
MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharge Patterns

James Kao, Siva Narendra, Anantha Chandrakasan
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
{jkao, naren, anantha}@mtl.mit.edu

ABSTRACT

Multi-threshold CMOS is a popular circuit style that will pro-
vide high performance and low power operation. Optimally
sizing the gating sleep transistor to provide adequate perfor-
mance is difficult because the overall delay characteristics are
strongly dependent on the discharge patterns of internal gates.
This paper proposes a methodology for sizing the sleep transis-
tor for a large module based on mutual exclusive discharge
patterns of internal blocks. This algorithm can be applied at all
levels of a circuit hierarchy, where the internal blocks can rep-
resent transistors, cells within an array, or entire modules. This
methodology will give an upper bound for the sleep transistor
size required to meet any performance constraint.

1. BACKGROUND
Multi-threshold CMOS is an emerging technology that provides
high performance and low power operation by utilizing both high
and low Vt transistors[1][2][3]. By using low Vt transistors in the
signal path, the supply voltage can be lowered (while still main-
taining performance) to reduce switching power dissipation. By
reducing Vdd, the switching power can be reduced quadratically,
but as Vt decreases to maintain performance, the subthreshold
leakage current will increase exponentially. For ambitious scaling,
the increased leakage power can actually dominate the switching
power[4]. In many event driven applications, like a processor run-
ning an X-server, circuits spend most of their time in an idle state
where no computation is being performed. During these “sleep”
times, it is very wasteful to have large subthreshold leakage cur-
rents. Static power dissipation can be reduced in the sleep mode by
using high Vt transistors with very low leakage currents to gate the
power supply lines for the entire module.

Figure 1. MTCMOS circuit structure.

Vdd

Sleep High Vt

Low Vt
Logic

Device

Virtual Ground

Module

NMOS sleep transistor
preferred since lower
on resistance

Although it is easy to reduce leakage by using a high Vt gating
device, it is difficult to size the sleep transistor large enough so that
performance is maintained. Some initial work on MTCMOS cir-
cuits was presented in [5], and it was shown that the sleep transis-
tor can be approximated very closely by a linear resistor that
creates a finite voltage drop across the virtual ground node as gates
are discharging. This virtual ground bounce causes the internal
logic to slow down for two reasons: first, the gate drive is reduced
and second, the internal transistor threshold voltages will increase
due to the body effect. The worst case delay in an MTCMOS cir-
cuit is strongly dependent on the discharge patterns of internal
gates, which will cause the virtual ground line to fluctuate depend-
ing on discharge patterns through this sleep transistor. The worst
case input vector is difficult to predict and can even be different
than a vector which exercises a critical path in an ordinary CMOS
implementation. As a result, optimal sizing of the sleep transistor
for an arbitrary circuit to meet a performance constraint can be dif-
ficult. A switch level simulator had been proposed to provide fast
MTCMOS simulations to help narrow down this search space[5].

In this paper, we will explore another methodology for sizing the
sleep transistor to meet a performance constraint. Rather than
search for the worst case input vector to exercise the worst case
discharge patterns in the MTCMOS circuit, we instead work from
the bottom up, and synthesize a sleep transistor size based on
mutual exclusive discharge patterns. Application of this sizing
methodology will guarantee that the performance of a complex
MTCMOS circuit will be within a chosen percentage of the origi-
nal CMOS version for all possible inputs.

2. APPROACHES TO TRANSISTOR SIZING
The most straightforward (but difficult) way to correctly size the
sleep transistor of an MTCMOS circuit is to exhaustively test for
the worst case input vector and to ensure that the worst case delay
meets a fixed performance constraint. However, individual gates
within this critical path, and other paths within the circuit can
degrade in percentage more or less than this fixed criteria. Figure
2b shows how individual gate degradations can vary (assuming
both polarities of sleep transistor are used) while overall perfor-
mance is maintained.

(a) Original gate delays

(b) Overall degradation is fixed (macro goal)

time

(c) Gate degradation is fixed (micro goal)

Figure 2. MTCMOS gate degradation scenarios
to meet fixed specification.

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

A different way to satisfy a macro performance criteria is to ensure
that every individual gate meets a local performance constraint
(Figure 2c, which assumes both the high to low and low to high
transitions are degraded). This will ensure that any combination of
gates in a path will also meet the performance requirements. Forc-
ing every single gate to meet a nominal performance measure is a
much more demanding constraint than simply achieving an overall
performance goal. However, in the context of MTCMOS circuits, it
is much easier to implement this sizing strategy because one does
not need to determine the worst case input vector pattern for the
whole circuit. Instead, each individual gate can be assigned it’s
own high Vt sleep transistor, whose size will be locally determined
through exhaustive SPICE simulations.

Once an MTCMOS circuit is sized with individual sleep transistors
then one can systematically merge the sleep transistors together,
because they can be shared among mutually exclusive gates, where
no two gates can be discharging current at the same time. Finally,
these sets of sleep transistors can then be combined to make a sin-
gle sleep transistor for the whole circuit that guarantees that for any
input vector, the MTCMOS circuit performance will be within the
specified range of the corresponding CMOS circuit.

3. SLEEP TRANSISTOR SIZING AND
MERGING TECHNIQUE

A good way to describe the sleep transistor sizing and merging
technique is through an example. Figure 3 to the right shows how
an MTCMOS circuit can initially be sized using individual sleep
transistors that can be merged together at later steps. The circuit
consists of three chains of five low Vt inverters, and measurements
are made for the input to output delay, the delay for inverter I5, and
the virtual ground bounce transients. Table 1 below summarizes
some simulation results.

3.1 Individual sleep transistor sizing
Figure 3a shows the first step in the transistor sizing procedure,
where an identical sleep resistor (which models a sleep transistor in
the on state) is placed in series with each gate. As can be seen in
columns 2 and 3 of Table 1, the overall performance of the inverter
chain will be satisfied if the internal gates meet the required speed
(i.e. the % delay in column 3 is always less than or equal to that of
column 2). The overall delay degradation is less than the individual
gate degradation of gate I5 namely because the low to high transi-
tions of inverters I2 and I4 are not degraded by an NMOS sleep
transistor. Figure 3b shows how the virtual ground lines (V1, V3,
and V5) for this circuit will fluctuate as a result of a rising step
function applied to the input.

R
ohms

I5
(a) %

Total

(a) %

I5
(c) %

Total

(c) %

I5
(e) %

Total

(e) %

0 0 0 0 0 0 0

100 1.9 1.2 2.0 1.1 4.9 2.9

200 3.0 2.3 3.5 1.9 9.3 5.7

300 4.2 3.4 4.9 2.9 13.7 8.5

400 5.8 4.6 6.1 3.7 17.9 11.0

500 7.5 5.7 7.5 4.6 22.1 13.4

Table 1. Percent degradation for gate I5 and total delay
(for cases a, b, c) as function of sleep resistance.

3.2 Sleep transistor merging based on mutual exclusive
discharge patterns
Although it is relatively simple to develop an MTCMOS sizing
strategy by individually adding high Vt transistors to each gate in a
circuit, this can result in large overestimates in sleep transistor area

INa

I5

C

R

V1 V3 V5

R

OUTa

C
V(t)

OUTc

C

V(t)

OUTe

R
(1/3)

INe

INc

I4I3I2I1

10 15 20
0.00

0.10

0.20

0.30

0.40

10 11 12 13 14
0.00

0.10

0.20

0 2k 4k 6k 8k 10k0

1

2

3

0 2k 4k 6k 8k 10k0

1

2

3

4

5

6

10 11 12 13 14
0.00

0.10

0.20

time [ns]

time [ns]

time [ns]
V

1(
t)

, V
2(

t)
, V

3(
t)

 [V
ol

ts
]

V
(t

)
[V

ol
ts

]
V

(t
)

[V
ol

ts
]

15

15

V1 V3 V5

(a) Individual sleep resistors for (b) Virtual ground bounce for (a)

Figure 3. Inverter chain example showing the 3 steps
for merging sleep resistors. Circuits use Vdd=1.0v,
Vt=0.2v, C=50fF, lmin=0.7µm.

 R=2K, 4K, 6K, 8K, 10Keach gate

(c) Sleep resistor sharing for (d) Virtual ground bounce for (c)
 R=2K, 4K, 6K, 8K, 10Kmutual exclusive gates

I5I4I3I2I1
I1 I3

I5

I5I4I3I2I1

(e) Sleep resistors combined (f) Virtual ground bounce for (e)
 R=2K, 4K, 6K, 8K, 10Kthrough parallel combination

I1
I3

I5

(g) Delay of gate I5 alone (h) Delay from input to output

Sleep resistance [Ω] Sleep resistance [Ω]

T
ot

al
 D

el
ay

 [n
s]

G
at

e
D

el
ay

 [n
s]

case a
case c
case e

case a
case c
case e

and large overheads in wiring area. However, since not all gates in
the circuit will switch at the same times, it is possible to merge
sleep transistors together from mutual exclusive gates and thereby
reduce circuit complexity. For a set of n such gates with equivalent
sleep resistances r1, r2,... rn, the sleep resistors can be combined
and replaced by a single reff = min (r1, r2,... rn). These mutually
exclusive gates will discharge currents through the sleep transistor
at different times so that the virtual ground bounce that each transi-
tioning gate experiences will still be the same or smaller than
before. As a result, the delay of each gate sharing the common
sleep transistor should also be the same or smaller than in the orig-
inal circuit. An added benefit of replacing n sleep resistors with a
single one is that the subthreshold leakage current will decrease by
a factor of n, and also the increased parasitic capacitance on the
virtual ground line can improve performance.

Figure 3c shows how the Figure 2a inverter tree’s sleep resistors
can be replaced by only 3 resistors by utilizing the same high Vt
switch for mutual exclusive gates. Inverters I1, I2, I3, I4, and I5 for
example will never transition from high to low at the same times,
and as a result can share a common sleep transistor. Figure 3g
shows how the delay of inverter I5 remains the same for both cases,
which is to be expected. Upon closer inspection, one can see that
the overall performance of the inverter chain actually improves
when the transistors are merged together as in Figure 3h. This is
because there is a larger parasitic capacitance on the virtual ground
line for the merged case, which will tend to low pass filter the vir-
tual ground bounce. As a result, inverter I1 will be faster because
the virtual ground bounce rises more slowly. As the parasitic
capacitances charges up though, later gates will not see these bene-
ficial effects since the capacitance does not have time to discharge
again, as can be seen in Figure 3d.

3.3 Merging through parallel combination
Having separate sleep resistors for different groups of mutually
exclusive gates can be cumbersome for the circuit layout. In many
cases, it is possible to lump these sleep transistors together as a par-
allel combination, and performance will still be maintained.
Although total transistor area will be the same, wiring and layout
area can be reduced. To quantify this point, consider the circuit in
Figure 4.

If the virtual ground voltages for two different subcircuits is simi-
lar, then they can be modeled as two current sources, i1(t) and i2(t),
connected to resistors r1 and r2 to give a voltage waveform v0(t) for
both cases. However, if i1(t) and i2(t) are summed together and r1
and r2 are placed in parallel, then the new voltage over the resistor
is:

v(t)= (i1(t) + i2(t)) * (r1 // r2)
= (i1(t) * r1* r2 + i2(t) * r1 *r2) * (1 / r1+r2)
= (v0(t) * r2 + v0(t) * r1) * (1 / r1+r2)
= v0(t)

Subcircuit
1

Subcircuit
2

R1 R2

V0(t) V0(t)I2(t)I1(t)

Figure 4. Circuit showing how sleep resistors can be
combined in parallel.

which is the same as before. Thus, for two subcircuits with very
similar virtual ground transient behaviors, combining the two sys-
tems together will result in unchanged virtual ground characteris-
tics, so the overall performance should be unchanged. In general, if
voltages v1(t) and v2(t) are very different, then the resistors should
be combined such that v(t) will not exceed the minimum of v1(t) or
v2(t). In this case, req = min (v1(t),v2(t)) / (v1(t)/r1 + v2(t)/ r2).

In Figure 3e, the three separate sleep resistors from Figure 3c can
be replaced by a single resistor with three times the conductance
that now gates the entire circuit. Figures 3g and 3h show compari-
sons of the delay vs. sleep resistor size for these two cases, and that
the resistance must be lowered by one third in order to achieve the
same performance. Another way to appreciate this relationship is
to examine the virtual ground transient response shown in Figure
3d and 3f. By scaling the resistance by 1/3 for the case with a sin-
gle global sleep transistor, the virtual ground bounce shown in Fig-
ure 3f can be matched to the that of Figure 3g, which would give
the same delay behavior.

In general, combining separate sleep transistors into a single com-
mon one will be beneficial. The increased parasitic capacitances
will tend to speed up the circuit during the capacitor charging
stage. More important, the worst case scenario where the subcir-
cuits will all discharge simultaneously is not common. Because the
larger resistances used in the original subcircuits are replaced by a
smaller resistance applied to the combined circuit, in many cases
individual gates will be faster than before. In some degenerate
examples using pure parallel combination, it may be possible that
two subcircuits with separate sleep transistors might have very dif-
ferent virtual ground transient responses. In such a case, combining
sleep transistors by a simple parallel combination will speed up
one case, but could possibly slow down the other (the one with a
much smaller virtual ground bounce). However, this is most likely
not going to affect the overall performance of the circuit as a
whole.

3.4 Comparison with optimal sleep transistor size
As a concrete example, we simulated the MTCMOS inverter net-
work where the sleep transistor was designed to provide only a 5%
degradation in performance over a conventional CMOS implemen-
tation. By simulating a single inverter with a sleep resistor in
SPICE, we discovered that a sleep transistor with an equivalent
resistance of less than 340Ω was required for less than 5% individ-
ual degradation. When applied to the inverter chain network and
merged together, the sleep transistor equivalent resistance was
113Ω, with a 3.13% degradation in delay. The predicted sleep tran-
sistor required was actually an overestimate, because direct simula-
tion shows that one only needs a resistance of 180Ω in order to
achieve a 5% degradation in performance. By using this transistor
sizing methodology, the transistor width was overestimated by
60%. One major cause for this discrepancy is that in MTCMOS
circuits with NMOS sleep transistors, typically only half the gates,
those switching from high to low, are actually degraded. Thus even
if the high to low transition degrades by 5%, the overall chain will
degrade on average by only 2.5% if pulldown and pull up transi-
tions are balanced. Although this inverter chain circuit is easy
enough to size through brute simulation, the resistor synthesis
approach can be applied to more complicated circuits where
exhaustive simulation is not possible.

4. SLEEP TRANSISTOR ALGORITHM
The previous example demonstrated how MTCMOS sleep transis-
tors can be sized individually for each gate and then shared among
mutually exclusive gates, where no two gates can be discharging

current at the same time. The primary value of this technique is in
the sleep transistor reduction step, because area of the sleep transis-
tor is of primary concern in MTCMOS circuits. One approach to
develop a mutual exclusive set of gates in a circuit, is to use a crite-
ria based on the structural interconnections in the network graph.
Assuming a unit delay model for each gate, then one can tabulate
all the possible times that any particular gate can switch. Mutually
exclusive gates can then be grouped together whenever there is no
intersection between the corresponding sets of times. In order to
minimize total sleep transistor sizes, the number of these groupings
of mutually exclusive gates should be minimized, and the sleep
transistors chosen to be the largest transistors in each respective
group.

Figure 5 shows a random logic circuit with arbitrary gate intercon-
nections, where it is assumed that each gate has a corresponding
sleep transistor (modeled as a resistor). Each gate is annotated
using a unit delay model with all possible time slots that a transi-
tion can occur. Gates that do not have a time period in common
will thus be mutually exclusive, and can be grouped together with a
common sleep transistor. In cases where a gate can switch at multi-
ple times, we further annotate the set of transition times by a sub-
script indicating the reference gate, because these two gates are
also mutually exclusive even though they share a time slot. For
example, gates g7 and g9 both show possible transitions at time 3,
but this will never happen simultaneously because g9 is always one
time unit behind g7. Ideally, the groupings should be selected to
minimize the overall sleep transistor widths such that gates with
very large sleep transistors should be lumped together.

This merging technique based on mutual exclusive gate discharge
patterns is most effective for balanced circuits with minimal glitch-
ing. Fortunately, a large class of circuits fall into this category,
especially since less glitching is attractive from a low power point
of view [6]. For circuits with more complicated interconnections
and glitching, the merging technique can still be used, although the
compression ratio would probably be lower. To further improve the
sleep transistor reduction, we can also use more rigorous criteria to
determine mutual exclusivity that is based on logic rather than the
structural connections in a circuit. We are currently working on
such an approach that utilizes boolean manipulation[7].

g1

g2

g3

g4

g5

g6 g8

g7 g9

g10

1

1

1

2

2

3 4

2,3 (3,4)7

3, (4,5)9

Figure 5. Logic gates annotated with all
possible transition times, so that sleep
resistors can be merged.

Grouping #1 = {g1, g4, g6, g8}
Grouping #2 = {g2, g7, g9}
Grouping #3 = {g3, g5, g10}

 Ra = min (r1, r4, r6, r8)
 Rb = min (r2, r7, r9)
 Rc = min (r3, r5, r10)

Requivalent = Ra // Rb // Rc

4.1 Hierarchical Transistor Sizing Methodology
Although the MTCMOS transistor sizing algorithm has been pre-
sented at the gate level, in fact it can be applied at many hierarchi-
cal levels of a circuit. The algorithm simply operates on generic
circuit blocks that are elements within a larger module, and each
block is assumed to have a local high Vt sleep transistor that is
used for gating the power supply rails. The algorithm is applied to
the network by combining the sleep transistors for mutual exclu-
sive blocks. Thus, the blocks that the algorithm operates on can
represent individual gates, cells within an array (like an adder cell
in a multiplier), or even a module within a chip (like an ALU). In
all these cases, a gating sleep transistor can be shared among sev-
eral different blocks if those blocks have activity patterns that do
not overlap in time.

In order to achieve the best results, one should initially use a
detailed simulator like SPICE to simulate as large a block as possi-
ble and to exhaustively determine the optimal sleep transistor size.
Next, the hierarchical merging technique can then be applied to
these existing blocks to synthesize an overall sleep transistor for a
larger module, where determining a worst case input vector would
have been exceedingly difficult. Applying this hierarchical meth-
odology too early can result in unnecessary overestimates for sleep
transistor sizes however.

Using the hierarchical sizing methodology again, it is also possible
to further apply this transistor merging technique on these existing
modules into a larger system. However, by applying this nested
algorithm at several levels of abstraction, we will tend to overesti-
mate the minimum sleep transistor size required again, mainly
because the granularity of our interactions between blocks will be
much larger. For example, applying the algorithm at the cell level
within an array might give a larger estimate for the sleep transistor
size than if the algorithm had been pushed down in the hierarchy
and applied to the gates directly. However, utilizing a hierarchical
approach to sizing the sleep transistors is very attractive because
detailed circuit complexity can be abstracted away at the expense
of accuracy, a tradeoff which is very often desirable.

5. PARITY CHECKER EXAMPLE
As a practical example, the hierarchical sizing methodology was
applied to a 32 bit MTCMOS parity checker circuit. The circuit
consists of 31 XOR gates which are connected as a tree with 5 lev-
els. Figure 7 shows a smaller 8 bit version of this circuit.

The XOR gate was simulated by itself to determine the local sleep
resistance needed for a single gate to meet performance require-
ments. For 20% degradation, the sleep transistor needs a resistance
less than 4800Ω, and for 10% degradation the resistance must be
less than 2400Ω. With an application of the merging algorithm
based on mutual exclusive discharging gates, the total number of
sleep transistors required could be reduced from 31 (one for each

XOR

XOR

XOR

XOR

XOR

XOR
XOR

Out

Figure 6. 8 bit parity checker.

gate) to only 16. The resulting sleep transistor for the entire 32 bit
parity checker was then calculated to be less than 300Ω for 20%
degradation and less than 150Ω for 10% degradation.

Since there are too many vector pairs (264) to test exhaustively,
Table 2 below shows simulation results for a subset of 5 input vec-
tors. Each of these vectors was chosen to exercise a critical path
through the top row of the parity checker. Furthermore the critical
2-input XOR gates each transition with the worst case inputs (x=0-
>1,y=0->0).

The SPICE simulation shows how the sleep transistor sizes (150Ω
and 300Ω) ensure performance within 10% (9.99ns) and 20%
(10.90ns) of the CMOS critical delay of 9.08ns. Vector #1 does not
cause large currents to flow in adjacent gates, so its degradation in
performance is not large (0.7% and 1.4%). However, vector #3 cre-
ates significant currents through adjacent gates, and as a result is
more susceptible to degradation (4.3% and 8.8%). In all cases how-
ever, the delays are significantly faster than predicted. Although
there are other vector combinations that will result in larger delays,
typically the sleep transistor sizing from the algorithm will still be
a conservative overestimate of the required sleep transistor size.
This is due mainly to three factors. First, only one half of the gates,
those switching from high to low, are actually degraded as
described in section 3.4. As a result, ensuring all NMOS transistors
degrade by no more than 20%, will likely cause only a 10% degra-
dation in overall performance. Second, our gate partitioning can be
further improved by using more sophisticated algorithms to deter-
mine mutual exclusivity, as only a structural logic independent
grouping algorithm was used. Finally the requirement that each
gate’s high to low transition degrade by no more than a fixed
amount is overly stringent, and also contributes to a conservative
estimate of sleep transistor size.

6. WALLACE TREE MULTIPLIER EXAMPLE
As another example, the hierarchical sizing methodology was
applied to a 6x6 bit Wallace tree multiplier circuit shown in Figure
7. This is a type of circuit is well suited for this algorithm because
there are many mutually exclusive gates that cannot transition at
the same time[8].

Input
Vector

CMOS
[ns]

R =150Ω
[ns], %degr

R = 300Ω
[ns], %degr

1 9.08ns 9.14ns,
0.7%

9.21ns,
1.4%

2 9.07ns 9.34ns,
3.0%

9.60ns,
5.5%

3 9.07ns 9.46ns,
4.3%

9.87ns,
8.8%

4 9.08ns 9.44ns,
4.0%

9.81ns,
8.0%

5 9.08ns 9.34ns,
2.9%

9.60ns,
5.7%

Table 2. Parity generator performance as function of
sleep transistor width for different input vectors.

Initially, the AND gates and the carry save adder units (with repre-
sentative loadings) were simulated in SPICE to determine optimal
high Vt sleep transistor sizes (actually equivalent resistances) for
each unit to give rise to a fixed degradation in performance. To
achieve a degradation of 20% and 10%, the CSA required sleep
transistors with equivalent resistances of 1600Ω and 800Ω, respec-
tively. Likewise 20% and 10% degradation of the AND gates
requires equivalent resistances of 2700Ω and 1350Ω, respectively.

Next, the sleep transistor reduction and merging steps were per-
formed to give rise to an equivalent resistor that could gate the
entire multiplier. By tabulating all possible time periods that each
cell can transition as described in Figure 5, we were able to reduce
the 36 AND cell and 30 adder cell sleep resistors into 21 AND cell
and 15 adder cell sleep resistors. The total equivalent resistance for
the multiplier could then be written as (Radd/15) // (Rand/21), corre-
sponding to 30Ω and 60Ω for 10% and 20% maximum degrada-
tion. The merged resistance is a factor of two greater than the case
where no merging takes place, which would correspond to a factor
of two decrease in sleep transistor sizing. The branches of this wal-
lace tree structure were not completely balanced because adder
cells at inner levels of the tree could actually receive inputs from
two levels before. As a result, this implementation has fewer
mutual exclusive gates because a fair amount of glitching can
occur. Another implementation that balances the paths more care-
fully would result in larger compression results from the merging
algorithm.

P
ar

tia
l P

ro
du

ct
s

AND
Partial Products

x0 ...x5

y0 ... y5

gnd

gnd

gnd

gnd

gnd

Figure 7. 6x6 Wallace Multiplier.

P6

P11
P10

P9

P8

P0

P7

P4

P3

P2
P1

P5

For a 6x6 bit multiplier, there are 224 possible input vector pairs, so
again it was not possible to exhaustively verify the circuit. How-
ever 6 representative vectors were simulated for output nodes P6
and P1 as shown in Table 3.

By using the hierarchical sizing algorithm, the degradation in any
path within the multiplier should degrade by no more than the
nominal amount (10% and 20%). As shown in Table 3, two very
different paths, ending at P6 (which can include 6 cells), and P2
(which always includes 2 cells), are ensured to meet these perfor-
mance requirements. Again, since only an NMOS sleep transistor
was used, typically only 1/2 the transitions will actually be affected
and total degradations will be limited to near 5% and 10%. Also, as
described earlier, the restriction that all paths meet the same perfor-
mance constraint will yield an overly conservative estimate of
sleep transistor sizing. For example, an inherently slow path like
P2 should be allowed to degrade more since it will unlikely be the
worst case delay. By relaxing the degradation requirements for non

Input
Vector

CMOS
[ns]

R =30Ω
[ns], %degr

R = 60Ω
[ns], %degr

1 8.79ns 9.01ns,
2.6%

9.26ns,
5.4%

2 8.46ns 8.87ns,
4.9%

9.16ns,
8.3%

3 8.72ns 8.92ns,
2.2%

9.111ns,
4.4%

4 11.17ns 11.28ns,
1.0%

11.40ns,
2.1%

5 12.31ns 12.43ns,
1.0%

12.76ns,
3.7%

6 6.55ns 6.79ns,
3.6%

7.07ns,
8.0%

Input
Vector

CMOS
[ns]

R =30Ω
[ns], %degr

R = 60Ω
[ns], %degr

1 3.19ns 3.24ns,
1.9%

3.40ns,
6.8%

2 3.19ns 3.25ns,
2.1%

3.41ns,
6.9%

3 2.98ns 3.09ns,
3.7%

3.17ns,
6.8%

4 2.98ns 3.05ns,
2.3%

3.10ns,
3.8%

5 2.98ns 3.12ns,
4.8%

3.21ns,
7.8%

6 3.16ns 3.31ns,
5.1%

3.46ns,
10.1%

Table 3. Degradation of delays (P6 and P1) in multiplier
circuit for various sleep resistances and vectors.

(a) P6 Delay

(b) P1 Delay

critical gates, then the sleep transistor can be reduced in size.
Nonetheless, the hierarchical sizing strategy provides at least an
upper bound on the size of the sleep transistor needed to ensure
performance.

7. CONCLUSION AND FUTURE WORK
A sleep transistor sizing methodology for MTCMOS circuits based
on mutual exclusive gate discharge patterns was presented in this
paper. This methodology provides an upper bound on the sleep
transistor size to guarantee a performance level in an MTCMOS
circuit by placing delay constraints on individual blocks. Although
this sizing algorithm will give an overestimate compared to the
optimal sleep transistor size, it is straightforward and can be
applied at many hierarchical levels within a circuit. This algorithm
is most useful when applied to a large module in conjunction with a
detailed simulator that can provide more accurate sleep transistor
sizing information for the module’s sub-blocks.

The sleep transistor merging algorithm currently relies on a unit
delay model and purely structural analysis to determine mutual
exclusivity. By using a more complicated delay model and utilizing
logic dependencies, the merging algorithm can be improved and
more accurate sleep transistor size requirements can be computed.
Work is also being done to reduce the constraint that all individual
gates meet a fixed degradation requirement. By allowing more
flexibility where the speed degradation of individual gates within
the circuit can be greater or less than the nominal, one can more
efficiently size the sleep transistor to maintain performance in
MTCMOS circuits.

8. ACKNOWLEDGEMENTS
This work was funded by DARPA contract #DABT63-95-C-0088.

9. REFERENCES
[1] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, J.

Yamada, “1-V Power Supply High-Speed Digital Circuit
Technology with Multithreshold-Voltage CMOS,” IEEE
JSSC, vol. 30, no. 8, pp. 847-854, August 1995.

[2] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukada, J. Yamada,
“1V Multi-Threshold CMOS DSP with an Efficient Power
Management Technique for Mobile Phone Application”, IEEE
ISSCC, pp. 168-169, 1996.

[3] W. Lee, et al., “A 1V DSP for Wireless Communications,”
ISSCC, pp. 92-93, Feb., 1997.

[4] A. Chandrakasan, I. Yang, C. Vieri, D. Antoniadis, “Design
Considerations and Tools for Low-voltage Digital System De-
sign,” 33rd Design Automation Conference, pp. 113-118, June
1996.

[5] J. Kao, A. Chandrakasan, D. Antoniadis, “Transistor Sizing Is-
sues and Tool For Multi-Threshold CMOS Technology,” 34th
Design Automation Conference, pp. 409-414, June 1997.

[6] T. Sakuta, W. Lee, P. Balsara, “Delay Balanced Multipliers for
Low Power/ Low Voltage DSP Core,” IEEE Symposium on
Low Power Electronics, pp. 36-37, 1995.

[7] S. Devadas, K. Keutzer, J. White, “Estimation of Power Dissi-
pation in CMOS Combinational Circuits Using Boolean Func-
tion Manipulation,” IEEE JSSC, vol. 11, no. 3, pp. 373-383,
March 1992.

[8] N. Weste, K. Eshraghian, “Principles of CMOS VLSI De-
sign,” Addison-Wesley, Reading MA., pp. 554-557, 1993.

