
mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems

EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong

Sunghwan Ihm*, Dongsu Han, and KyoungSoo Park

KAIST *Princeton University

Abstract

Scaling the performance of short TCP connections on

multicore systems is fundamentally challenging. Although

many proposals have attempted to address various short-

comings, inefficiency of the kernel implementation still

persists. For example, even state-of-the-art designs spend

70% to 80% of CPU cycles in handling TCP connections

in the kernel, leaving only small room for innovation in

the user-level program.

This work presents mTCP, a high-performance user-

level TCP stack for multicore systems. mTCP addresses

the inefficiencies from the ground up—from packet I/O

and TCP connection management to the application inter-

face. In addition to adopting well-known techniques, our

design (1) translates multiple expensive system calls into a

single shared memory reference, (2) allows efficient flow-

level event aggregation, and (3) performs batched packet

I/O for high I/O efficiency. Our evaluations on an 8-core

machine showed that mTCP improves the performance of

small message transactions by a factor of 25 compared to

the latest Linux TCP stack and a factor of 3 compared to

the best-performing research system known so far. It also

improves the performance of various popular applications

by 33% to 320% compared to those on the Linux stack.

1 Introduction

Short TCP connections are becoming widespread. While

large content transfers (e.g., high-resolution videos) con-

sume the most bandwidth, short “transactions” 1 dominate

the number of TCP flows. In a large cellular network, for

example, over 90% of TCP flows are smaller than 32 KB

and more than half are less than 4 KB [45].

Scaling the processing speed of these short connec-

tions is important not only for popular user-facing on-

line services [1, 2, 18] that process small messages. It is

1We refer to a request-response pair as a transaction. These transac-

tions are typically small in size.

also critical for backend systems (e.g., memcached clus-

ters [36]) and middleboxes (e.g., SSL proxies [32] and

redundancy elimination [31]) that must process TCP con-

nections at high speed. Despite recent advances in soft-

ware packet processing [4, 7, 21, 27, 39], supporting high

TCP transaction rates remains very challenging. For exam-

ple, Linux TCP transaction rates peak at about 0.3 million

transactions per second (shown in Section 5), whereas

packet I/O can scale up to tens of millions packets per

second [4, 27, 39].

Prior studies attribute the inefficiency to either the high

system call overhead of the operating system [28, 40, 43]

or inefficient implementations that cause resource con-

tention on multicore systems [37]. The former approach

drastically changes the I/O abstraction (e.g., socket API)

to amortize the cost of system calls. The practical lim-

itation of such an approach, however, is that it requires

significant modifications within the kernel and forces ex-

isting applications to be re-written. The latter one typically

makes incremental changes in existing implementations

and, thus, falls short in fully addressing the inefficiencies.

In this paper, we explore an alternative approach that de-

livers high performance without requiring drastic changes

to the existing code base. In particular, we take a clean-

slate approach to assess the performance of an untethered

design that divorces the limitation of the kernel implemen-

tation. To this end, we build a user-level TCP stack from

the ground up by leveraging high-performance packet

I/O libraries that allow applications to directly access the

packets. Our user-level stack, mTCP, is designed for three

explicit goals:

1. Multicore scalability of the TCP stack.

2. Ease of use (i.e., application portability to mTCP).

3. Ease of deployment (i.e., no kernel modifications).

Implementing TCP in the user level provides many

opportunities. In particular, it can eliminate the expen-

sive system call overhead by translating syscalls into

inter-process communication (IPC). However, it also in-

1

Accept queue Conn. Locality Socket API Event Handling Packet I/O
Application Mod-

ification

Kernel

Modification

PSIO [12],

No TCP stack Batched
DPDK [4], No interface for No

PF RING [7], transport layer (NIC driver)

netmap [21]

Linux-2.6 Shared None BSD socket Syscalls Per packet Transparent No

Linux-3.9 Per-core None BSD socket Syscalls Per packet
Add option

No
SO REUSEPORT

Affinity-

Accept [37]
Per-core Yes BSD socket Syscalls Per packet Transparent Yes

MegaPipe [28] Per-core Yes lwsocket Batched syscalls Per packet
Event model to

Yes
completion I/O

FlexSC [40],
Shared None BSD socket Batched syscalls Per packet

Change to use
Yes

VOS [43] new API

mTCP Per-core Yes User-level socket Batched function calls Batched
Socket API to

mTCP API

No

(NIC driver)

Table 1: Comparison of the benefits of previous work and mTCP.

troduces fundamental challenges that must be addressed—

processing IPC messages, including shared memory mes-

sages, involve context-switches that are typically much

more expensive than the system calls themselves [3, 29].

Our key approach is to amortize the context-switch

overhead over a batch of packet-level and socket-level

events. While packet-level batching [27] and system-call

batching [28, 40, 43] (including socket-level events) have

been explored individually, integrating the two requires

a careful design of the networking stack that translates

packet-level events to socket-level events and vice-versa.

This paper makes two key contributions:

First, we demonstrate that significant performance

gain can be obtained by integrating packet- and socket-

level batching. In addition, we incorporate all known

optimizations, such as per-core listen sockets and load

balancing of concurrent flows on multicore CPUs with

receive-side scaling (RSS). The resulting TCP stack out-

performs Linux and MegaPipe [28] by up to 25x (w/o

SO_REUSEPORT) and 3x, respectively, in handling TCP

transactions. This directly translates to application per-

formance; mTCP increases existing applications’ perfor-

mance by 33% (SSLShader) to 320% (lighttpd).

Second, unlike other designs [23,30], we show that such

integration can be done purely at the user level in a way

that ensures ease of porting without requiring significant

modifications to the kernel. mTCP provides BSD-like

socket and epoll-like event-driven interfaces. Migrating

existing event-driven applications is easy since one simply

needs to replace the socket calls to their counterparts in

mTCP (e.g., accept() becomes mtcp_accept()) and

use the per-core listen socket.

2 Background and Motivation

We first review the major inefficiencies in existing TCP

implementations and proposed solutions. We then discuss

our motivation towards a user-level TCP stack.

2.1 Limitations of the Kernel’s TCP Stack

Recent studies proposed various solutions to address four

major inefficiencies in the Linux TCP stack: lack of con-

nection locality, shared file descriptor space, inefficient

packet processing, and heavy system call overhead [28].

Lack of connection locality: Many applications are

multi-threaded to scale their performance on multicore

systems. However, they typically share a listen socket

that accepts incoming connections on a well-known port.

As a result, multiple threads contend for a lock to access

the socket’s accept queue, resulting in a significant perfor-

mance degradation. Also, the core that executes the kernel

code for handling a TCP connection may be different from

the one that runs the application code that actually sends

and receives data. Such lack of connection locality intro-

duces additional overhead due to increased CPU cache

misses and cache-line sharing [37].

Affinity-Accept [37] and MegaPipe [28] address this

issue by providing a local accept queue in each CPU core

and ensuring flow-level core affinity across the kernel and

application thread. Recent Linux kernel (3.9.4) also partly

addresses this by introducing the SO_REUSEPORT [14] op-

tion, which allows multiple threads/processes to bind to

the same port number.

Shared file descriptor space: In POSIX-compliant op-

erating systems, the file descriptor (fd) space is shared

within a process. For example, Linux searches for the min-

imum available fd number when allocating a new socket.

In a busy server that handles a large number of concurrent

connections, this incurs significant overhead due to lock

contention between multiple threads [20]. The use of file

descriptors for sockets, in turn, creates extra overhead

of going through the Linux Virtual File System (VFS), a

pseudo-filesystem layer for supporting common file op-

erations. MegaPipe eliminates this layer for sockets by

explicitly partitioning the fd space for sockets and regular

files [28].

2

0%

20%

40%

60%

80%

100%

Linux-2.6 Linux-3.10 MegaPipe mTCP

C
P

U
 U

ti
li

z
a

ti
o

n

Kernel Packet I/O TCP/IP Application

Figure 1: CPU usage breakdown when running lighttpd serv-

ing a 64B file per connection.

Inefficient per-packet processing: Previous studies in-

dicate per-packet memory (de)allocation and DMA over-

head, NUMA-unaware memory access, and heavy data

structures (e.g., sk_buff) as the main bottlenecks in

processing small packets [27, 39]. To reduce the per-

packet overhead, it is essential to batch process multi-

ple packets. While many recent user-level packet I/O

libraries [4, 7, 27, 39] address these problems, these li-

braries do not provide a full-fledged TCP stack, and not

all optimizations are incorporated into the kernel.

System call overhead: The BSD socket API requires

frequent user/kernel mode switching when there are

many short-lived concurrent connections. As shown in

FlexSC [40] and VOS [43], frequent system calls can

result in processor state (e.g., top-level caches, branch

prediction table, etc.) pollution that causes performance

penalties. Previous solutions propose system call batch-

ing [28, 43] or efficient system call scheduling [40] to

amortize the cost. However, it is difficult to readily apply

either approach to existing applications since they often

require user and/or kernel code modification due to the

changes to the system call interface and/or its semantics.

Table 1 summarizes the benefits provided by previous

work compared to a vanilla Linux kernel. Note that there

is not a single system that provides all of the benefits.

2.2 Why User-level TCP?

While many previous designs have tried to scale the per-

formance of TCP in multicore systems, few of them truly

overcame the aforementioned inefficiencies of the kernel.

This is evidenced by the fact that even the best-performing

system, MegaPipe, spends a dominant portion of CPU

cycles (∼80%) inside the kernel. Even more alarming is

the fact that these CPU cycles are not utilized efficiently;

according to our own measurements, Linux spends more

than 4x the cycles (in the kernel and the TCP stack com-

bined) than mTCP does while handling the same number

of TCP transactions.

To reveal the significance of this problem, we profile the

server’s CPU usage when it is handling a large number of

concurrent TCP transactions (8K to 48K concurrent TCP

connections). For this experiment, we use a simple web

server (lighttpd v1.4.32 [8]) running on an 8-core Intel

1.00 0.96
1.77

4.37

0

1

2

3

4

5

0

1

2

3

4

5

Linux-2.6 Linux-3.10 MegaPipe mTCP

T
r
a

n
sa

c
ti

o
n

s/
se

c
 (

x
 1

0
5
)

R
e
la

ti
v

e
 S

c
a

le

Relative Scale

Transaction Rate

Figure 2: Relative scale of # transactions processed per CPU

cycle in the kernel (including TCP/IP and I/O) across four

lighttpd versions.

Xeon CPU (2.90 GHz, E5-2690) with 32 GB of memory

and a 10 Gbps NIC (Intel 82599 chipsets). Our clients

use ab v2.3 [15] to repeatedly download a 64B file per

connection. Multiple clients are used in our experiment to

saturate the CPU utilization of the server. Figure 1 shows

the breakdown of CPU usage comparing four versions of

the lighttpd server: a multithreaded version that harnesses

all 8 CPU cores on Linux 2.6.32 and 3.10.12 2 (Linux), a

version ported to MegaPipe 3 (MegaPipe), and a version

using mTCP, our user-level TCP stack, on Linux 2.6.32

(mTCP). Note that MegaPipe adopts all recent optimiza-

tions such as per-core accept queues and file descriptor

space, as well as user-level system call batching, but reuses

the existing kernel for packet I/O and TCP/IP processing.

Our results indicate that Linux and MegaPipe spend

80% to 83% of CPU cycles in the kernel which leaves

only a small portion of the CPU to user-level applications.

Upon further investigation, we find that lock contention

for shared in-kernel data structures, buffer management,

and frequent mode switch are the main culprits. This

implies that the kernel, including its stack, is the major

bottleneck. Furthermore, the results in Figure 2 show

that the CPU cycles are not spent efficiently in Linux

and MegaPipe. The bars indicate the relative number

of transactions processed per each CPU cycle inside the

kernel and the TCP stack (e.g., outside the application),

normalized by the performance of Linux 2.6.32. We find

that mTCP uses the CPU cycles 4.3 times more effectively

than Linux. As a result, mTCP achieves 3.1x and 1.8x

the performance of Linux 2.6 and MegaPipe, respectively,

while using fewer CPU cycles in the kernel and the TCP

stack.

Now, the motivation of our work is clear. Can we de-

sign a user-level TCP stack that incorporates all existing

optimizations into a single system and achieve all benefits

that individual systems have provided in the past? How

much of a performance improvement can we get if we

build such a system? Can we bring the performance of

existing packet I/O libraries to the TCP stack?

2This is the latest Linux kernel version as of this writing.
3We use Linux 3.1.3 for MegaPipe due to its patch availability.

3

Kernel

User

Space
Thread 0

ixgbe driver

Application process

Kernel TCP stack

Thread 1 …

accept() epoll_wait()

BSD socket Linux epoll

Linux

User-level packet I/O library

Application process

mTCP

thread 0

mTCP

thread 1
…

Thread 0 Thread 1 …

User-level TCP stack

mtcp_accept()

mTCP socket mTCP epoll

mtcp_epoll_wait()

mTCP’s approach

Figure 3: mTCP Design Overview.

To answer these questions, we build a TCP stack in

the user level. User-level TCP is attractive for many rea-

sons. First, it allows us to easily depart from the kernel’s

complexity. In particular, due to shared data structures

and various semantics that the kernel has to support (e.g.,

POSIX and VFS), it is often difficult to separate the TCP

stack from the rest of the kernel. Furthermore, it allows

us to directly take advantage of the existing optimiza-

tions in the high-performance packet I/O library, such as

netmap [39] and Intel DPDK [4]. Second, it allows us to

apply batch processing as the first principle, harnessing

the ideas in FlexSC [40] and VOS [43] without extensive

kernel modifications. In addition to performing batched

packet I/O, the user-level TCP naturally collects multiple

flow-level events to and from the user application (e.g.,

connect()/accept() and read()/write() for differ-

ent connections) without the overhead of frequent mode

switching in system calls. Finally, it allows us to easily

preserve the existing application programming interface.

Our TCP stack is backward-compatible in that we provide

a BSD-like socket interface.

3 Design

The goal of mTCP is to achieve high scalability on mul-

ticore systems while maintaining backward compatibil-

ity to existing multi-threaded, event-driven applications.

Figure 3 presents an overview of our system. At the high-

est level, applications link to the mTCP library, which

provides a socket API and an event-driven programming

interface for backward compatibility. The two underlying

components, user-level TCP stack and packet I/O library,

are responsible for achieving high scalability. Our user-

level TCP implementation runs as a thread on each CPU

core within the same application process. The mTCP

thread directly transmits and receives packets to and from

the NIC using our custom packet I/O library. Existing

user-level packet libraries only allow one application to

access an NIC port. Thus, mTCP can only support one

application per NIC port. However, we believe this can

be addressed in the future using virtualized network inter-

faces (more details in Section 3.3). Applications can still

choose to work with the existing TCP stack, provided that

they only use NICs that are not used by mTCP.

In this section, we first present the design of mTCP’s

highly scalable lower-level components in Sections 3.1

and 3.2. We then discuss the API and semantics that

mTCP provides to support applications in Section 3.3.

3.1 User-level Packet I/O Library

Several packet I/O systems allow high-speed packet I/O

(∼100M packets/sec) from a user-level application [4, 7,

12]. However, they are not suitable for implementing a

transport layer since their interface is mainly based on

polling. Polling can significantly waste precious CPU cy-

cles that can potentially benefit the applications. Further-

more, our system requires efficient multiplexing between

TX and RX queues from multiple NICs. For example, we

do not want to block a TX queue while sending a data

packet when a control packet is waiting to be received.

This is because if we block the TX queue, important con-

trol packets, such as SYN or ACK, may be dropped, re-

sulting in a significant performance degradation due to

retransmissions.

To address these challenges, mTCP extends the Pack-

etShader I/O engine (PSIO) [27] to support an efficient

event-driven packet I/O interface. PSIO offers high-speed

packet I/O by utilizing RSS that distributes incoming pack-

ets from multiple RX queues by their flows, and provides

flow-level core affinity to minimize the contention among

the CPU cores. On top of PSIO’s high-speed packet I/O,

the new event-driven interface allows an mTCP thread to

efficiently wait for events from RX and TX queues from

multiple NIC ports at a time.

The new event-driven interface, ps_select(), works

similarly to select() except that it operates on TX/RX

queues of interested NIC ports for packet I/O. For exam-

ple, mTCP specifies the interested NIC interfaces for RX

and/or TX events with a timeout in microseconds, and

ps_select() returns immediately if any event of interest

is available. If such an event is not detected, it enables

the interrupts for the RX and/or TX queues and yields

the thread context. Eventually, the interrupt handler in

the driver wakes up the thread if an I/O event becomes

available or the timeout expires. ps_select() is also

similar to the select()/poll() interface supported by

netmap [39]. However, unlike netmap, we do not integrate

this with the general-purpose event system in Linux to

avoid its overhead.

The use of PSIO brings the opportunity to amortize the

overhead of system calls and context switches throughout

the entire system, in addition to eliminating the per-packet

memory allocation and DMA overhead. In PSIO, packets

are received and transmitted in batches [27], amortizing

the cost of expensive PCIe operations, such as DMA ad-

dress mapping and IOMMU lookups.

4

Application

mTCP

User-level socket

Event queue

mTCP 1

App. 1

…

App. buffer

Job queues

(e.g. write queue)

Shared TCP buffers

App.

Thread 0

mTCP

Thread 0

Figure 4: Thread model of mTCP.

3.2 User-level TCP Stack

A user-level TCP stack naturally eliminates many system

calls (e.g., socket I/O), which can potentially reduce a

significant part of the Linux TCP overhead. One approach

to a user-level TCP stack is to implement it completely

as a library that runs as part of the application’s main

thread. This “zero-thread TCP” could potentially provide

the best performance since this translates costly system

calls into light-weight user-level function calls. However,

the fundamental limitation of this approach is that the

correctness of internal TCP processing depends on the

timely invocation of TCP functions from the application.

In mTCP, we choose to create a separate TCP thread to

avoid such an issue and to minimize the porting effort for

existing applications. Figure 4 shows how mTCP interacts

with the application thread. The application uses mTCP

library functions that communicate with the mTCP thread

via shared buffers. The access to the shared buffers is

granted only through the library functions, which allows

safe sharing of the internal TCP data. When a library

function needs to modify the shared data, it simply places

a request (e.g., write() request) to a job queue. This

way, multiple requests from different flows can be piled to

the job queue at each loop, which are processed in batch

when the mTCP thread regains the CPU. Flow events from

the mTCP thread (e.g., new connections, new data arrival,

etc.) are delivered in a similar way.

This, however, requires additional overhead of manag-

ing concurrent data structures and context switch between

the application and the mTCP thread. Such cost is un-

fortunately not negligible, typically much larger than the

system call overhead [29]. One measurement on a recent

Intel CPU shows that a thread context switch takes 19

times the duration of a null system call [3].

In this section, we describe how mTCP addresses these

challenges and achieves high scalability with the user-

level TCP stack. We first start from how mTCP processes

TCP packets in Section 3.2.1, then present a set of key

optimizations we employ to enhance its performance in

Sections 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Basic TCP Processing

When the mTCP thread reads a batch of packets from the

NIC’s RX queue, mTCP passes them to the TCP packet

processing logic which follows the standard TCP specifi-

Accept

queue

S S/A F/A

Data list

ACK list

Control list

TX manager

Connect

queue

Application

Data

S A F/A

Data list

Write

queue

Close

queue

write()

Packet handler

Payload handler

Socket API

Internal event queue

Event

queue

ACK list

Control list

TX manager

S A

connect() close()epoll_wait()accept()

tcb

(1)

(2)

(3)

(4)

(5) (6)

(7)

(8)

Figure 5: An example of TCP processing in mTCP.

cation. For each packet, mTCP first searches (or creates) a

TCP control block (tcb) of the corresponding flow in the

flow hash table. As in Figure 5, if a server side receives

an ACK for its SYN/ACK packet (1), the tcb for the new

connection will be enqueued to an accept queue (2), and

a read event is generated for the listening socket (3). If

a new data packet arrives, mTCP copies the payload to

the socket’s read buffer and enqueues a read event to an

internal event queue. mTCP also generates an ACK packet

and keeps it in the ACK list of a TX manager until it is

written to a local TX queue.

After processing a batch of received packets, mTCP

flushes the queued events to the application event queue

(4) and wakes up the application by signaling it. When

the application wakes up, it processes multiple events in a

single event loop (5), and writes responses from multiple

flows without a context switch. Each socket’s write()

call writes data to its send buffer (6), and enqueues its

tcb to the write queue (7). Later, mTCP collects the tcbs

that have data to send, and puts them into a send list (8).

Finally, a batch of outgoing packets from the list will be

sent by a packet I/O system call, transmitting them to the

NIC’s TX queue.

3.2.2 Lock-free, Per-core Data Structures

To minimize inter-core contention between the mTCP

threads, we localize all resources (e.g., flow pool, socket

buffers, etc.) in each core, in addition to using RSS for

flow-level core affinity. Moreover, we completely elimi-

nate locks by using lock-free data structures between the

application and mTCP. On top of that, we also devise an

efficient way of managing TCP timer operations.

Thread mapping and flow-level core affinity: We pre-

serve flow-level core affinity in two stages. First, the

packet I/O layer ensures to evenly distribute TCP con-

nection workloads across available CPU cores with RSS.

This essentially reduces the TCP scalability problem to

each core. Second, mTCP spawns one TCP thread for

each application thread and co-locates them in the same

physical CPU core. This preserves the core affinity of

5

packet and flow processing, while allowing them to use

the same CPU cache without cache-line sharing.

Multi-core and cache-friendly data structures: We

keep most data structures, such as the flow hash table,

socket id manager, and the pool of tcb and socket buffers,

local to each TCP thread. This significantly reduces any

sharing across threads and CPU cores, and achieves high

parallelism. When a data structure must be shared across

threads (e.g., between mTCP and the application thread),

we keep all data structures local to each core and use

lock-free data structures by using a single-producer and

single-consumer queue. We maintain write, connect, and

close queues, whose requests go from the application to

mTCP, and an accept queue where new connections are

delivered from mTCP to the application.

In addition, we keep the size of frequently accessed

data structures small to maximize the benefit of the CPU

cache, and make them aligned with the size of a CPU

cache line to prevent any false sharing. For example, we

divide tcb into two parts where the first-level structure

holds 64 bytes of the most frequently-accessed fields and

two pointers to next-level structures that have 128 and 192

bytes of receive/send-related variables, respectively.

Lastly, to minimize the overhead of frequent memory

allocation/deallocation, we allocate a per-core memory

pool for tcbs and socket buffers. We also utilize huge

pages to reduce the TLB misses when accessing the tcbs.

Because their access pattern is essentially random, it often

causes a large number of TLB misses. Putting the memory

pool of tcbs and a hash table that indexes them into huge

pages reduces the number of TLB misses.

Efficient TCP timer management: TCP requires timer

operations for retransmission timeouts, connections in

the TIME WAIT state, and connection keep-alive checks.

mTCP provides two types of timers: one managed by

a sorted list and another built with a hash table. For

coarse-grained timers, such as managing connections in

the TIME WAIT state and connection keep-alive check,

we keep a list of tcbs sorted by their timeout values. Ev-

ery second, we check the list and handle any tcbs whose

timers have expired. Note that keeping the list sorted is

trivial since a newly-added entry should have a strictly

larger timeout than any of those that are already in the

list. For fine-grained retransmission timers, we use the

remaining time (in milliseconds) as the hash table index,

and process all tcbs in the same bucket when a timeout ex-

pires for the bucket. Since retransmission timers are used

by virtually all tcbs whenever a data (or SYN/FIN) packet

is sent, keeping a sorted list would consume a significant

amount of CPU cycles. Such fine-grained event batch

processing with millisecond granularity greatly reduces

the overhead.

RX buffer TX buffer

NIC

mTCP

Receive socket buffer Send socket buffer

Event

queue
Accept

queue

Job

queue

Application

read() write()

Figure 6: Batch processing of events and jobs.

3.2.3 Batched Event Handling

mTCP transparently enables batch processing of multi-

ple flow events, which effectively amortizes the context

switch cost over multiple events. After receiving pack-

ets in batch, mTCP processes them to generate a batch

of flow-level events. These events are then passed up to

the application, as illustrated in Figure 6. The TX direc-

tion works similarly, as the mTCP library transparently

batches the write events into a write queue. While the

idea of amortizing the system call overhead using batches

is not new [28, 43], we demonstrate that benefits similar

to that of batched syscalls can be effectively achieved in

user-level TCP.

In our experiments with 8 RX/TX queues per 10 Gbps

port, the average number of events that an mTCP thread

generates in a single scheduling period is about 2,170

for both TX and RX directions (see Section 5.1). This

ensures that the cost of a context switch is amortized

over a large number of events. Note the fact that the use

of multiple queues does not decrease the number of the

events processed in a batch.

3.2.4 Optimizing for Short-lived Connections

We employ two optimizations for supporting many short-

lived concurrent connections.

Priority-based packet queueing: For short TCP con-

nections, the control packets (e.g., SYN and FIN) have a

critical impact on the performance. Since the control pack-

ets are mostly small-sized, they can often be delayed for a

while when they contend for an output port with a large

number of data packets. We prioritize control packets by

keeping them in a separate list. We maintain three kinds

of lists for TX as shown in Figure 5. First, a control list

contains the packets that are directly related to the state of

a connection such as SYN, SYN/ACK, and ACK, or FIN

and FIN/ACK. We then manage ACKs for incoming data

packets in an ACK list. Finally, we keep a data list to send

data in the socket buffers of TCP flows. When we put

actual packets in a TX queue, we first fill the packets from

a control list and an ACK list, and later queue the data

packets. By doing this, we prioritize important packets

6

to prevent short connections from being delayed by other

long connections. 4

Lightweight connection setup: In addition, we find

that a large portion of connection setup cost is from allo-

cating memory space for TCP control blocks and socket

buffers. When many threads concurrently call malloc()

or free(), the memory manager in the kernel can be eas-

ily contended. To avoid this problem, we pre-allocate

large memory pools and manage them at user level to sat-

isfy memory (de)allocation requests locally in the same

thread.

3.3 Application Programming Interface

One of our primary design goals is to minimize the port-

ing effort of existing applications so that they can easily

benefit from our user-level TCP stack. Therefore, our

programming interface must preserve the most commonly

used semantics and application interfaces as much as pos-

sible. To this end, mTCP provides a socket API and an

event-driven programming interface.

User-level socket API: We provide a BSD-like socket

interface; for each BSD socket function, we have a

corresponding function call (e.g., accept() becomes

mtcp_accept()). In addition, we provide functionali-

ties that are frequently used with sockets, e.g., fcntl and

ioctl, for setting the socket as nonblocking or getting/set-

ting the socket buffer size. To support various applications

that require inter-process communication using pipe(),

we also provide mtcp_pipe().

The socket descriptor space in mTCP (including the fds

of pipe() and epoll()) is local to each mTCP thread;

each mTCP socket is associated with a thread context.

This allows parallel socket creation from multiple threads

by removing lock contention on the socket descriptor

space. We also relax the semantics of socket() such

that it returns any available socket descriptor instead of

the minimum available fd. This reduces the overhead of

finding the minimum available fd.

User-level event system: We provide an epoll()-

like event system. While our event system aggre-

gates the events from multiple flows for batching ef-

fects, we do not require any modification in the event

handling logic. Applications can fetch the events

through mtcp_epoll_wait() and register events through

mtcp_epoll_ctl(), which correspond to epoll_wait()

and epoll_ctl() in Linux. Our current mtcp_epoll()

implementation supports events from mTCP sockets (in-

cluding listening sockets) and pipes. We plan to integrate

other types of events (e.g., timers) in the future.

4This optimization can potentially make the system more vulnerable

to attacks, such as SYN flooding. However, existing solutions, such as

SYN cookies, can be used to mitigate the problem.

Applications: mTCP integrates all techniques known

at the time of this writing without requiring substantial

kernel modification while preserving the application inter-

face. Thus, it allows applications to easily scale their

performance without modifying their logic. We have

ported many applications, including lighttpd, ab, and

SSLShader to use mTCP. For most applications we ported,

the number of lines changed were less than 100 (more de-

tails in Section 4). We also demonstrate in Section 5 that a

variety of applications can directly enjoy the performance

benefit by using mTCP.

However, this comes with a few trade-offs that appli-

cations must consider. First, the use of shared memory

space offers limited protection between the TCP stack and

the application. While the application cannot directly ac-

cess the shared buffers, bugs in the application can corrupt

the TCP stack, which may result in an incorrect behavior.

Although this may make debugging more difficult, we

believe this form of fate-sharing is acceptable since users

face a similar issue in using other shared libraries such as

dynamic memory allocation/deallocation. Second, appli-

cations that rely on the existing socket fd semantics must

change their logic. However, most applications rarely de-

pend on the minimum available fd at socket(), and even if

so, porting them will not require significant code change.

Third, moving the TCP stack will also bypass all existing

kernel services, such as the firewall and packet schedul-

ing. However, these services can also be moved into the

user-level and provided as application modules. Finally,

our prototype currently only supports a single application

due to the limitation of the user-level packet I/O system.

We believe, however, that this is not a fundamental limita-

tion of our approach; hardware-based isolation techniques

such as VMDq [5] and SR-IOV [13] support multiple

virtual guest stacks inside the same host using multiple

RX/TX queues and hardware-based packet classification.

We believe such techniques can be leveraged to support

multiple applications that share a NIC port.

4 Implementation

We implement 11,473 lines of C code (LoC), including

packet I/O, TCP flow management, user-level socket API

and event system, and 552 lines of code to patch the PSIO

library.5 For threading and thread synchronization, we use

pthread, the standard POSIX thread library [11].

Our TCP implementation follows RFC793 [17]. It sup-

ports basic TCP features such as connection management,

reliable data transfer, flow control, and congestion control.

For reliable transfer, it implements cumulative acknowl-

edgment, retransmission timeout, and fast retransmission.

mTCP also implements popular options such as timestamp,

Maximum Segment Size (MSS), and window scaling. For

5The number is counted by SLOCCount 2.26.

7

congestion control, mTCP implements NewReno [10],

but it can easily support other mechanisms like TCP CU-

BIC [26]. For correctness, we have extensively tested our

mTCP stack against various versions of Linux TCP stack,

and have it pass stress tests, including cases where a large

number of packets are lost or reordered.

4.1 mTCP Socket API

Our BSD-like socket API takes on per-thread semantics.

Each mTCP socket function is required to have a context,

mctx_t, which identifies the corresponding mTCP thread.

Our event notification function, mtcp_epoll, also enables

easy migration of existing event-driven applications. List-

ing 1 shows an example mTCP application.

mctx_t mctx = mtcp_create_context();

ep_id = mtcp_epoll_create(mctx , N);

mtcp_listen(mctx , listen_id , 4096);

while (1) {

n=mtcp_epoll_wait(mctx ,ep_id ,events ,N,-1);

for (i = 0; i < n; i++) {

sockid = events[i].data.sockid;

if (sockid == listen_id) {

c = mtcp_accept(mctx , listen_id , NULL);

mtcp_setsock_nonblock(mctx , c);

ev.events = EPOLLIN | EPOLLOUT;

ev.data.sockid = c;

mtcp_epoll_ctl(mctx , ep_id ,

EPOLL_CTL_ADD , c, &ev);

} else if (events[i].events == EPOLLIN) {

r = mtcp_read(mctx , sockid , buf, LEN);

if (r == 0)

mtcp_close(mctx , sockid);

} else if (events[i].events == EPOLLOUT){

mtcp_write(mctx , sockid , buf, len);

}

}

}

Listing 1: Sample mTCP application.

mTCP supports mtcp_getsockopt() and

mtcp_setsockopt() for socket options, and

mtcp_readv() and mtcp_writev() for scatter-gather

I/O as well.

4.2 Porting Existing Applications

We ported four different applications to mTCP.

Web server (lighttpd-1.4.32): Lighttpd is an open-

sourced single-threaded web server that uses event-driven

I/O for servicing client requests. We enabled multi-

threading to support a per-core listen socket and ported

it to mTCP. We changed only ∼65 LoC to use mTCP-

specific event and socket function calls. For multi-

threading, a total of ∼800 lines6 were modified out of

lighttpd’s ∼40,000 LoC.

We also ported lighttpd to MegaPipe for comparison.

Because its API is based on the I/O completion model,

6Some global variables had to be localized to avoid race conditions.

the porting required more effort as it involved revamping

lighttpd’s event-based fdevent backend library; an ad-

ditional 126 LoC were required to enable MegaPipe I/O

from the multi-threaded version.

Apache benchmarking tool (ab-2.3): ab is a perfor-

mance benchmarking tool that generates HTTP requests.

It acts as a client to measure the performance of a Web

server. Scaling its performance is important because sat-

urating a 10 Gbps port with small transactions requires

multiple machines that run ab. However, with mTCP we

can reduce the number of machines by more than a factor

of 4 (see Section 5.3).

Porting ab was similar to porting lighttpd since ab is also

single-threaded. However, ab uses the Apache Portable

Runtime (APR) library [16] that encapsulates socket func-

tion calls, so we ported the APR library (version 1.4.6) to

use mTCP. We modified 29 lines of the APR library (out

of 66,493 LoC), and 503 lines out of 2,319 LoC of the ab

code for making it multi-threaded.

SSL reverse proxy (SSLShader): SSLShader is a high-

performance SSL reverse proxy that offloads crypto opera-

tions to GPUs [32]. For small-file workloads, SSLShader

reports the performance bottleneck in TCP, spending over

60% CPU cycles in the TCP stack, under-utilizing the

GPU. Porting SSLShader to mTCP was straightforward

since SSLShader was already multi-threaded and uses

epoll() for event notification. Besides porting socket

function calls, we also replace pipe()with mtcp_pipe(),

which is used to notify the completion of crypto operations

by GPU threads. Out of 6,618 lines of C++ code, only 43

lines were modified to use mTCP. It took less than a day

to port to mTCP and to finish basic testing and debugging.

Realistic HTTP replay client/server (WebReplay):

WebReplay is a pair of client and server programs that

reproduces realistic HTTP traffic based on the traffic log

collected at a 10 Gbps backhaul link in a large cellular

network [45]. Each line in the log has a request URL,

a response size, start and end timestamps, and a list of

SHA1 hashes of the 4KB content chunks of the original

response. The client generates HTTP requests on start

timestamps. Using the content hashes, the server dynami-

cally generates a response that preserves the redundancy

in the original traffic; the purpose of the system is to repro-

duce Web traffic with a similar amount of redundancy as

the original. Using this, one can test the correctness and

performance of network redundancy elimination (NRE)

systems that sit between the server and the client. To sim-

ulate the traffic at a high speed, however, the WebReplay

server must handle 100Ks of concurrent short connections,

which requires high TCP performance.

WebReplay is multi-threaded and uses the libevent

library [6] which in turn calls epoll() for event notifica-

tion. Porting it to mTCP was mostly straightforward in

8

 -

 3

 6

 9

 12

 15

0 2 4 6 8

M
es

sa
g

es
/s

ec
 (

x
 1

0
5
)

Number of CPU Cores

1

0

(a) Different number of cores

 -

 10

 20

 30

 40

 50

1 2 8 32 64 128

M
es

sa
g

es
/s

ec
 (

x
 1

0
5
)

Number of Messages per Connection

Link saturated

0

(b) Different number of messages

0

2

4

6

8

10

64B 256B 1KiB 4KiB 8KiB

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Message Size

Linux REUSEPORT MegaPipe mTCP

(c) Different sizes of messages

Figure 7: Performance of short TCP connections with 64B messages. (a) and (c) use one message per connection.

 -

 5

 10

 15

 20

 25

 30

1 2 4 6 8

C
o

n
n

e
c
ti

o
n

s/
se

c
 (

x
 1

0
5
)

Number of CPU Cores

Linux REUSEPORT Multiprocess mTCP

Figure 8: Comparison of connection accept throughputs.

that it only required replacing the socket and libevent calls

with the corresponding mTCP API. We modified 44/37

LoC out of 1,703/1,663 lines of server and client code,

respectively.

5 Evaluation

We answer three questions in this section:

1. Handling short TCP transactions: Does mTCP pro-

vide high-performance in handling short transactions?

In Section 5.1, we show that mTCP outperforms

MegaPipe and Linux (w/o SO_REUSEPORT) by 3x and

25x, respectively; mTCP connection establishment

alone is 13x and 5x faster than Linux and MegaPipe,

respectively.

2. Correctness: Does mTCP provide correctness with-

out introducing undesirable side-effects? Section 5.2

shows that mTCP provide fairness and does not intro-

duce long latency.

3. Application performance: Does mTCP benefit real

applications under realistic workloads? In Section 5.3,

we show that mTCP increases the performance of

various applications running realistic workload by 33%

to 320%.

Experiment Setup: We compare mTCP on Linux

2.6.32 with the TCP stack on the latest Linux kernel (ver-

sion 3.10.12, with and without SO_REUSEPORT) as well as

MegaPipe on Linux 3.1.3. We use a machine with one

8-core CPU (Intel Xeon E5-2690 @ 2.90 GHz), 32 GB

RAM, and an Intel 10 GbE NIC as a server, and use up

to 5 clients of the same type to saturate the server. While

mTCP itself does not depend on the kernel version, the

underlying PSIO library currently works on Linux 2.6.32.

For Linux, we use ixgbe-3.17.3 as the NIC driver.

5.1 Handling Short TCP Transactions

Message benchmark: We first show mTCP’s scalabil-

ity with a benchmark for a server sending a short message

as a response. All servers are multi-threaded with a single

listening port. Our workload generates a 64 byte message

per connection, unless otherwise specified. The perfor-

mance result is averaged over a one minute period in each

experiment. Figure 7 shows the performance as a function

of the number of CPU cores, the number of messages per

connection (MPC), and message size.

Figure 7(a) shows that mTCP scales almost lin-

early with the number of CPU cores. Linux without

SO_REUSEPORT (‘Linux’) shows poor scaling due to the

shared accept queue, and Linux with SO_REUSEPORT

(‘REUSEPORT’) scales but not linearly with the num-

ber of cores. At 8 cores, mTCP shows 25x, 5x, 3x higher

performance over Linux, REUSEPORT, and MegaPipe,

respectively.

Figure 7(b) shows that the mTCP’s benefit still holds

even when persistent connections are used. mTCP scales

well as the number of messages per connection (MPC)

increases, and it nearly saturates the 10G link from 64

MPC. However, the performance of the other systems

almost flattens out well below the link capacity. Even at

32 MPC, mTCP outperforms all others by a significant

margin (up to 2.7x), demonstrating mTCP’s effectiveness

in handling small packets.

Finally, Figure 7(c) shows the throughput by varying the

message size. mTCP’s performance improvement is more

noticeable with small messages, due to its fast processing

of small packets. However, both Linux servers fail to

saturate the 10 Gbps link for any message size. MegaPipe

saturates the link from 4KiB, and mTCP can saturate the

link from 1KiB messages.

Connection accept throughput: Figure 8 compares

connection throughputs of mTCP and Linux servers. The

9

Min Mean Max Stdev

Connect
Linux 0 36 63,164 511.6

mTCP 0 1 500 1.1

Processing
Linux 0 87 127,323 3,217

mTCP 1 13 2,323 9.7

Total
Linux 0 124 127,323 3,258

mTCP 9 14 2,348 9.8

Table 2: Distribution of response times (ms) for 64B HTTP

messages for 10 million requests (8K concurrency).

server is in a tight loop that simply accepts and closes

new connections. We close the connection by sending a

reset (RST) to prevent the connection from lingering in

the TIME WAIT state. To remove the bottleneck from

the shared fd space, we add ‘Multiprocess’ which is a

multi-process version of the REUSEPORT server. mTCP

shows 13x, 7.5x, 5x performance improvement over Linux,

REUSEPORT, and Multiprocess, respectively. Among the

Linux servers, the multi-process version scales the best

while other versions show a sudden performance drop at

multiple cores. This is due to the contention on the shared

accept queue as well as shared fd space. However, Mul-

tiprocess shows limited scaling, due to the lack of batch

processing and other inefficiencies in the kernel.

5.2 Fairness and Latency

Fairness: To verify the throughput fairness among

mTCP connections, we use ab to generate 8K concurrent

connections, each downloading a 10 MiB file to saturate a

10 Gbps link. On the server side, we run lighttpd with

mTCP and Linux TCP. We calculate Jain’s Fairness Index

with the (average) transfer rate of each connection. As the

value gets closer to 1.0, it shows better fairness. We find

that Linux and mTCP show 0.973 and 0.999, respectively.

mTCP effectively removes the long tail in the response

time distribution, whereas Linux often drops SYN packets

and enters a long timeout.

Latency: Since mTCP relies heavily on batching, one

might think it may introduce undesirably long latency.

Table 2 shows the latency breakdown when we run ab

with 8K concurrent connections against the 64B message

server. We generate 10 million requests in total. Linux

and mTCP versions respectively achieve 45K and 428K

transactions per second on average. As shown in the table,

mTCP slightly increases the minimum (9 ms vs. 0 ms)

and the median (13 ms vs. 3 ms) response times. However,

the mean and maximum response times are 8.8x and 54.2x

smaller than those of Linux, while handling 9.5x more

transactions/sec. In addition, the standard deviation of the

response times in mTCP is much smaller, implying that

mTCP produces more predictable response times, which

is becoming increasingly important for modern datacenter

applications [33].

0

0.5

1

1.5

2

2.5

3

3.5

4

0

1

2

3

4

5

Linux REUSEPORT MegaPipe mTCP

T
ra

n
sa

ct
io

n
s/

s
(x

 1
0

5
)

T
h

ro
u

g
h

p
u

t
(G

b
p

s) Throughput (Gbps)

Transactions/sec

Figure 9: Performance of four versions of lighttpd for static

file workload from SpecWeb2009.

0

2

4

6

8

1 2 4 6 8

T
ra

n
sa

ct
io

n
s/

se
c

(x
 1

0
5
)

Number of CPU Cores

Linux mTCP

Figure 10: Performance of ab as a function of the number of

cores. The file size is 64B and 8K concurrent connections are

used.

0

200

400

600

800

0

2

4

6

8

10

64B 256B 1KiB 2KiB 4KiB 8KiB

C
P

U
 U

sa
g
e

(%
)

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

File Size

Linux mTCP Linux CPU mTCP CPU

Figure 11: Performance of ab as a function of a file size. The

number of cores is set to 8 with 8K concurrent connections.

5.3 Application Performance

We now demonstrate the performance improvement for

existing applications under realistic workloads.

lighttpd and ab: To measure the performance of

lighttpd in a realistic setting, we use the static file work-

load extracted from SpecWeb2009 and compare the perfor-

mance of different lighttpd versions ported to use mTCP,

MegaPipe, and Linux with and without SO_REUSEPORT.

Figure 9 shows that mTCP improves the throughput of

lighttpd by 3.2x, 2.2x, 1.5x over Linux, REUSEPORT,

and MegaPipe, respectively. Even though the workload

fits into the memory, we find that heavy system calls for

VFS operations limit the performance.

We now show the performance of ab. Figure 10 shows

the performance of Linux-based and mTCP-based ab

when varying the number of CPU cores when fetching a

64 byte file over HTTP. The scalability of Linux is limited,

since it shares the fd space across multiple threads.

Figure 11 shows the performance of ab and the corre-

sponding CPU utilization when varying the file size from

64 bytes to 8 KiB. From 2 KiB, mTCP saturates the link.

10

26,762 28,208 27,725
31,710

36,505 37,739

0

10

20

30

40

4K 8K 16KS
S

L
 H

a
n

d
sh

a
k

es
/s

ec
 (

x
 1

0
3
)

Concurrent Flows

Linux mTCP

Figure 12: SSL handshake throughputs of SSLShader with a

different levels of concurrency.

At the same time, mTCP’s event-driven system saves CPU

cycles.

When testing mTCP with long-lived connections (not

shown in the figure), we find that it consumes more CPU

cycles than Linux. mTCP shows a CPU utilization of

294% compared to 80% for Linux-3.10.12 when serv-

ing 8,000 concurrent connections, each transferring a 100

MiB file. This is because we did not fully utilize modern

NIC features, such as TCP checksum offload, large seg-

mentation offload (LSO), and large receive offload (LRO).

However, we believe that mTCP can easily incorporate

these features in the future.

SSLShader: We benchmark the performance of the

SSLShader with one NVIDIA GPU (Geforce GTX 580)

on our server. We use mTCP-based lighttpd as a server

and ab as a client. On a separate machine, we run

SSLShader as a reverse proxy to handle HTTPS trans-

actions. SSLShader receives an HTTPS request from ab

and decrypts the request. It then fetches the content from

lighttpd in plaintext, encrypts the response using SSL,

and sends it back to the client. We use 1024-bit RSA,

128bit-AES, and HMAC-SHA1 as the cipher suite, which

is widely used in practice. To measure the performance

of SSL handshakes, we have ab to fetch 1-byte objects

through SSLShader while varying the number of concur-

rent connections.

Figure 12 shows that mTCP improves the performance

over the Linux version by 18% to 33%. As the concur-

rency increases, the benefit of mTCP grows, since mTCP

scales better with a large number of concurrent connec-

tions. Figure 13 indicates that mTCP also reduces the

response times compared to the Linux version. Especially,

mTCP reduces the tail in the response time distribution

over large concurrent connections with a smaller variance,

as is also shown in Section 5.2.

WebReplay: We demonstrate that mTCP improves the

performance of a real HTTP traffic replayer. We focus on

the server’s performance improvement because it performs

more interesting work than the client. To fully utilize the

server, we use four 10 Gbps ports and connect each port

to a client. The workload (HTTP requests) generated by

the clients is determined by the log captured at a cellular

51

76

66

99

0

20

40

60

80

100

5 50

C
D

F
 (

%
)

Response Time (ms)

mTCP (8K)

Linux (8K)

36

66

88

30

51

77

0

20

40

60

80

100

120

4K 8K 16K

R
es

p
o

n
se

 T
im

e
(m

s)

Concurrency

Linux mTCP

Figure 13: HTTPS response time distributions of SSLShader

on Linux and mTCP stacks. We use 8K concurrent connections

in the left graph, and mark median and 95th-percentile numbers.

of copies 1 2 3 4 5 6 7

Linux (ms) 27.8 29.0 45.8 1175.1 - - -

mTCP (ms) 0.5 0.9 2.6 8.1 17.5 37.1 79.8

Table 3: Averages of extra delays (in ms) from the original

response times when replaying n copies of the log concurrently.

of concurrent # of new connections Bandwidth

connections per second (Gbps)

Mean 23,869 14,425 2.28

Min 20,608 12,755 1.79

Max 25,734 15,440 3.48

Table 4: Log statistics for WebReplay.

backhaul link [45]. We replay the log for three minutes

at a peak time (at 11 pm on July 7, 2012) during the mea-

surement period. The total number of requests within the

timeframe is 2.8 million with the median and average con-

tent size as 1.7 KB and 40 KB. Table 4 summarizes the

workload that we replay. Unfortunately, we note that the

trace we replay does not simulate the original traffic per-

fectly since a longer log is required to effectively simulate

idle connections. Actually, the original traffic had as much

as 270K concurrent connections with more than 1 million

TCP connections created per minute. To simulate such a

load, we run multiple copies of the same log concurrently

for this experiment.

Table 3 compares the averages of extra delays from the

original response times when we replay n copies of the

log concurrently with Linux and mTCP-based WebRe-

player. We find that the Linux server works fine up to

the concurrent run of three copies, but the average extra

delay goes up beyond 1 second at four copies. In contrast,

mTCP server finishes up to seven copies while keeping

the average extra delay under 100 ms. The main cause for

the delay inflation in the Linux version is the increased

number of concurrent TCP transactions, which draws the

bottleneck in the TCP stack.

6 Related Work

We briefly discuss previous work related to mTCP.

System call and I/O batching: Frequent system calls

are often the performance bottleneck in busy servers.

11

FlexSC [40] identifies that CPU cache pollution can waste

more CPU cycles than the user/kernel mode switch itself.

They batch the system calls by having user and kernel

space share the syscall pages, which allows significant

performance improvement for event-driven servers [41].

MegaPipe employs socket system call batching in a sim-

ilar way, but it uses a standard system call interface to

communicate with the kernel [28].

Batching also has been applied to packet I/O to re-

duce the per-packet processing overhead. PacketShader

I/O engine [27] reads and writes packets in batches and

greatly improves the packet I/O performance, especially

for small packets. Packet I/O batching reduces the in-

terrupt, DMA, IOMMU lookup, and dynamic memory

management overheads. Similar approaches are found in

other high-performance packet I/O libraries [4, 7, 39].

In contrast, mTCP eliminates socket system calls by

running the TCP stack in the user level. Also, it enforces

batching from packet I/O and TCP processing up to user

applications. Unlike FlexSC and MegaPipe, batching in

mTCP is completely transparent without requiring kernel

or user code modification. Moreover, it performs batching

in both directions (e.g., packet TX and RX, application to

TCP and TCP to application).

Connection locality on multicore systems: TCP per-

formance can be further optimized on multiprocessors by

providing connection locality on the CPU cores [37]. By

handling all operations of same connection on the same

core, it can avoid inter-core contention and unnecessary

cache pollution. mTCP adopts the same idea, but applies

it to both flow- and packet-level processing.

User-level TCP stacks: There have been several at-

tempts to move the entire networking stack from the kernel

to the user level [22, 24, 25, 42]. These are mainly (1) to

ease the customizing and debugging of new network pro-

tocols or (2) to accelerate the performance of existing

protocols by tweaking some internal variables, such as the

TCP congestion control parameters. They focus mostly

on providing a flexible environment for user-level proto-

col development or for exposing some in-kernel variables

safely to the user level. In contrast, our focus is on build-

ing a user-level TCP stack that provides high scalability

on multicore systems.

Light-weight networking stacks: Some applications

avoid using TCP entirely for performance reasons. High

performance key-value systems, such as memcached [9],

Pilaf [35], and MICA [34], either use RDMA or UDP-

based protocols to avoid the overhead of TCP. However,

these solutions typically only apply to applications run-

ning inside a datacenter. Most user-facing applications

must still rely on TCP.

Multikernel: Many research efforts enhance operating

system scalability for multicore systems [19, 20, 44]. Bar-

relfish [19] and fos [44] separate the kernel resources for

each core by building an independent system that manages

per-core resources. For efficient inter-core communica-

tion, they use asynchronous message passing. Corey [20]

attempts to address the resource sharing problem on mul-

ticore systems by having the application explicitly declare

shared and local resources across multiple cores. It en-

forces the default policy of having private resources for a

specific core to minimize unnecessary contention. mTCP

borrows the concept of per-core resource management

from Barrelfish, but allows efficient sharing between ap-

plication and mTCP threads with lock-free data structures.

Microkernels: The microkernel approach bears simi-

larity with mTCP in that the operating system’s services

run within the user level [23, 30, 38]. Exokernel [23], for

example, provides a minimal kernel and low-level inter-

faces for accessing hardware while providing protection.

It exposes low-level hardware access directly to the user

level so that applications perform their own optimizations.

This is conceptually similar to mTCP’s packet I/O library

that directly accesses the NIC. mTCP, however, integrates

flow-level and packet-level event batch processing to amor-

tize the context switch overhead, which is often a critical

bottleneck for microkernels.

7 Conclusion

mTCP is a high-performance user-level TCP stack de-

signed for multicore systems. We find that the Linux

kernel still does not efficiently use the CPU cycles in pro-

cessing small packets despite recent improvements, and

this severely limits the scalability of handling short TCP

connections. mTCP unleashes the TCP stack from the ker-

nel and directly delivers the benefit of high-performance

packet I/O to the transport and application layer. The

key enabler is transparent and bi-directional batching of

packet- and flow-level events, which amortizes the con-

text switch overhead over a batch of events. In addition,

the use of lock-free data structures, cache-aware thread

placement, and efficient per-core resource management

contributes to mTCP’s performance. Finally, our evalu-

ation demonstrates that porting existing applications to

mTCP is trivial and mTCP improves the performance of

existing applications by up to 320%.

Acknowledgement

We would like to thank our shepherd George Porter and

anonymous reviewers from NSDI 2014 for their valu-

able comments. We also thank Sangjin Han for provid-

ing the MegaPipe source code, and Sunil Pedapudi and

Jaeheung Surh for proofreading the final version. This

research is supported by the National Research Founda-

tion of Korea (NRF) grant #2012R1A1A1015222 and

#2013R1A1A1076024.

12

References

[1] Facebook. https://www.facebook.com/.

[2] Google. https://www.google.com/.

[3] How long does it take to make a context switch?

http://blog.tsunanet.net/2010/11/how-

long-does-it-take-to-make-context.html.

[4] Intel DPDK: Data Plane Development Kit. http:

//dpdk.org/.

[5] Intel VMDq Technology. http://www.intel.com/

content/dam/www/public/us/en/documents/

white-papers/vmdq-technology-paper.pdf.

[6] Libevent. http://libevent.org/.

[7] Libzero for DNA: Zero-copy flexible packet pro-

cessing on top of DNA. http://www.ntop.org/

products/pf_ring/libzero-for-dna/.

[8] Lighttpd. http://www.lighttpd.net/.

[9] memcached - a distributed memory object caching

system. http://memcached.org.

[10] The NewReno modification to TCP’s fast recovery

algorithm. http://www.ietf.org/rfc/rfc2582.

txt.

[11] The open group base specifications issue 6, IEEE

Std 1003.1. http://pubs.opengroup.org/

onlinepubs/007904975/basedefs/pthread.h.

html.

[12] Packet I/O Engine. http://shader.kaist.edu/

packetshader/io_engine/.

[13] PCI-SIG SR-IOV Primer: An Introduction to

SR-IOV Technology. http://www.intel.com/

content/dam/doc/application-note/pci-

sig-sr-iov-primer-sr-iov-technology-

paper.pdf.

[14] The SO REUSEPORT socket option. https://lwn.

net/Articles/542629/.

[15] The Apache HTTP Server Project. http://httpd.

apache.org/.

[16] The Apache Portable Runtime Project. http://apr.

apache.org/.

[17] Transmission control protocol. http://www.ietf.

org/rfc/rfc793.txt.

[18] Twitter. https://twitter.com/.

[19] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and

A. Singhania. The multikernel: a new OS architec-

ture for scalable multicore systems. In Proceedings

of the ACM SIGOPS symposium on Operating sys-

tems principles (SOSP), 2009.

[20] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,

F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,

Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operat-

ing system for many cores. In Proceedings of the

USENIX conference on Operating systems design

and implementation (OSDI), 2008.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,

K. Fall, G. Iannaccone, A. Knies, M. Manesh, and

S. Ratnasamy. RouteBricks: exploiting parallelism

to scale software routers. In Proceedings of the ACM

SIGOPS Symposium on Operating Systems Princi-

ples (SOSP), 2009.

[22] D. Ely, S. Savage, and D. Wetherall. Alpine: a user-

level infrastructure for network protocol develop-

ment. In Proceedings of the conference on USENIX

Symposium on Internet Technologies and Systems

(USIT), 2001.

[23] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.

Exokernel: an operating system architecture for

application-level resource management. In Proceed-

ings of the ACM symposium on Operating systems

principles (SOSP), 1995.

[24] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.

Briceño, R. Hunt, and T. Pinckney. Fast and flexible

application-level networking on exokernel systems.

ACM Transactions on Computer Systems (TOCS),

20(1):49–83, Feb. 2002.

[25] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Deploying safe user-level network

services with ictcp. In Proceedings of the confer-

ence on Symposium on Opearting Systems Design &

Implementation (OSDI), 2004.

[26] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-

friendly high-speed TCP variant. SIGOPS Oper. Syst.

Rev., 42(5):64–74, July 2008.

[27] S. Han, K. Jang, K. Park, and S. B. Moon. Pack-

etShader: a GPU-accelerated software router. In

Proceedings of the ACM Special Interest Group on

Data Communication (SIGCOMM), 2010.

[28] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.

MegaPipe: a new programming interface for scal-

able network I/O. In Proceedings of the USENIX

13

conference on Operating Systems Design and Imple-

mentation (OSDI), 2012.

[29] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg,

and J. Wolter. The performance of µ-kernel-based

systems. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP), 1997.

[30] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and

S. Schönberg. The performance of µ-kernel-based

systems. SIGOPS Oper. Syst. Rev., 31(5):66–77, Oct.

1997.

[31] S. Ihm and V. S. Pai. Towards understanding mod-

ern web traffic. In Proceedings of the ACM SIG-

COMM conference on Internet measurement confer-

ence (IMC), 2011.

[32] K. Jang, S. Han, S. Han, S. Moon, and K. Park.

SSLShader: cheap SSL acceleration with commod-

ity processors. In Proceedings of the USENIX con-

ference on Networked systems design and implemen-

tation (NSDI), 2011.

[33] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,

and A. Vahdat. Chronos: Predictable Low Latency

for Data Center Applications. In Proceedings of

the Third ACM Symposium on Cloud Computing

(SOCC), 2012.

[34] H. Lim, D. Han, D. G. Andersen, and M. Kamin-

sky. MICA: A Holistic Approach to Fast In-Memory

Key-Value Storage. In Proceedings of the USENIX

Symposium on Networked Systems Design and Im-

plementation (NSDI), 2014.

[35] C. Mitchell, Y. Geng, and J. Li. Using one-sided

RDMA reads to build a fast, CPU-efficient key-value

store. In Proceedings of the USENIX Annual Techni-

cal Conference (ATC), 2013.

[36] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, et al. Scaling memcache at Facebook. In Pro-

ceedings of the USENIX conference on Networked

Systems Design and Implementation (NSDI), 2013.

[37] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Mor-

ris. Improving network connection locality on multi-

core systems. In Proceedings of the ACM european

conference on Computer Systems (EuroSys), 2012.

[38] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron,

A. Forin, D. Golub, and M. Jones. Mach: A system

software kernel. In Proceedings of the Computer So-

ciety International Conference (COMPCON), 1989.

[39] L. Rizzo. netmap: a novel framework for fast packet

I/O. In Proceedings of the USENIX conference on

Annual Technical Conference (ATC), 2012.

[40] L. Soares and M. Stumm. FlexSC: flexible system

call scheduling with exception-less system calls. In

Proceedings of the USENIX conference on Operating

systems design and implementation (OSDI), 2010.

[41] L. Soares and M. Stumm. Exception-less system

calls for event-driven servers. In Proceedings of the

USENIX conference on USENIX annual technical

conference (ATC), 2011.

[42] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D.

Lazowska. Implementing network protocols at

user level. IEEE/ACM Transactions on Networking

(TON), 1(5):554–565, Oct. 1993.

[43] V. Vasudevan, D. G. Andersen, and M. Kaminsky.

The case for VOS: the vector operating system. In

Proceedings of the USENIX conference on Hot topics

in operating systems (HotOS), 2011.

[44] D. Wentzlaff and A. Agarwal. Factored operating

systems (fos): the case for a scalable operating sys-

tem for multicores. ACM SIGOPS Operating Sys-

tems Review, 43(2):76–85, Apr. 2009.

[45] S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park.

Comparison of caching strategies in modern cellu-

lar backhaul networks. In Proceeding of the annual

international conference on Mobile systems, appli-

cations, and services (MobiSys), 2013.

14

