as the resulting retardation factor is

dimensionless.  However, for nonlinear sorption, the units of sorption constants

must be consistent with the unit of concentration.  For Freundlich sorption,

retardation factor � � 1
1 �

TU� 
a

fb aCKR .  Thus, the unit for fK  must be

� � � � a
b C

��

U
11

, or � �� �amggg "P  for this test problem.  For Langmuir sorption,

retardation factor R = 1 + (Ub / T) [Kl S / (1 + KlC)
2
].  Thus, the unit for lK  must

be � � 1�
C , or mgl  in this test problem, while the unit for sorption capacity S

must be � � � � 11 ��

UblK , or )g/g in this test problem.  Also note that for this test

problem the concentration unit used is mg/5 while the length unit is cm.  As a

result, the budget terms computed by MT3DMS must be properly converted to

use their absolute values.

With a small grid Peclet number of 0.16, the test problem is not advection

dominated.  The solution scheme used is the fully implicit finite-difference

method with central-in-space weighting for the advection term.  Since nonlinear

reaction is involved, the maximum number of outer iterations for the Generalized

Conjugate Gradient (GCG) solver is set to be greater than one.  The solution

convergence criterion is set at 10
-6

 and the modified incomplete Cholesky (MIC)

preconditioner is used.

Figure 33 shows the comparison of the breakthrough curves as calculated by

MT3DMS with those by Grove and Stollenwerk (1984) at a location 8 cm from

the source. The MT3DMS solutions and those of Grove and Stollenwerk agree

well for both the Freundlich and Langmuir sorption isotherms.
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(a) Freundlich sorption

(b) Langmuir sorption

Figure 33. Comparison between the numerical solutions of MT3DMS and
those based on Grove and Stollenwerk (1984) for one-dimensional
transport involving nonlinear (a) Freundlich and (b) Langmuir
sorption isotherms
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Nonequilibrium sorption

A new feature of MT3DMS is the ability to simulate solute transport under

either chemical or physical nonequilibrium.  In this section, MT3DMS is used to

solve one-dimensional transport subject to linear but nonequilibrium sorption.

The test problem is identical to that described in the preceding section on

nonlinear sorption except for the sorption constants, which are given as

distribution coefficient � �
dK , 0.933 cm

3
/g, and first-order mass transfer

coefficient E, ranging from zero to 20 s
-1

.

The solution schemes used for this test problem are the explicit third-order

TVD (ULTIMATE) option for advection and the implicit finite-difference

method for all other terms.  Since the nonequilibrium sorption is linear, the

maximum number of outer iterations for the GCG solver is set to one.  As in the

nonlinear sorption cases, the solution convergence criterion is set at 10
-6

 and the

MIC preconditioner is used.

Figure 34 shows the close agreement between the MT3DMS solutions and

the analytical solutions of Weerts (1994) at an observation point 8 cm from the

source for a wide range of E values.  Note that the mass transfer coefficient D as

defined by Weerts differs from E used in this report by a factor of dbK� .  When

E is zero, the numerical solution is identical to the analytical solution with no

sorption.  On the other hand, when E is equal to 20 s
-1

, the nonequilibrium

sorption process is sufficiently fast so as to approach the equilibrium condition

with the retardation factor R = 5.

Figure 34. Comparison between the analytical solutions (solid lines) and
numerical solutions (symbols) for one-dimensional transport
involving nonequilibrium sorption
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Two-Dimensional Transport in a Uniform Flow
Field

An analytical solution for two-dimensional transport of solute injected

continuously from a point source in a steady-state uniform flow field is given by

Wilson and Miller (1978).  The analytical solution is applicable under the

assumption that:  (a) the aquifer is infinite in areal extent and relatively thin in

vertical extent, so that instantaneous vertical mixing can be assumed, and (b) the

injection rate is insignificant compared with the ambient uniform flow.

A numerical model consisting of 46 columns, 31 rows, and 1 layer is con-

structed for comparison with the analytical solution of Wilson and Miller (1978).

The model grid is so oriented that the flow direction is aligned with the model as

shown in Figure 35.  The model parameters used in the simulation are listed

below:

Cell width along rows ('x) = 10 m

Cell width along rows ('y) = 10 m

Layer thickness ('z) = 10 m

Groundwater seepage (v) = 1/3 m/day

Porosity (T) = 0.3

Longitudinal dispersivity = 10 m

Ratio of transverse to longitudinal dispersivity = 0.3

Volumetric injection rate = 1 m
3
/day

Concentration of the injected water = 1,000 ppm

Simulation time (t) = 365 days

The flow model is surrounded by constant-head boundaries on the east and

west borders and no-flow boundaries on the north and south borders.  The head

values at the constant-head boundaries are arbitrarily chosen to establish the

required hydraulic gradient.  The simulation period is chosen so that the plume

developed from the point source does not reach the boundaries.

With a grid Peclet number of one, this transport problem is not advection

dominated and thus can be solved with sufficient accuracy by any of the solution

schemes available in MT3DMS.  The HMOC and ULTIMATE options are

selected for comparison purposes.  The empirical solution parameters used in the

HMOC scheme are DCEPS = 10
-5

, NPLANE=1, NPL = 0, NPH = 16, NPMIN =

2, NPMAX = 32, and DCHMOC = 10
-3

.  The ULTIMATE option does not

require any empirical solution parameters.

The calculated concentrations at the end of the 365-day simulation period are

shown in Figure 35.  The HMOC and ULTIMATE solutions both agree well with

the analytical solution.  The mass balance discrepancy for the HMOC solution

fluctuates around � 5 percent, typical of the particle-tracking-based solution

approach.  The mass balance discrepancy for the ULTIMATE option is around

10
-4

 percent.
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Figure 35. Comparison of the analytical and numerical solutions for two-
dimensional transport from a continuous point source with the
model grid aligned with the flow direction

Two-Dimensional Transport in a Diagonal Flow
Field
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problem is 5 in the longitudinal direction and 50 in the transverse direction.  The

problem represents a challenging test for transport solution techniques because of

the sharpness of the concentration front, compounded by the grid orientation

effect.

A numerical model consisting of 100 columns, 100 rows, and 1 layer is

constructed for this test problem.  The configuration of the test problem is shown

in Figure 36, and the model parameters used in the simulation are listed below:

Cell width along rows ('x) = 10 m

Cell width along rows ('y) = 10 m

Layer thickness ('z) = 1 m

Groundwater seepage (v) = 1 m/day

Porosity (T) = 0.14

Longitudinal dispersivity = 2 m

Ratio of transverse to longitudinal dispersivity = 0.1

Volumetric injection rate = 0.01 m
3
/day

Concentration of the injected water = 1,000 ppm

Simulation time (t) = 1,000 days

Figures 36a through 36d show the analytical solution, compared with the

numerical solutions based on the MOC scheme, the standard explicit finite-

difference method with upstream weighting, and the third-order TVD

(ULTIMATE) scheme, respectively.  The solution control parameters for the

MOC scheme are DCEPS = 10
-5

, NPLANE = 0, NPL = 0, NPH = 16, NPMIN

= 2, and NPMAX = 32.  As seen from Figure 36b, the solution based on the

MOC scheme is in close agreement with the analytical solution.  The solution

based on the explicit upstream finite-difference scheme, Figure 36c, yields

excessive numerical dispersion.  While the ULTIMATE scheme, Figure 36d,

does not preserve the concentration peak as well as the MOC scheme, it greatly

reduces the numerical dispersion compared with the standard upstream finite-

difference scheme.  Given the same transport step size, the finite difference

method is nearly three times faster than the ULTIMATE scheme, which is in turn

more than twice as fast as  the MOC scheme.  The memory requirements for the

ULTIMATE scheme and the upstream finite-difference scheme are identical,

while the MOC scheme requires additional memory proportional to the number

of particles needed.

Two-Dimensional Transport in a Radial Flow Field

The test problem considered in this section concerns the two-dimensional

transport of solute injected from a fully penetrating well.  The problem is

intended to test the accuracy of MT3DMS as applied to a radial flow system.

The assumptions for this problem are:
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 Figure 36. Comparison of the analytical and numerical solutions for two-dimensional
transport from a continuous point source with the model grid at a 45-degree
diagonal to the flow direction

a. The injection rate of the well is constant.

b. The ambient groundwater velocity is negligible relative to the velocity

created by the injection.

c. The aquifer is homogeneous, isotropic, and infinite in areal extent.

d. The flow field is steady state.
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The initial and boundary conditions for the transport problem are
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where rw  is the well radius.  An approximate analytical solution for this problem

is given by Moench and Ogata (1981) and available in a computer program

(LTIRD) provided by Javandel, Doughty, and Jsang (1984).

A numerical model consisting of 31 columns, 31 rows, and 1 layer was used

to solve this problem for comparison with the analytical solution of Moench and

Ogata (1981).  The model parameters used in the simulation are listed below:

Cell width along rows ('x) = 10 m

Cell width along columns ('y) = 10 m

Layer thickness ('z) = 1 m

Injection rate = 100 m
3
/day

Porosity (T) = 0.3

Longitudinal dispersivity = 10 m

Ratio of transverse to longitudinal dispersivity = 1.0

Simulation time (t) = 27 days

The flow model is surrounded by four constant-head boundaries.  To

approximate the assumption of infinite flow domain used in the analytical

transport solution, an analytical flow solution is first used to calculate the steady-

state head distribution.  The heads from the analytical solution are then used as

the specified-head values at the constant-head boundaries of the flow model.  The

simulation time in the transport model is adjusted to ensure the plume does not

reach the constant-head boundaries.

In the transport model, the cell at column 16 and row 16 is simulated as the

constant-concentration condition with a relative concentration of one.  The values

of the grid Peclet number along the x and y directions are spatially variable,

depending on the x and y components of the velocity vector.  However, a

uniform grid Peclet number in the direction of the flow path may be estimated by

noting that the flow direction is always 45 deg diagonal to the flow direction.

Thus, the characteristic length L which is needed for estimating the grid Peclet

number, may be set equal to 1.141010 22
 �  where 10 is the grid spacing in

both the x and y directions, leading to � � 4.1101.14   D  vvLDvLPe LLL .

In other words, the transport is not advection dominated, and any of the solution

options available in MT3DMS can be used to obtain satisfactory results.
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For comparison purposes, the ULTIMATE scheme and the implicit upstream

finite-difference method are used to solve the advection term, while the

dispersion and sink/source terms are solved with the implicit finite-difference

method.  The MIC preconditioner is used for the GCG solver with the

convergence error criterion set to 10
-4

.

The calculated concentration breakthrough curves at the injection well are

shown in Figure 37.  It can be seen that the numerical solution based on the

ULTIMATE scheme is in close agreement with the analytical solution.  The fully

implicit finite-difference solution with upstream weighting agrees reasonably

well with the analytical solution in spite of some numerical dispersion.  However,

as the transport step size used in the fully implicit finite-difference solution is

increased by using larger transport step size multipliers, the numerical solution

becomes less accurate.

Figure 37. Comparison of the analytical and numerical solutions for two-dimensional
transport from a point source in a radial flow field
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Concentration at an Injection/Extraction Well

The test problem considered in this section involves the concentration change

during an injection/pumping cycle at a fully penetrating well in a confined

aquifer.  The problem was first proposed by El-Kadi (1988) and then used by

Zheng (1993) as a difficult test for the MOC.  Water of a constant concentration,

Co, is injected into the well.  After a certain period of time, t1, the flow is

reversed, and the contaminated water is pumped out.  Assuming that the flow

field has an infinite extent and reaches steady state instantaneously after the

injection and pumping cycles start, an approximate analytical solution for this

problem is given by Gelhar and Collins (1971).

A numerical model consisting of 31 columns, 31 rows, and 1 layer is used to

simulate the concentration change at the injection/extraction well for comparison

with the approximate analytical solution of Gelhar and Collins (1971).  The

model setup and input parameters used in the simulation are the same as those

used by El-Kadi (1988) and Zheng (1993) and are listed below:

Cell width along rows ('x) = 900 ft

Cell width along rows ('y) = 900 ft

Layer thickness ('z) = 20 ft

Hydraulic conductivity of the aquifer = 0.005 ft/s

Porosity (T) = 0.3

Longitudinal dispersivity = 100 ft

Ratio of transverse to longitudinal dispersivity = 1.0

Volumetric injection rate = 1 ft
3
/s

Relative concentration of the injected water = 100 percent

Length of the injection period = 2.5 years

Length of the extraction period = 7.5 years

The grid Peclet number along the flow direction is approximately 13 for this

problem, indicating that it is dominated by advection.  The MOC and

ULTIMATE schemes are used to solve the advective component of this problem;

sinks/sources and dispersion are solved implicitly by the GCG package with the

convergence criterion set equal to 10
-4

.  For comparison purposes, the fully

implicit finite-difference method with upstream weighting is also used to solve

this problem.  The solution parameters for the MOC scheme are NPL = 16,

NPH = 16, NPMIN = 4, and NPMAX = 32.  Because NPL is set equal to NPH, a

uniform distribution of 16 particles per cell is initialized over the entire grid.

Initial particles are placed randomly within each cell block.  Because of the

coarse grid and the strongly diverging and converging nature of the flow field,

the fourth-order Runge-Kutta particle-tracking algorithm is used to increase the

accuracy of the particle-tracking solution.

The concentration breakthrough curves at the injection/extraction well are

plotted in Figure 38.  Given the same transport step size of 56 days, the MOC

scheme achieves the best match with the analytical solution, while the match

between the fully implicit upstream finite-difference solution and the analytical

solution is the poorest.  This is not unexpected considering the relatively
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   Figure 38. Calculated concentrations at an injection/pumping well as
compared with the analytical solution of Gelhar and Collins
(1971)

large-grid Peclet number for this problem.  While the MOC scheme performs

well in terms of matching the concentration at the injection/pumping well, it can

lead to significant mass balance discrepancy if the empirical solution parameters

are not properly adjusted.  On the other hand, the ULTIMATE and the finite-

difference solutions are inherently mass conservative.

Three-Dimensional Transport in a Uniform Flow
Field

In the ealier section, Two-Dimensional Transport in a Uniform Field, two-

dimensional transport from a point source in a uniform flow field was considered

under the assumption of a relatively thin aquifer and instantaneous vertical

mixing.  However, if the aquifer is thick and instantaneous vertical mixing cannot

be assumed, the transport of solute away from the point source should be

considered three dimensional.  An analytical solution for three-dimensional

transport with the same set of initial and boundary conditions as discussed earlier

is given by Hunt (1978).

A numerical model consisting of 21 columns, 15 rows, and 8 layers is used to

solve the three-dimensional transport problem for comparison with the analytical

solution of Hunt (1978).  The point source is simulated at column 3, row 8, and

layer 7.  The model parameters used in the simulation are listed below:
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Cell width along rows ('x) = 10 m

Cell width along rows ('y) = 10 m

Layer thickness ('z) = 10 m

Hydraulic conductivity of the aquifer = 0.5 m/day

Porosity (T) = 0.2

Longitudinal dispersivity = 10 m

Ratio of horizontal transverse to longitudinal dispersivity = 0.3

Ratio of vertical transverse to longitudinal dispersivity = 0.3

Volumetric rates of injection = 0.5m
3
/day

Relative concentration of the injected water = 100 percent

Simulation time = 100 days

Because of the small grid Peclet number for this test problem

� � )0;11010(     D' ' zyxLxxxxx PePevxvDxvPe , any of the

solution techniques available in MT3DMS should yield satisfactory results.

Shown in Figure 39 are the calculated concentrations based on the ULTIMATE

scheme for layers 5, 6, and 7 at the end of the 100-day simulation period, which

agree well with the analytical solution.  It should be noted that the analytical

solution assumes the aquifer domain has an infinite extent.  Because the point

source is located close to the bottom layer which is a no-mass-flux boundary, an

image source has been used to account for the boundary effect on the analytical

solution.

Two-Dimensional, Vertical Transport in a
Heterogeneous Aquifer

This problem was developed by Sudicky (1989) to demonstrate the applica-

tion of the Laplace Transform Galerkin method for a hypothetical field-scale

example.  The problem considers flow and solute transport in a heterogeneous

cross section with a highly irregular flow field, dispersion parameters that are

small compared with the spatial discretization, and a large contrast between

longitudinal and transverse dispersivities.  Segol (1994) refers to this problem as

“The Waterloo Problem with Discontinuities” in a comprehensive compilation of

benchmark simulations.  Van der Heijde (1995) presents this problem as an

example of “Level 2” testing, in which the objectives are to test potentially

problematic parameter combinations and to demonstrate a code’s applicability to

typical real-world problems.

Conceptual model

The domain considered by Sudicky (1989) is the deformed quadrilateral

shown in Figure 40a, with a length of 250 m and a depth ranging from about

6.5 m along the left boundary and 5.375 m along the right boundary.  The flow

system is assumed to be at steady state.  The boundary conditions for flow are

shown in Figure 40a.  The left and bottom boundaries are impermeable, and a

uniform head of 5.375 m is specified along the right boundary.  The water table

along the top boundary of the system is represented as a free surface across
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Figure 39. Comparison of the analytical and numerical solutions for three-dimensional
transport from a continuous point source in a uniform flow field

which a uniform recharge of 10 cm/yr is applied.  The aquifer consists of a fine-

grained silty sand (KH = 5u10
-4

 cm/sec ) within which are located two lenses of

medium-grained sand  (KH = 10
-2

 cm/sec ).  The hydraulic conductivity is

assumed to be isotropic.

The boundary conditions for solute transport are shown in Figure 40b. The
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Figure 40. Physical system and flow boundary conditions (a), transport
boundary conditions (b); and hydraulic head and stream function
solutions (c) (contour intervals are 0.05 m for the hydraulic head
and 1 m

2
/day for the stream function (Sudicky 1989))
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Flow solution

Sudicky (1989) solved the flow problem using the dual-formulation finite-

element technique of Frind and Matanga (1985).  The system was discretized

into triangular elements using 51 equally spaced nodes in the horizontal direction

('x = 5 m) and 25 nodes in the vertical direction. The location of the water table

was determined by iterative adjustment of the vertical positions of nodes located

above the medium-grained sand lenses.  Figure 40c shows the hydraulic head and

stream function solutions.

For the block-centered flow model used by MODFLOW and MT3DMS, the

cross section is represented by a single row and fifty 5-m-long columns.  Since

MODFLOW determines the elevation of the water table by an iterative solution

within a fixed grid, the vertical discretization of the cross section is intended to

approximate rather than replicate the finite element model.  The elevation of the

water table at the left boundary is estimated from Figure 6 of Sudicky (1989) to

be about 6.5 m, so that the average vertical spacing between nodes is about

0.25 m.  The MODFLOW model is divided into 27 layers of uniform thickness

0.25 m, with the water table allowed to fall within the 6 uppermost layers.

Transport solution

Sudicky (1989) solved the transport problem using the Laplace Transform

Galerkin (LTG) finite-element method with the same grid as that used to solve

the flow problem.  The LTG method is well suited for handing problems with

relatively small dispersivities.

For the MT3DMS simulation, the transient top boundary condition is

modeled using time-varying constant-concentration cells available as an option in

the Sink/Source Mixing package.  The MOC solution option is used for the

advection term, with the solution control parameters listed below:

PERCEL = 1.0

ITRACK = 3 (mixed Euler and fourth-order Runge-Kutta)

WD = 0.5

DCEPS = 10
-5

NPLANE = 0 (random initial particle placement)

NPL = 0

NPH = 10

NPMIN = 2

NPMAX = 20

The transport solutions obtained by the LTG solution and MT3DMS with the

MOC option are shown on Figures 41 and 42, respectively.  The agreement

between the two solutions is reasonable, in light of the fundamental differences

between the transport solution techniques and between the vertical discretization

approaches in the finite-element and finite-difference models.  Sudicky (1989)

concluded that the LTG solution was relatively free of numerical dispersion
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Figure 41. Plume configuration at (a) t = 8 years, (b) t = 12 years, and
(c) t = 20 years based on the LTG method from Sudicky (1989)
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Figure 42. Plume configuration at (a) t = 8 years, (b) t = 12 years, and
(c) t = 20 years as calculated by MT3DMS with the MOC scheme
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because the C = 0.05 contour follows the pattern of the flow lines closely.  The

good agreement between the LTG and MT3DMS solutions suggests that the

MT3DMS code is capable of simulating flow and solute transport in a hetero-

geneous cross section with a highly irregular flow field and relatively sharp

fronts characteristic of field-scale applications.  Furthermore, the mass balance

discrepancy for the MT3DMS simulation is less than 1 percent at the end of the

20-year simulation period.

A Two-Dimensional Application Example

This section describes the application of the MT3DMS code to a hypothetical

problem involving transport of contaminants in a two-dimensional heterogeneous

aquifer in plan view.  This problem is intended to compare the performance of

various solution options available in MT3DMS for modeling transport in

heterogeneous aquifers for which analytical solutions do not exist.

The configuration of the test problem is shown in Figure 43.  The flow

domain is discretized into 14 columns, 18 rows, and 1 layer with a uniform

spacing of 100 m.  The model grid is bounded by no-flow boundaries on the east

and west sides.  The north side is a constant-head boundary with a uniform head

of 250 m.  The south side is a specified-head boundary with the hydraulic head

equal to 20 m at the center of column 1 (marked by +) and increasing at a

gradient of 2.5/100 to 52.5 m in column 14.  Water of a specific concentration is

injected into the aquifer through a fully penetrating well, while a pumping well

located downstream removes solute mass from the aquifer.  Between the

injection and pumping wells there is a zone of a low hydraulic conductivity as

shown in Figure 43 in which the hydraulic conductivity is three orders of

magnitude smaller than that elsewhere in the model region.  The aquifer

parameters used in the simulation are listed below and in Figure 43:

Cell width along rows ('x) = 100 m

Cell width along rows ('y) = 100 m

Layer thickness ('z) = 10 m

Porosity (T) = 0.3

Longitudinal dispersivity = 20 m

Ratio of horizontal transverse to longitudinal dispersivity = 0.2

Simulation time = 2 years

The boundary conditions for the transport model are no-mass flux boundaries

on the east, west, and north borders of the model.  The south border is a specified

advective mass flux boundary, acting as a line of point sinks taking mass out of

the aquifer.  The mass removed is equal to the flow entering the constant-head

cells multiplied by the concentration at the cells.
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Figure 43. Configuration of the test problem involving transport in a heterogeneous
aquifer with a strong regional gradient
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The aquifer is assumed to be confined and the flow field is steady state with

constant injection and pumping rates at the two wells as shown in Figure 43.  The

concentration of the injected water is 57.78 ppm in the first year but becomes

zero in the second year.  Because the flow rates at the injection and pumping

wells are constant, only one stress period is necessary for the flow model.

However, two stress periods are needed for the transport model.  The HMOC and

the third-order TVD (ULTIMATE) schemes are used to solve the advection term,

while the dispersion and sink/source terms are solved using the implicit finite-

difference method with the convergence criterion set equal to 10
-4

 in the GCG

solver.  The solution control parameters for the HMOC scheme are listed below:

PERCEL = 1.0

ITRACK = 2 (fourth-order Runge-Kutta)

DCEPS = 10
-5

NPLANE = 0 (random initial particle placement)

NPL = 0

NPH = 16

NPMIN = 0

NPMAX = 32

The calculated concentrations at the end of the first year are plotted in

Figure 44.  While the overall shapes of the two plumes based on the HMOC and

ULTIMATE schemes are similar, the HMOC solution has a more “rough”

appearance than the ULTIMATE solution, a characteristic of the particle-

tracking-based solution approach. The mass balance discrepancy for the HMOC

solution varies with time but can be reduced to less than 1 percent at the end of

the simulation by experimenting with the various empirical solution parameters.

The ULTIMATE solution, on the other hand, has a mass balance discrepancy

error of less than 10
-4

 percent for the entire simulation.

Figure 45 shows the calculated concentrations based on different solution

schemes at the pumping well.  Again, the discrete nature of the particle-tracking-

based approach is apparent in the HMOC solution, exaggerated by the artificially

coarse grid used in this test problem.  The ULTIMATE solution, on the other

hand, agrees well with the HMOC solution without the undesirable roughness.  It

is also clear that the finite-difference solution with upstream weighting

introduces a significant amount of numerical dispersion while the finite-

difference solution with central-in-space weighting results in some oscillation.

A Three-Dimensional Field Case Study

This section describes the application of the MT3DMS code to an actual field

problem involving the evaluation of the effectiveness of proposed groundwater

remediation schemes.  The discussion is intended to demonstrate the performance

of the MT3DMS code in a representation of real-world problems.



Chapter 7   Benchmark Problems and Application Examples 155

0

1

2

3

C
o

n
c
e

n
t r

a
t i
o

n
(p

p
m

)

0

500

1000

X
(M

)

0

500

1000

1500

Y (M)

(a)

HMOC

scheme

0

1

2

3

C
o

n
c
e

n
tr

a
t i

o
n

( p
p

m
)

0

500

1000

X
(M

)

0

500

1000

1500

Y (M)
(b)

ULTIMATE

scheme

Figure 44. Comparison of the calculated concentrations at the end of the 1-year simulation period
based on the HMOC and the third-order TVD (ULTIMATE) schemes
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Figure 45. Comparison of the calculated concentration breakthrough curves based
      on different solution schemes at the pumping well

Site description

The geologic setting of the study site is illustrated in Figure 46.  The uncon-

fined aquifer beneath the site consists of an upper zone of fine- and medium-

grain sands, with occasional discontinuous lenses of silty sands, and a lower zone

of medium to coarse sands with some gravel.  The hydraulic conductivity for the

upper and lower zones are approximately 60 and 520 ft/day, respectively.  The

average groundwater recharge rate estimated for the site is around 12.7 cm (5 in.)

per year.  The porosity value is approximately 30 percent.  Other relevant aquifer

parameters are listed in Table 4.  Several organic contaminants were detected in

groundwater beneath the site.  Among them is 1,2-dichloroethane (1,2-DCA),

which was found over an area of more than 670 + 396 m (2200 + 1300 ft, with

the maximum concentration exceeding 200 ppb (Figure 47).
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Table 4
Summary of Aquifer Parameters at the Field Study Site

Parameter Value

Hydraulic conductivity (medium to fine sand) 18 m/day (60 ft/day)

Hydraulic conductivity (coarse sand) 159 m/day (520 ft/day)

Ratio of vertical to horizontal hydraulic conductivity 0.1

Recharge rate 12.7 cm/yr (5 in./yr)

Saturated thickness 30.5 m (100 ft )

Longitudinal dispersivity 3 m (10.0 ft)

Transverse dispersivity 0.6 m (2.0 ft)

Porosity 0.3

Aquifer bulk density 1.7 g/cm
3

Distribution coefficient (Kd) 0.176 cm
3
/g

Figure 46. Geological setting at the study site of the three-dimensional field
example
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Figure 47. Initial distribution of 1,2-DCA in ppb at
approximately 30 m (100 ft) below the land
surface at the study site for the field example
problem

Flow and transport models

The objective of numerical simulation at this site is to investigate the

effectiveness and performance of various remedial scenarios designed to contain

the 1,2-dichloroethane plume and eventually clean up the aquifer.  The numerical

model consists of four layers in the vertical direction as shown in Figure 48.

Each layer has a uniform thickness of 7.62 m (25 ft).  In plan view, each layer is

discretized into 61 rows and 40 columns.  The mesh spacing is 15.24 + 15.24 m

(50 + 50 ft) in the detailed study area and progressively increases toward the

model boundaries.  The boundary conditions for the flow model are specified-

head on the four sides, no-flow at the bottom, and specified-flux from recharge at

the water table.  The heads at the side boundaries are set to establish a regional

gradient of 5u10
-4

 from east to west and 1u10
-3

 from north to south.  The

boundary conditions for the transport model are no-mass-flux at the bottom and

specified, advective mass flux elsewhere.  The advective mass flux is determined

internally in the model by the rate of inflow or outflow across each boundary

node and the concentration of inflow or outflow (inflow concentration is zero by

default).  The boundaries are sufficiently far away from the detailed study site so

that their effects on the flow and transport in the immediate vicinity of the site

are  minimized.  Most of the cells are concentrated in the central part of the mesh,
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Figure 48. Schematic diagram showing the structure of the flow and transport
models developed for the field example (11,600 ft = 3.535.68 m;
20,450 ft = 6,233 m; 25 ft = 7.62 m)

denoted by ABCD in Figure 48, in the area of the contaminant plume.  Only

steady-state conditions are represented in the flow model.

The measured 1,2-dichloroethane concentrations are used as the initial

condition for the transport model prior to any remediation effort.  The initial

concentration distribution within the detailed study area for model layer three is

shown in Figure 49a.  The initial concentration in layer two is assigned

20 percent of that in layer three while the top and bottom layers are initially

clean.  One of the scenarios for cleanup is to use eight extraction wells as shown

in Figure 49 to pump the contaminated groundwater out of the aquifer for

treatment.  The proposed total extraction rate for the eight wells is about

4.25 + 10
3
 m

3
/day, all from layer three.
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Figure 49. Initial and calculated concentration distributions in model layer three at 0,
500, 750, and 1,000 days (ABCD indicates the detailed study area as
depicted in Figure 48)
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The transport simulation incorporates an equilibrium-controlled linear

sorption isotherm.  A constant retardation factor of 2.0 is calculated from the

bulk density and distribution coefficient given.  With the retardation factor of

two, the initial total mass in the aquifer is twice the total dissolved mass.

Comparison of solution schemes

The transport model is solved using the following combinations of solution

options: (a) the explicit ULTIMATE scheme for advection and the implicit finite-

difference method for all other terms, (b) the particle-tracking-based HMOC

scheme for advection and the implicit finite-difference method for all other

terms, and (c) the fully implicit finite-difference method with upstream weighting

for the advection term.  The solution control parameters used in the HMOC

scheme are DCEPS = 10
-5

, NPLANE = 0, NPL = 0, NPH = 16, NPMIN = 2,

NPMAX = 32, and DCHMOC = 0.01.  Initial particles are distributed using the

random pattern (i.e., NPLANE = 0).  Particle tracking is performed using the

mixed first-order Euler and fourth-order Runge-Kutta algorithms.  The Courant

number is fixed at 1.0 for all three solutions.

The calculated concentration distributions in model layer three (3) within the

detailed study area, at times equal to 500, 750, and 1,000 days after the proposed

pump-and-treat system is started, are shown in Figures 49b, c, and d.  The

concentrations calculated by the ULTIMATE and HMOC schemes agree well

with each other, and also with those calculated by the fully implicit finite-

difference method with upstream weighting (Figure 50).  The mass balance

discrepancy for the HMOC solution is less than 1 percent throughout the

simulation.  The concentration breakthrough curves at pumping well W4, which

is located near the middle of the initial plume, are shown in Figure 50.  Again, all

three solutions agree well with one another, particularly between the

ULTIMATE and HMOC solutions.

Consideration of efficiency versus accuracy

For this application example, the accuracy of the fully implicit finite-

difference solution is comparable to that of the ULTIMATE and HMOC

solutions.  Thus, it is advantageous to use the fully implicit finite-difference

option because of its computational efficiency.  With the fully implicit finite-

difference scheme, there is no restriction on the transport time-step size that may

be used, and the user can run the simulation in as few transport steps as desired.

However, as the time-step size increases, the accuracy of the transport solution

usually deteriorates as the Courant number becomes much greater than one.  This

accuracy requirement on the transport step size should be taken into

consideration when specifying a transport step size multiplier for the fully

implicit finite-difference scheme.

To illustrate the point above, the fully implicit finite-difference scheme is

used to solve the same transport problem but with different transport step size

multipliers.  The explicit finite-difference scheme, which has a maximum
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  Figure 50. Concentration breakthrough curves as calculated using different solution
schemes at the pumping well W4, located near the middle of the initial plume

transport step size of 2.25 days to meet the various stability constraints, is used as

the base case.  The computation times cited in Table 5 are computer clock times

on a Pentium Pro 200 MHz PC.  The GCG solver uses the MIC preconditioner

with the convergence error criterion set to 10
-4

.  The time inside the parentheses

is that obtained with the option of lumped dispersion cross terms turned on.

Although the simulation can be speeded up dramatically by using greater step

size multipliers, the solutions become less accurate, as measured approximately

by the total masses removed from the aquifer relative to that of the base case.

Table 5
Comparison of Computation Times Using Explicit and Implicit Schemes

Explicit or Implicit Schemes

Initial
Transport
Step Size

Transport Step
Multiplier

Total Number of
Steps Used

Total Computation
Time, sec

1

Relative
Mass
Removed

Explicit 2.25 N/a 889 128 1.00

Implicit Run 1 2.25 1.2 29 64 (24) 0.98

Implicit Run 2 2.25 1.5 16 38 (16) 0.95

Implicit Run 3 2.25 2.0 10 26 (11) 0.93

Implicit Run 4 2000 N/a 1 8 (3) 0.79

1   
Time inside parentheses was obtained with the option of lumped dispersion cross terms turned on.
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Effect of nonequilibrium sorption

In the simulations already discussed, the sorption is modeled using the

equilibrium-controlled linear isotherm.  To assess the effect of the local

equilibrium assumption on the effectiveness of the proposed remedial system,

new simulations are made using the kinetic (nonequilibrium) sorption isotherm

available in MT3DMS.  Only one additional parameter, the first-order kinetic

rate 
 , is needed.  In the simulations performed in this study, the first-order

kinetic rates of 0.1, 1.5 u 10
-4

, and 10
-6

 day
-1

 are used to represent the fast,

moderate, and slow sorption processes, respectively.

As shown in Figure 51, when the sorption rate constant is equal to 0.1 day
-1

,

the kinetic sorption approaches the equilibrium sorption.  In other words, the

local equilibrium assumption used in earlier simulations is valid.  However, when

the rate constant is in the range of 1.5u10
-4

 day
-1

, the local equilibrium assump-

tion would result in considerable overestimation of mass removed.  As the rate

constant decreases further (i.e., the sorption process is sufficiently slow com-

pared to the transport process), the kinetic sorption approaches the case without

sorption.  Note that less mass is removed without sorption because by assuming

no sorption, there is initially less mass in the aquifer.

Figure 51.   The effect of kinetic sorption rates on the mass removal for the field
example
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Appendix A
Description of the Generalized
Conjugate Gradient Solver

1

This section describes iterative algorithms in the Generalized Conjugate

Gradient Solver (GCG) Package for solving the linear system

Au = b (A1)

where the coefficient matrix A is a given real nonsingular matrix of order N, b is

a given column vector, and vector u is to be determined.  The matrix A is

assumed to be large and sparse.

The iterative algorithms which we consider include the following

components (Young and Mai 1988):
2

a. A basic iterative method.

b. An acceleration procedure

c. A stopping procedure.

Basic Iterative Method

A basic iterative method for solving Au = b is a method of the form

u
(n+1)

 = Gu
(n)

+k (A2)

where u(0) is arbitrary, G is the iteration matrix defined later, and k = Q
-1

b.  It can

be shown that a basic iterative method can be defined in terms of a nonsingular

matrix Q, referred to as a “splitting” or “preconditioning” matrix.  Thus, if A is

represented in the form

A = Q - (Q - A)

                                                     
1 
This appendix is prepared by T. –Z. Mai, Department of Mathematics, University of

Alabama.
2 
References cited in this appendix are listed in the References at the end of the main text.
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the system Au = b can be written in the form

Qu = (Q - A)u + b. (A3)

If the iterative method is defined by

Qu
(n+1)

=(Q - A)u
(n) 

+ b (A4)

then the basic form of the iterative method with G = I - Q
-1

A, k = Q
-1

b  is

obtained.

An ideal choice of the splitting matrix would be Q = A.  In this case, the

basic method would converge in one iteration.  However, the work involved in

carrying out the single iteration would be the same as that required to solve the

system Au = b itself by a direct method.  In practice, Q is chosen so that the

solution of the system Qx = y for x, given any y, can be easily carried out.  For

many of the standard iterative methods, Q is chosen to be a matrix of the form

Q = LΣΣΣΣ U where L and U are sparse matrices such that L is a lower triangular, ΣΣΣΣ
is a diagonal, and U is an upper triangular matrix.  In this case, the solution of the

problem Qx = y can be obtained by the following steps:

a. Solve Lz = y for z by forward substitution.

b. Solve Σ w = z for w.

c. Solve Ux = w for x by backward substitution.

The splitting matrices for some standard basic iterative methods, which are

involved in the GCG package of MT3DMS, are listed below.  Here, A is

represented in the form

A = D - CL - CU (A5)

where D is a diagonal matrix, and CL and CU  are strictly lower and strictly upper

triangular matrices, respectively.

Method Splitting Matrix Q

Jacobi D

Symmetric Successive-Over-Relaxation (SSOR)     ( ) ( )UL CDDCD −ω















ω
ω−

−ω −
−

− 1

1

1 2

Modified Incomplete Cholesky (MIC) LΣΣΣΣ U

(Gustafsson 1978)

The real number ω  in the SSOR splitting matrix is an iteration parameter

(relaxation factor) which is chosen to make the convergence of the basic iterative

method as fast as possible.  However, the optimum value of the iteration

parameter is seldom known in advance; thus, an estimate is needed so that the

rate of convergence is reasonable.  For the case where the coefficient matrix is
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symmetric and positive definite (SPD), a very good approximation of the

optimum value of ω is given by

))(1(21

2

Bρ
ω

−+
= (A6)

where ρ(B) is the spectral radius of the matrix B = D-1
A (Young 1971).  It should

be noted that there is a complicated algorithm for the estimation of the optimal

value of ω adaptively described in Young (1971).  It should also be noted that

ρ(B) = cos(π h) for the Laplace equation with central finite-difference

discretization with mesh size h.  The model considered in this package is more

complicated than the Laplace equation; however, the value of ω may be

estimated by this formula when the SSOR method is chosen.  Fortunately, the

SSOR method is not sensitive to the value of ω ; thus the rate of convergence

may not be slowed down by the choice of ω.

The matrices L, Σ, and U are obtained from the MIC factorization so that L

and U are lower and upper triangular matrices, respectively, such that  A = LΣ U

+ R, where R is an error matrix.  The procedure for the incomplete Cholesky

factorization is based on the Gaussian elimination procedure; however, the sparse

pattern of A must be preserved.  The elements of zero value within A must not be

modified.  If there is a fill-in, this fill-in must be added to the diagonal element of

A in the same row before the next elimination process can be continued.  The

algorithm is given below:

for i = 1,2,…, N, do

kkkijkiiii dulad

i

k

∑
−

=

−=
1

1

for j = 1,2,…,N, do









<∈

≥∉−= ∑
−

=
ij and Pij,                           

ij and Pij,dula
ld

i

k

)(0

)(
1

1

kkkijkji
jiii









<∈

≥∉−= ∑
−

=
ij and Pij,                           

ij and Pij,dula
ud

i

k

kjikij
ij

)(0

)(
1

1

kk
ii

∑ ∑
−

=

−

=
∈−−=

1i

1k

1i

1k

kkkjikkkkijkjjjj P(j,i)duldulaa

where P ={ }Nji,ji, ij ,...,2,1,0|)( =∀=a  is the sparsity set of A. An example is

given:
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Suppose that
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The first step of Gaussian elimination is
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Since the zero pattern should be kept the same as A, the fill-in entries 
4
1 (which

were 0 originally) should be discarded before proceeding to the next elimination

step.  However, for the MIC factorization, the fill-ins are added to the

corresponding diagonal elements.  Thus the matrix

4 1 1 0
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(A7)

Acceleration Procedures

In many cases a basic iterative method can be speeded up using an

acceleration procedure.  There are two classes of acceleration procedures.  One

class is for the linear system whose coefficient matrix is SPD, such as the

conjugate gradient (CG) method proposed by Hestenes and Stiefel (1952).  The

other class is for nonsymmetric cases.  There are many algorithms in this class;

however, they can all be treated as generalized conjugate gradient (GCG)

methods.  The GCG methods are equivalent to the CG method when the system

is symmetric.



Appendix A   Description of the Generalized Conjugate Gradient Solver A5

Symmetric matrix

First the CG acceleration for the symmetric case, for example the flow case,

will be discussed.  In the absence of round-off error, the CG method converges to

the exact solution in no more than N iterations, where N is the order of the

system.  The iterates u
(n)

 generated by the CG acceleration satisfy the following

condition:

,...,,),,( )()()( 210nGIKuu 0
n

0n =−δ∈− (A8)

where δ(n)
= Q

-1
(b-Au

(n)
) is called pseudo-residual vector and Kn(δ(0)

, I-G) is the

Krylov space of δ(0)
 of degree n with respect to the matrix I-G, and is defined by

})(,...,)(,{),( )()()()( 01n000
n GIGIspanGIK δ−δ−δ=−δ − (A9)

The error uu
nn −=ε )()(

 satisfies the inequality

,...,,,
2/1/ ))(())((

)( 210nuw
21GIZ

n =−≤ε
−− GIZ

(A10)

where the matrix Z is chosen so that Z(I-G) is SPD.

Let  (u,v) be the inner product of the vectors u and v, the formula for the CG

acceleration is given below:

Formulas for CG acceleration

u
(0)

 is arbitrary

δ(0) 
= Q

-1
(b - Au

(0)
)

u
(n+1)

 = u
(n) 

+ λnp
(n)

, n = 0,1,2,...

δ(n+1) 
= δ(n)

 - λnQ
-1

Ap
(n)

, n = 0,1,2,...

λn = (δ(n)
, p

 (n)
)/(Q

-1
Ap

(n)
, Ap

(n)
), n=0,1,2,...

 p
(n) 

= δ(n)
 + αn p

(n-1)
, n ≥ 1,   p

(0) 
= δ(0)

αn  = (δ(n)
, Ap

(n-1)
)/(p

(n-1)
, Ap

(n-1)
), n = 0,1,2,... (A11)

where p
(n)

 is the A-conjugate direction vectors
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Nonsymmetric matrix

The case where A is neither symmetric nor positive definite will now be

discussed.  If A is similar to an SPD matrix, by the use of an auxiliary matrix, a

GCG method can be developed.  The GCG method is equivalent to the CG

method if the matrix A is an SPD matrix.  But, in this package of subroutines, the

coefficient matrix of the linear system is derived from an advection and

dispersion/diffusion partial differential equation which is in general a

nonsymmetric matrix and not similar to an SPD matrix.  In such a case there are

several consequences: some of the eigenvalues of the iteration matrix G may be

complex and/or may have real parts greater than unity; the Jordan canonical form

of I-G may not be diagonal and hence there may exist principal vectors of grade

greater than one which may slow down the convergence (e.g., Manteuffel 1977).

It should be noted that if the eigenvalues of G are distributed over a circle in the

complex plane then little or no acceleration of the convergence is possible

(Hagman and Young 1981).

Young and Jea (1980) considered the idealized generalized CG acceleration

procedure (IGCG acceleration) for speeding up the convergence of a

nonsymmetric basic iterative method.  The IGCG acceleration is defined by the

following two conditions:

u
(n)

 - u
(0) ∈ Kn(δ(0)

, I-G), n=1,2,3,... (A12)

and

(Zδ(n)
, v) = 0, for all v ∈ Kn(δ(0)

, I-G). (A13)

The first condition simply implies that there is a polynomial acceleration

procedure.  The second condition is called the Galerkin condition.  We should

point out that if Z(I-G) is SPD, then the Galerkin condition is equivalent to the

minimization condition:

||u
(n)

 - u ||W ≤ ||w - u  ||W (A14)

for all w such that w-u
(0)∈ Kn(δ(0)

, I-G), where W = (Z(I-G))
1/2

.

Young and Jea (1980) considered three forms of the IGCG method including

ORTHODIR, ORTHOMIN, and ORTHORES.  In the general case, the

computation of u
(n+1)

 for all three forms of the IGCG method involves the use of

information from all previous iterations.  Thus the procedures often require

excessive amounts of computational work and computer storage.  Truncated

forms of the IGCG method, ORTHODIR(s), ORTHOMIN(s), and

ORTHORES(s), are often used.  The truncated forms are the same as for the

IGCG method except that for a given integer s only the information from the last

s iteration is required.  However, we need to point out that the convergence

properties may not hold.  The methods may actually break down.

Jea and Young (1983) simplified the IGCG method by introducing an

expanded system involving the use of A
T
 which leads to the Lanczos method.
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With a suitable choice of Z, the three forms of the IGCG acceleration (i.e.,

ORTHODIR, ORTHOMIN, and ORTHORES) applied to the expanded system

reduce to ORTHODIR(2), ORTHOMIN(1), and ORTHORES(1), respectively.

Thus these simplified procedures are referred to as Lanczos/ORTHODIR,

Lanczos/ORTHOMIN, and Lanczos/ORTHORES methods.  Details of these

methods can be found in Jea and Young (1983).  In this package, the

Lanczos/ORTHOMIN acceleration procedure is used because its formulas are

simpler than the others.

Formulas for Lanczos/ORTHOMIN

u
(0)

 is arbitrary

δ(0) 
= Q

-1
(b - Au

(0)
)

u
(n+1)

 = u
(n) 

+ λnp
(n)

, n = 0,1,2,...

δ(n+1) 
= δ(n)

 - λnQ
-1

Ap
(n)

, n = 0,1,2,...

η(n+1) 
= η(n)

 - λn (Q
-1

A)
T
p

(n)
, n = 0,1,2,...

λn = (δ(n)
,η(n)

)/(Q
-1

Ap
(n)

,q
(n)

), n=0,1,2,...

 p
(n) 

= δ(n)
 + αnp

(n-1)
, n ≥ 1,   p

(0) 
= δ(0)

q
(n) 

= η(n)
 + αnQ 

(n-1)
, n ≥ 1,   q

(0) 
= δ(0)

αn  = (δ(n)
,η(n)

)/(δ(n-1)
,η(n-1)

), n = 0,1,2,… (A15)

In addition to the simple formulas, fast convergence and less computational

work have been reported in some applications (Jea 1982 and Saad 1982).

Stopping Procedures

The problem of stopping the iteration procedure involves deciding whether

or not the current iterate u
(n)

 is a sufficiently accurate approximation to the true

solution u  of the linear system.  If the true solution were known, then it would

seem reasonable to accept the approximate solution u
(n)

 if

ς≤
−

α

α

u

uu n)(

(A16)

Here α is a prescribed norm and ζ is a prescribed tolerance, perhaps 10
-5

.  The

above stopping test is called an exact stopping test.
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Since the true solution is usually not known in advance, alternative stopping

tests must often be used.  In a stopping test based on the use of the pseudo-

residual vector δ  (n)
 = Q

-1ε 
(n)

, where ε 
(n)

 = b-Au
(n)

 , it follows that

)()( )( n1IG δ−=ε −n (A17)

For any vector norm α and any compatible matrix norm β,

αβ
−

α
δ−≤ε )()( )( n1IGn (A18)

Therefore the exact stopping test can be replaced by

α

α
β

−

α

α
δ

−≤
ε

u
IG

u

n

1

n )()(

)( (A19)

If u  is replaced by u
(n)

, the stopping test obtained is

ς≤
δ

−

α

α
β

−
)(

)(

)(
n

n

1

u
IG (A20)

For the symmetric case, 
β

−− 1IG )(  may be replaced by 
)(1

1

GM−
where M(G) is the largest eigenvalue of the iteration matrix G. The 2-norm or the

∞-norm is chosen for the vector norm; thus the stopping test becomes

ς≤
δ

−
2

)(

2

)(

)(1

1

n

n

uGM
(A21)

This stopping test is adequate for an iterative algorithm.  Since M(G) is usually

not known, an estimate for M(G) may be used, or it may be set to zero.  For the

nonsymmetric case, there is no rigorous stopping test.  Nevertheless, the test for

the nonsymmetric case is used.  Since the eigenvalue of G may be complex,

M(G) is set to be zero.

It should be noted that the tests presented above are preferable to some other

tests such as ς≤δ
2

)(n  or ς≤−
2

)(nAub  which are sometimes used.  In this

package the maximum change of the concentration field at each grid point is

required.  Thus it is suitable to use the infinity norm of  two successive iterations:

ς≤−
∞

+ )()( n1n uu (A22)
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This stopping test can fulfill the maximum change requirement without

additional effort.

Description of Subroutines

The iterative solver consists of one driver routine, GCG3AP, and five

supporting utility routines, MVPRD, ATVPRD, QSOLVE, QTSLVE, and MIC.

The subroutine GCG3AP performs the iterative algorithms discussed above.

There is a flag that allows the selection of CG acceleration for the symmetric

system or Lanczos/ORTHOMIN acceleration for the nonsymmetric system.  The

algorithm flowchart is given in Figure A1.

The utility subroutines only communicate with GCG3AP.  They do not

interact with other routines in the GCG package.  The subroutine MVPRD

performs the matrix-vector product.  It takes a matrix A and a vector v and returns

the result of Av.  The subroutine ATVPRD performs the product of the transpose

of an input matrix A
T
 and a vector v, and returns the result of A

T
v.

The subroutine QSOLVE performs Q
-1

y where Q is the preconditioning

matrix in one of the forms discussed above.  Since Q
-1 

is not known explicitly,

the system Qx = y  is solved for x.  This subroutine takes the preconditioning

matrix Q and a vector y as input and returns the solution x.  Similarly, the

subroutine QTSLVE solves the system Q
T
x = y for x.  Finally, the subroutine

MIC performs the modified incomplete Cholesky factorization to obtain the

preconditioning matrix Q with the same sparsity as A.
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Figure A1.   Flowchart for the GCG3AP module of the GCG package (Continued)
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Appendix B
Computer Memory
Requirements

The elements of the X and IX arrays required by each package for a given

problem are always printed by the model program every time it is run.  They can

also be calculated according to the formulas that follow.  Variables used in the

formulas are defined as follows:

NCOL = Number of columns.

NROW = Number of rows.

NLAY = Number of layers.

NCOMP = Number of total species.

MCOMP = Number of mobile species.

NODES = NCOL*NROW*NLAY, the number of all nodes in the model.

NCR = NCOL*NROW, the number of nodes per model layer.

MXSS = Maximum number all point sinks and sources present in the flow

model, including constant-head and general-head-dependent

boundary cells, but excluding recharge and evapotranspiration

cells.

MXPART = Maximum total number of moving particles allowed.

ND = Dimensions of the given problem (ND=1 for a one-dimensional

problem; 2 for a two-dimensional problem and 3 for a three-

dimensional problem).

MXITER = Maximum number of outer iterations for the GCG solver.

ITER1 = Maximum number of inner iterations for the GCG solver.
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Basic Transport Package (BTN)

a. X Array

NODES*(5*NCOMP+10)+2*NROW+2*NCOL+NCR

b. IX Array

NODES*NCOMP+NLAY

Advection Package (ADV)

a. X Array

If one of the particle-tracking-based Eulerian-Lagrangian methods is used

(MIXELM > 0):

(ND+2)*MXPART*MCOMP

If the TVD or finite-difference method is used (MIXELM≤0):

None

b. IX Array

If one of the particle-tracking-based Eulerian-Lagrangian methods is used

(MIXELM>0):

ND*NODES*MCOMP

If the TVD or finite-difference method is used (MIXELM≤0):

None

Dispersion Package (DSP)

a. X Array

10*NODES+3*NLAY

b. IX Array

None
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Sink & Source Mixing Package (SSM)

a. X Array

6*MXSS*NCOMP

If recharge is simulated, add NCR*(NCOMP+1)

If evapotranspiration is simulated, NCR*(NCOMP+1)

b. IX Array

If recharge is simulated, NCR

If evapotranspiration is simulated, add NCR

Chemical Reaction Package (RCT)

a. X Array

If sorption is simulated, NODES*(2*NCOMP+1)

If first-order rate reaction is simulated, add 2*NODES*NCOMP

b. IX Array

None

Generalized Conjugate-Gradient Solver Package
(GCG)

a. X Array

8*NODES+MXITER*ITER1 plus one of the following:

(1) If the MIC preconditioner is selected (ISOLVE = 3) and the full

dispersion tensor is included in the coefficient matrix (NCRS = 1):

add 38*NODES

(2) If the MIC preconditioner is selected (ISOLVE = 3) and the dis-

persion cross terms are lumped to the right-hand side (NCRS = 0):

add 14*NODES

(3) If the Jacobi or SSOR preconditioner is selected (ISOLVE = 1 or 2)

and the full dispersion tensor is included in the coefficient matrix

(NCRS = 1):

add 19*NODES
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(4) If the Jacobi or SSOR preconditioner is selected (ISOLVE = 1 or 2)

and the dispersion cross terms are lumped to the right-hand side

(NCRS = 0):

add 7*NODES

b. IX Array

3*MXITER*ITER1
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Appendix C
Linking MT3DMS with a Flow
Model

The Flow Model Interface Package of MT3DMS reads the saturated

thickness, fluxes across cell interfaces in all directions, and locations and flow

rates of the various sources and sinks from an unformatted flow-transport link

file saved by a flow model used in conjunction with the MT3DMS transport

model.  If the U.S. Geological Survey modular flow model (MODFLOW) is used

for flow simulation, a package named LKMT3 (where 3 denotes the version

number) for addition to MODFLOW is included with the MT3DMS distribution

files.  The structure and contents of the flow-transport link file, as saved by the

LKMT3 package, are listed below.  (Note that MT3DMS can also read the

unformatted flow-transport link file saved by previous versions of the LKMT

package for backward compatibility.)  The MODFLOW program distributed with

MT3DMS already contains the LKMT3 package.  If a different version of

MODFLOW is desired, the LKMT3 package must be added to the MODFLOW

code as explained in Chapter 6.  If it is necessary to link MT3DMS with a flow

model other than MODFLOW, the flow model should be modified to save the

same information with the same structure as listed below.  Unless specified

otherwise, each integer or real variable is assigned four bytes in the unformatted

flow-transport link file.

FOR EACH SIMULATION:

F0. Record: VERISON, MTWEL, MTDRN, MTRCH, MTEVT, MTRIV,

MTGHB, MTCHD, MTISS, MTNPER

HEADER (character*11)—a character string used by MT3D to identify the

unformatted flow-transport link.  VERSION=’MT3DXXXXXXX’ where

XXXXXXX can be any characters.

MTWEL—an integer flag indicating whether wells (the WEL package) are

included in the MODFLOW simulation:

MTWEL>0, wells are included in the MODFLOW simulation;

MTWEL=0, wells are not included in the MODFLOW simulation.
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MTDRN—an integer flag indicating whether drains (the DRN package) are

included in the MODFLOW simulation.  The convention is the same as that for

MTWEL.

MTRCH—an integer flag indicating whether recharge (the RCH package) is

included in the MODFLOW simulation.  The convention is the same as that for

MTWEL.

MTEVT—an integer flag indicating whether evapotranspiration (the EVT

package) is included in the MODFLOW simulation.  The convention is the same

as that for MTWEL.

MTRIV—an integer flag indicating whether rivers (the RIV package) or streams

(the STR package) are included in the MODFLOW simulation.  The convention

is the same as that for MTWEL.

MTGHB—an integer flag indicating whether general-head-dependent boundaries

(the GHB package) are included in the MODFLOW simulation.  The convention

is the same as that for MTWEL.

MTCHD—an integer flag indicating whether any constant-head boundary cells

are included in the MODFLOW simulation.  The convention is the same as that

for MTWEL.

MTISS—an integer flag indicating whether the flow simulation is steady state or

transient:

MTISS>0, the flow simulation is steady state;

MTISS=0, the flow simulation is transient.

MTNPER—the number of stress periods used in the flow simulation.

FOR EACH TIME-STEP OF THE FLOW SOLUTION:

F1. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

F2. Record: THKSAT(NCOL,NROW,NLAY)

KPER—the stress period at which the cell saturated thicknesses are saved.

KSTP—the time-step at which the cell saturated thicknesses are saved.

NCOL, NROW, NLAY—numbers of columns, rows, and layers, respectively.

LABEL(character*16)—a character string equal to ‘THKSAT’, the identifier for

the saturated thickness array.
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THKSAT—Saturated thickness of unconfined cells.  For inactive cells, the value

must be set equal to 1.E30.  For confined cells, the value must be set to –111.

(If NCOL=1, skip F3 and F4)

F3. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

F4. Record: QX(NCOL,NROW,NLAY)

LABEL(character*16)—a character string equal to ‘QXX’, the identifier for the

QX array.

QX—volumetric flow rates (L
3
T

-1
) between cells at cell interfaces along rows (or

the x-axis).  Positive in the direction of increasing J index.

(If NROW=1, skip F5 and F6)

F5. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

F6. Record: QY(NCOL,NROW,NLAY)

LABEL(character*16)—a character string equal to ‘QYY’, the identifier for the

QY array.

QY—volumetric flow rates (L
3
T

-1
) between cells at cell interfaces along columns

(or the y-axis).  Positive in the direction of increasing I index.

(If NLAY=1, skip F7 and F8)

F7. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

F8. Record: QZ(NCOL,NROW,NLAY)

LABEL(character*16)—a character string equal to ‘QZZ’, the identifier for the

QZ array.

QZ—volumetric flow rates (L
3
T

-1
) between cells at cell interfaces along layers

(or the z-axis).  Positive in the direction of increasing K index.

(If MTISS>0, skip F9 and F10)

F9. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

F10. Record: QSTO(NCOL,NROW,NLAY)

LABEL(character*16)—a character string equal to ‘STO’, the identifier for the

QSTO array.

QSTO—volumetric flow rates (L
3
T

-1
) released from or accumulated in transient

groundwater storage.  Positive for release and negative for accumulation.



C4 Appendix C   Linking MT3DMS with a Flow Model

F11. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL, NCNH

LABEL(character*16)—a character string equal to ‘CNH’, the identifier for

constant-head boundaries.

NCNH—total number of constant-head boundary cells.

(If NCHN>0, there must be NCNH records of F12)

F12. Record: KCNH, ICNH, JCNH, QCNH

KCNH, ICNH, JCNH—cell indices of each constant-head boundary cell.

QCNH—volumetric net flow rate (L
3
T

-1
) out of or into each constant-head cell,

including the exchange between constant-heads (this is different from the net

flow rate calculated at a constant-head cell by MODFLOW).  Positive if the flow

is out of the constant-head cell, negative otherwise.

(If wells are not present in the flow model, skip F13 and F14)

F13. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL, NWEL

LABEL(character*16)—a character string equal to ‘WEL’, the identifier for

wells.

NWEL—total number of wells.

(If NWEL>0, there must be NWEL records of F14)

F14. Record: KWEL, IWEL, JWEL, QWEL

KWEL, IWEL, JWEL—cell indices of each well.

QWEL—volumetric flow rate (L
3
T

-1
) of each well.  Positive if the flow is into

the cell, negative otherwise.  (The same convention is followed by the rest of

sink/source terms).

(If drains are not present in the flow model, skip F15 and F16)

F15. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL, NDRN

LABEL(character*16)—a character string equal to ‘DRN’, the identifier for

drains.

NDRN—total number of drains.

(If NDRN>0, there must be NDRN records of F16)

F16. Record: KDRN, IDRN, JDRN, QDRN

KDRN, IDRN, JDRN—cell indices of each drain.
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QDRN—volumetric flow rate (L
3
T

-1
) of each drain.

(If recharge is not present in the flow model, skip F17, F18, and F19)

F17. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

LABEL(character*16)—a character string equal to ‘RCH’, the identifier for

recharge.

F18. Record: IRCH(NCOL,NROW)

IRCH—layer indices of the recharge flux.

F19. Record: RECH(NCOL,NROW)

RECH—volumetric recharge rate (L
3
T

-1
).

(If evapotranspiration is not present in the flow model, skip F20, F21, and F22)

F20. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL

LABEL(character*16)—a character string equal to ‘EVT’, the identifier for

evapotranspiration.

F21. Record: IEVT(NCOL,NROW)

IEVT—layer indices of the evapotranspiration flux.

F22. Record: EVTR(NCOL,NROW)

EVTR—volumetric evapotranspiration rate (L
3
T

-1
).

(If rivers or streams are not present in the flow model, skip F23 and F24)

F23. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL, NRIV

LABEL(character*16)—a character string equal to ‘RIV’, the identifier for rivers

(or streams).

NRIV—total number of rivers or streams.

(If NRIV>0, there must be NRIV records of F24)

F24. Record: KRIV, IRIV, JRIV, QRIV

KRIV, IRIV, JRIVN—cell indices of each river (or stream) cell.

QRIV—volumetric flow rate (L
3
T

-1
) of each river (or stream) cell.

(If general-head-dependent boundaries are not present in the flow model, skip
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F25 and F26)

F25. Record: KPER, KSTP, NCOL, NROW, NLAY, LABEL, NGHB

LABEL(character*16)—a character string equal to ‘GHB’, the identifier for

general-head-dependent boundaries.

NGHB—total number of GHB cells.

(If NGHB>0, there must be NGHB records of F26)

F26. Record: KGHB, IGHB, JGHB, QGHB

KGHB, IGHB, JGHB—cell indices of each general-head-dependent boundary

cell.

QGHB—volumetric flow rate (L
3
T

-1
) of each general-head-dependent boundary

cell.
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Appendix D
Postprocessing Programs

Two postprocessing programs are included with the MT3DMS distributions

files:  (a) PostMT3D|MODFLOW for generating graphical data files from an

unformatted concentration file saved by MT3DMS (or an unformatted

head/drawdown file saved by MODFLOW) and (b) SAVELAST for extracting

the concentrations at the final step from an unformatted concentration file and

saving them in a separate unformatted file as the starting concentrations for a

continuation run.  These two programs are documented in this appendix.

PostMT3D|MODFLOW (PM)

PM can be used to extract the calculated concentrations from the unformatted

concentration files saved by MT3DMS and other versions of MT3D within a

user-specified window along a model layer or cross section (two-dimensional

(2-D)) or within a user-specified volume (three-dimensional (3-D)) at any desired

time interval.  The concentrations within the specified window or volume are

saved in such formats that they can be used by any commercially available

graphical package to generate 2-D or 3-D contour maps and other types of

graphics.

To use PM, two input files are required.  The first is the unformatted file

saved by MT3DMS or MODFLOW after appropriate output control options have

been set.  The second is a text file which contains information on the spatial

configuration of the model grid, referred to as the model configuration file.  For

output, PM generates data files either in the POINT format, where the spatial

coordinates of a nodal point are saved along with the data value at the nodal

point, or in the ARRAY format that is directly readable by Golden Software’s

(1996) 2-D contouring package Surfer
©
.  In addition, the data files saved in the

POINT format can include an optional header which is compatible with Amtec

Engineering’s 2-D and 3-D visualization package Tecplot
©
.

Unformatted concentration file

In the previous versions of MT3D, the unformatted concentration file is

named MT3D.UCN by default.  In MT3DMS, one unformatted concentration file

is saved for each species, with the default name MT3Dnnn.UCN where nnn is
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the species index number as in MT3D001.UCN, MT3D002.UCN, and so on.

The unformatted concentration files are saved by setting the flag SAVUCN to T

(for True) in the BTN input file.  The structure and contents of the unformatted

concentration files are shown below:

MT3Dnnn.UCN (unformatted):

For each transport step saved:

For each layer of the 3-D concentration matrices:

Record 1:  NTRANS,KSTP,KPER,TIME2,TEXT,NCOL,NROW,ILAY

Record 2: ((CNEW(J,I,ILAY),J=1,NCOL),I=1,NROW)

where

NTRANS is the transport step at which the concentration is saved;

KSTP is the time-step at which the concentration is saved;

KPER is the stress period at which the concentration is saved;

TIME2 is the total elapsed time at which the concentration is saved;

TEXT is a character string (character*16) set equal to “CONCENTRATION”;

NCOL is the total number of columns;

NROW is the total number of rows;

ILAY is the layer at which the concentration is saved; and

CNEW is the calculated concentration.

Model configuration file

The model configuration file, named MT3D.CNF by default, is saved

automatically by MT3DMS along with MT3Dnnn.UCN after setting the output

flag SAVUCN to T.  If PM is used to process the unformatted head or drawdown

file saved by MODFLOW before MT3DMS is used, the user needs to create the

model configuration file manually using a text editor.  The structure and contents

of the model configuration file follow.

MT3D.CNF (free format):

Record 1: NLAY, NROW, NCOL

Record 2: (DELR(J), J=1,NCOL)

Record 3: (DELC(I),I=1,NROW)

Record 4: ((HTOP(J,I), J=1,NCOL),I=1,NROW)

Record 5: (((DZ(J,I,K), J=1,NCOL),I=1,NROW),K=1,NLAY)

Record 6: CINACT

where

NLAY is the total number of layers;

DELR is the width of columns (along the rows or x-axis);
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DELC is the width of rows (along the columns or y-axis);

HTOP is a 2-D array defining the top elevation of the first model layer;

DZ is a 3-D array defining the thickness of each model cell;

CINACT is the value used in the model for indicating inactive cells.

The values in the model configuration file are arranged in list-directed (or

free) format.  Therefore, each record should begin at a new line and may occupy

as many lines as needed.  Either blank spaces or commas can be used to separate

values within a record.  In addition, input by free format permits the use of a

repeat count in the form n*d where n is an unsigned-nonzero integer constant,

and the input n*d causes n consecutive values of d to be entered.  HTOP is a 2-D

array, and its values should be arranged in the order of column first, sweeping

from column 1 to column NCOL along the first row; then continuing on to row 2,

row 3, ..., until row NROW.  DZ is a 3-D array, and its values for each layer

should be arranged similarly to those for HTOP, starting from the first layer, then

continuing on to layer 2, layer 3, ..., until layer NLAY.  Note that if one is only

interested in creating data files for certain layers in plan view, then HTOP and

DZ are never used and thus may be entered as some dummy numbers with the

use of repeat counts.

Running PM

PM can be run in either interactive or batch mode.  To run it interactively, the

user simply types the name of the executable file at the DOS prompt:

C:\> PM

The program will prompt the user for the various input items, and the user

responds to the input requests directly from the keyboard.  To run PM in batch

mode, the user must write all responses in the order required by PM to a text file

and then redirect PM to get responses from the response file instead of keyboard

by issuing a command as follows:

C:\> PM < response.file

where response.file is the name of the text file containing all responses to

PM which the user would otherwise type in from the keyboard.

The user can select the concentrations, heads, or drawdowns at a desired time

by specifying either a) the numbers of transport step, time-step, and stress period,

or (b) the total elapsed time, whichever is more convenient.  (Note that transport

step is used for MT3DMS only and is not used for MODFLOW.)  The value of

-1 may be entered to obtain the results at the final step stored in the unformatted

file.  The user can also define a 2-D window or 3-D volume within which the

graphical data files are desired by specifying the starting and ending column (J),

row (I), and layer (K) indices of the window.

For example, to generate a data file for a cross-sectional contour map along

the 5th column, from row 20 to row 40 and from layer 1 to layer 10, the user
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would enter the starting (J, I, K) indices as 5, 20, 1 and the ending (J, I, K)

indices as 5, 40, 10.  Similarly, to generate a data file for a cross-sectional

contour map along the 5th row, from column 20 to column 40 and from layer 1 to

layer 10, the user would enter the starting (J, I, K) indices as 20, 5, 1 and the

ending indices as 40, 5, 10.  Moreover, to generate a data file for a contour map

on the 5th layer, from column 20 to column 40 and from row 1 to row 10, the

user would enter the starting (J, I, K) indices as 20, 1, 5 and at the lower right

corner as 40, 10, 5.  Finally, to generate a 3-D data file within a volume defined

from column 1 to column 40, from row 1 to row 20, and from layer 1 to layer 5,

the user would enter the starting (J, I, K) indices as 1, 1, 1 and the ending indices

as 40, 20, 5.  It is also possible to generate a data file for a contour map on the

water table, that is the cells in the uppermost active layers instead of a specific

layer, for example from column 20 to column 40 and from row 1 to row 10, the

user would enter the starting (J, I, K) indices as 20, 1, 0 and the ending indices as

40, 10, 0.

It should be pointed out that in MT3DMS, the origin of the internal

coordinate system (Om) is set at the upper, top, left corner of the cell in the first

column, first row, and first layer (i.e., cell (1, 1, 1)) and the positive x, y and z

coordinates are in the directions of increasing column, row, and layer indices,

respectively (Figure D1).  However, in the output files generated by PM, the

origin (O) is transformed to the lower, bottom, left corner of cell in the first

column, last row, and last layer (i.e., cell (1, NROW, NLAY) (Figure D1)) as is

customary in most graphical packages.  As a result, the y- and z-axes used in

MT3DMS are reversed by PM whereas the x-axis remains the same.

Figure D1.   Transformation from the model internal coordinate system to the coordinate
 used by the postprocessor for plotting purposes
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Therefore, if the contour map is on a layer or water table (i.e., the x-y plane),

the horizontal axis of the map is along the direction of increasing column (J)

indices, and the vertical axis is along the direction of decreasing row (I) indices.

If the contour map is on a cross section along a row (i.e., the x-z plane), the

horizontal axis of the map is along the direction of increasing column (J) indices,

and the vertical axis is along the direction of decreasing layer (K) indices.  If the

contour map is on a cross section along a column (i.e., the y-z plane), the

horizontal axis of the map is along the direction of decreasing (I) indices, and the

vertical axis is along the direction of decreasing layer (K) indices.  All the

necessary transformations are done by PM automatically.  As an option, PM also

allows the user to add an offset in the x and y directions to the map's origin for

the convenience of posting data points on the map.

Output files

For output, PM writes data files in one of the two formats, referred to as the

ARRAY format (with the file extension .GRD) and the POINT format (with the

file extension .DAT).  The ARRAY format follows the convention used by

Golden Software's Surfer
©
 (1996) graphical contouring package.  It saves the

concentrations, heads, or drawdowns within a user-defined window of regular

model mesh spacing to the output file, directly usable for generating contour

maps by Surfer
©
.  Note that if concentrations, heads, or drawdowns in an

irregular portion of the model mesh are written to a “.GRD” file, no interpolation

is performed, and the contour map is thus deformed.  The POINT format saves

concentration, head, or drawdown at each nodal point along with the nodal

coordinates within the user-defined 2-D window or 3-D volume to the output file.

This format is useful for generating data files of irregular model mesh spacing to

be used by interpolation routines included in any standard contouring packages.

It is also useful for generating plots of concentrations, heads, or drawdowns

versus distances along a column, row, or layer at a selected time.  (Note that the

plots of concentrations versus times at a selected node can be generated from the

observation files, MT3Dnnn.OBS, saved by MT3DMS).  An optional header can

be added to a “.DAT” file so that the file can be used directly by Amtec

Engineering’s 2-D and 3-D visualization package Tecplot
©
.  

 
The ARRAY and

POINT formats are presented here for reference:

a. ARRAY(Surfer
©
 GRD) file format (free format).

DSAA

NX, NY, XMIN, XMAX, YMIN, YMAX, CMIN, CMAX

CWIN(NX,NY)

where

DSAA is the character keyword required by Surfer
©
.

NX is the number of nodal points in the horizontal direction of the

window;
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NY is the number of nodal points in the vertical direction of the

window;

XMIN is the minimum nodal coordinate in the horizontal direction of

the window;

XMAX is the maximum nodal coordinate in the horizontal direction of

the window;

YMIN is the minimum nodal coordinate in the vertical direction of the

window;

YMAX is the maximum nodal coordinate in the vertical direction of the

window;

CMIN is the minimum concentration value within the window;

CMAX is the maximum concentration value within the window; and

CWIN is a 2-D array containing all the calculated concentrations within

the window.

b. POINT (DAT) file format without header (free format).

For each active cell inside the specified 2-D window or 3-D volume:

X, Y, Z, CXYZ

where

X is the nodal coordinate in the x-axis (along the rows);

Y is the nodal coordinate in the y-axis (along the columns);

Z is the nodal coordinate in the z-axis (along the layers); and

CXYZ is the calculated concentration at the nodal point defined by

(X,Y,Z).

Note that for data files defined in a 2-D window, one of the coordinates will be

constant.  In using an interpolation routine for gridding purposes, the user should

be sure to specify appropriate columns.  For example, to create a contour map in

a x-z cross section, the y column should either be deleted or skipped.

c. POINT (DAT) file format with header (free format).

This file format is identical to type 2 except for the addition of a Tecplot
©
-

compatible header consisting of the following information:
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VARIABLES=“X”  “Y”  “Z”  “DATA”

ZONE  I=NX  J=NY  K=NZ  F=POINT

where

VARIABLES, ZONE, I, J, K, F, and POINT are keywords used by

Tecplot
©
;

NX is the number of columns within the user-specified 2-D window or

3-D volume;

NY is the number of rows within the user-specified 2-D window or 3-D

volume;

NZ is the number of layers within the user-specified 2-D window or 3-D

volume;

X, Y, Z, and DATA are character labels for the four data columns saved

in the file.

SAVELAST

If a continuation run as described in Chapter 6 is desired, the concentrations

from the final step of the preceding run can be used as the starting concentrations

for the continuation run.  The concentrations for species #nnn are saved in the

default unformatted concentration file, MT3Dnnn.UCN, which is directly

readable by the array reader RARRAY.  If there is more than one step of

concentration saved in MT3Dnnn.UCN, then SAVELAST can be used to extract

the concentrations of the final step and save them in a separate unformatted file.

To run it, the user simply types SAVELAST at the DOS command prompt and

enter the names of input and output files from the monitor screen.
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Appendix E
Abbreviated Input Instructions

Tables E1 through E6 present abbreviated input instructions for the Basic

Transport Package, the Advection Package, the Dispersion Package, the Sink and

Source Mixing Package, the Chemical Reaction Package, and the Generalized

Conjugate Gradient Solver Package, respectively.
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Table E3
Dispersion Package

ID Variable Name Format Explanation

C1 AL (NCOL, NROW) (one array for each layer) RARRAY Longitudinal dispersivity

C2 TRPT (NLAY) (one array for all layers) RARRAY Ratio of horizontal transverse dispersivity to
longitudinal dispersivity

C3 TRPV (NLAY) (one array for all layers) RARRAY Ratio of vertical transverse dispersivity to longitudinal
dispersivity

C4 DMCOEF (NLAY) (one array for all layers) RARRAY Effective molecular diffusion coefficient

Table E4
Sink and Source Mixing Package

ID Variable Name Format Explanation

D1 FWEL, FDRN, FRCH, FEVT, FRIV, 10L2 Flags for well, drain, recharge, evapotranspiration, river
FGHB, X, X, X, X (or stream), general-head-dependent boundary,

respectively.  (X indicates the flags reserved for
additional sink/source options)

D2 MXSS I10 Maximum number of all point sources and sinks in the
flow model

(Repeat D3 through D8 for each stress period)

(Enter D3 if FRCH = T)

D3 INCRCH I10 Flag indicating whether concentration of recharge flux
should be read

(Enter D4 for each species if FRCH = T and INCRCH > or = 0)

D4 CRCH (NCOL, NROW) RARRAY Concentration of recharge flux

(Enter D5 if FEVT = T)

D5 INCEVT I10 Flag indicating whether concentration of
evapotranspiration fluxes should be read

(Enter D6 for each species if FEVT = T and INCEVT > or = 0)

D6 CEVT (NCOL, NROW) RARRAY Concentration of evapotranspiration flux

D7 NSS I10 Number of point sources of specified concentrations

(Enter D8 NSS times if NSS > 0)

D8 3I10, F10.0, I10, Layer, row, column, concentration, and type of pointKSS, ISS, JSS, CSS, ITYPE, (CSSMS(n),
n = 1,NCOMP) (free) sources which are of specific concentrations, and

concentrations of all species
ITYPE = 1, constant-head cell
            = 2, well
            = 3, drain
            = 4, river (or stream)
            = 5, general-head-dependent boundary cell
            = 15, mass-loading
            = -1, time-varying constant-concentration cell

Note:  The new features introduced in MT3DMS are shown in bold type.
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Table E5
Chemical Reaction Package

ID Variable Name Format Explanation

E1 4I10ISOTHM, IREACT, IRCTOP, Flags indicating type of sorption and first-order rate reactions; input
IGETSC option for reaction package data arrays; flag for initial condition

of nonequilibrium sorbed/immobile phase 
ISOTHM = 1, Linear                IREACT = 1, Decay or biodegradation
                = 2, Freundlich                      = 0, None
                = 3, Langmuir
                = 4, Nonequilibrium
                = 5, dual-domain mass transfer (without sorption)
                = 6, dual-domain mass transfer (with sorption)
                = 0, None
Note:  set IRCTOP = 2 to assign all reaction coefficients cell-by-cell,
i.e., one array for each layer; set IRCTOP = 0 or 1 to assign all
reaction coefficients layer-by-layer, i.e., one array for all layers (this is
compatible with all previous versions of MT3D except MT3D'96). 

(Enter E2A if ISOTHM = 1, 2, 3, 4, or 6; but not 5)

E2A RHOB (NCOL, NROW) (one RARRAY Bulk density of the porous medium
array for each layer)

(Enter E2B is ISOTHM = 5 or 6)

E2B PRSITY2 (NCOL, NROW) (one RARRAY Porosity of the immobile domain if a dual-domain system is
array for each layer) simulated)

(Enter E2C for each species if IGETSC>0)

E2C SRCONC (NCOL, NROW) RARRAY Initial concentration for the sorbed or immobile liquid phase (the
(one array for each layer) sorbed phase is assumed to be in equilibrium with the dissolved

phase and the concentration is zero in the immobile domain if
SRCONC is not specified)

(Enter E3 and E4 for each species)

E3 SP1 (NCOL, NROW) (one array RARRAY First sorption constant (equilibrium constant)
for each layer)

E4 SP2 (NCOL, NROW) (one array RARRAY
for each layer)

Second sorption constant or dual-domain mass transfer rate

(Enter E5 and E6 for each species if IREACT > 0)

E5 RC1(NCOL, NROW) (one array RARRAY First-order rate reaction constant for the dissolved phase
for each layer)

E6 RC2(NCOL, NROW) (one array RARRAY First-order rate reaction constant for the sorbed phase
for each layer)

Note: The new features introduced in MT3DMS are shown in bold type.
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Table E6
Generalized Conjugate Gradient Solver Package (NEW)

ID Variable Name Format Explanation

F1 MXITER, ITER1, ISOLVE, NCRS Free Maximum number of outer iterations; maximum of inner iterations; type
of preconditioners used with Lanczos/ORTHOMIN acceleration, flag for
treatment of dispersion cross terms

ISOLVE = 1, JACOBI
              = 2, SSOR
              = 3, MIC
   NCRS = 0, dispersion cross terms lumped to the right-hand side
              = 1, full dispersion tensor

F2 ACCL, CCLOSE, IPRGCG Free Relaxation factor for the SSOR preconditioner; convergence criterion;
interval for printing maximum concentration changes to the output file
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