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Abstract: This scientific paper aims to increase the voltage source converter (VSC) control efficiency
in a multi-terminal high voltage direct current (MTDC) network during dynamic operations. In
the proposed study, the Mayfly algorithm (MA) is used to modify the control parameters of VSC
stations. Traditional strategies that modify VSC control settings using approximate linear models
fail to produce optimal results because VSCs are nonlinear characteristics of the MTDC system.
Particle swarm optimization (PSO) may produce optimal outcomes, but it is prone to becoming
stuck in a local optimum. To modify the proportional-integral (P.I.) control parameters of the VSC
station, the Mayfly algorithm, a modified form of PSO, is used. The suggested algorithm’s objective
function simultaneously optimizes both the outer and inner control layers. A four-terminal MTDC
test system is developed in PSCAD/EMTDC to assess the benefits of the proposed algorithm. For
VSCs, a comparison of classical, PSO, and proposed MA-based tuned parameters is carried out. The
integral of time multiplied by absolute error (ITAE) criterion is used to compare the performance of
classical, PSO, and a proposed algorithm for VSC controller parameters/gains. With an ITAE value
of 6.8521 × 10−6, the MA-based proposed algorithm computes the optimal values and outperforms
its predecessor to adjust the VSCs controller gains. For (i) wind farm power variation, (ii) AC grid
load demand variation, and (iii) ultimate permanent VSC disconnection, steady-state and dynamic
performances are evaluated. According to the results, the proposed algorithm based MTDC system
performs well during transients.

Keywords: voltage source converter (VSC); mayfly algorithm (MA); proportional–integral (P.I.)
controller; multi-objective optimization; outer control layers (OCL); inner control layers (ICC)

1. Introduction

Recent research reveals that multi-terminal high voltage direct current systems have
emerged as a favorable solution to fulfill future network demands. Besides their significant
benefits, MTDC also appears with several promising applications [1–3]. These include
incorporating the proposed European super grid [4], thus integrating the off-shore wind en-
ergy into the mainland AC network [5] and enhancing the probability of the interconnection
of Mediterranean solar power and North Sea wind farms with Scandinavian hydro-power
plants. The MTDC system prevents capacitance currents in comparison with large AC
cable transmission.

The MTDC grid can offer a flexible and robust controlled framework in the immediate
future [6]. This could force the power electronics and power system corporations to
formulate control techniques that enhance system security, efficiency, and reliability [7].
With the recent progress in the voltage source converter (VSC)-MTDC topology, the viability
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of connecting multiple converter stations of High Voltage DC systems is achievable with
reasonable control [8]. The VSC-HVDC station emerges as an appropriate MTDC grid
structure to connect massive amounts of renewable energy sources, such as photovoltaics
or wind-power farms [9–13].

The vector current control (VCC) method is applied to control the VSC-HVDC station.
It contains two control loops: an outer control layer (OCL) and inner current control (ICC)
layer [14]. Based on the associated AC grid’s demands, the outer layer attains its target
by regulating the reactive or active power, AC or DC voltage control, to VSCs. At the
same time, ICC controls the q- and d-axis currents via a decoupled control. Both layers
have a common significant element: an integral and proportional controller. The outer
control layer regulates the power-sharing within the DC grid via voltage droop control and
DC-link voltage in a precise range [7]. After analyzing the interrelating control layers of the
MTDC network, the VSC-terminal was revealed as a complex multi-output and multi-input
control system [15]; this complex architecture has various variables that demand robust and
simple control [16]. Therefore, the associated P.I. parameters should be optimally adjusted
and tuned, enhancing the transient and steady-state performance. However, tuning the P.I.
controllers’ gains for the non-linear system is challenging [17]. Classical tuning algorithms
encounter complications in determining the optimized P.I. parameters [18]. Traditional
algorithms tune the P.I. parameters using approximate linear models, while the VSCs are
non-linear and do not deliver good results [19,20].

Various computational methods have been formulated to treat the non-linearities
in the DC grids [21]. However, using these models, mis-convergence under dynamic
behavior is still a significant issue. A genetic algorithm (GA) proposed computational
intelligence technology to enhance the system response by tuning the controller’s P.I.
parameters [22,23]. Hence, a heuristic approach is better at treating the system’s non-
linearities. However, GA has to conduct three operations in each iteration: crossover,
mutation, and selection [24]. Thus, GA shows slow convergence towards the solution,
and its performance is restricted. Therefore, a particle swarm optimization (PSO), a meta-
heuristic approach, was proposed to meet the aforementioned shortcomings [25–27]. In
Reference [28], PSO has been implemented for the MTDC grid, showing a better perfor-
mance to ensure robustness against MTDC grid operating uncertainties. However, the
research by Ref. [28] reveals that PSO requires modifications to escape from a local optimum,
particularly for large dimension problems.

Therefore, a new optimization technique called the MA has been developed in re-
cent years, which has presented better convergence performance [29]. Tsafarakis and
Zervoudakis proposed this algorithm, and it is the latest technique used to resolve the
non-linear optimization problem [30]. MA is a hybrid approach containing the benefits
of evolutionary and swarms’ intelligent algorithms, such as GA [22], PSO [26], and fire-
fly algorithms (FA). PSO requires modification to escape from a local optimum for large
dimension problems [29,31]. Inspired by the flight behavior and mayflies’ mating proce-
dure, the proposed technique offers a practical yet straightforward solution and swarm
intelligence [30]. The necessary amendments are performed in MA to improve the algo-
rithm performance across large- and small-scale dimensions. Hence, it was found suitable
for a complex framework.

The VSC controller has a complex framework, and tuning controller parameters require
a robust yet straightforward solution [32,33]. With this in mind, the proposed research
proposes and examines the multi-objective MA technique to optimize the VSC control
framework [34,35]. However, compared to the existing literature, the multi-objective MA
technique has not been applied to optimize multiple control settings simultaneously in
terms of an ITEA, which helps to enhance the VSC performance within an MTDC grid.

Since a meshed MTDC system is the way forward in the integrated energy system,
the proposed algorithm can also help to improve the control framework for remote yet
massive renewable energy resources, such as off-shore grids (i.e., wind farms), with better
convergence performance. A four-terminal, VSC-based MTDC test system is designed
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in PSCAD/EMTDC, with two off-shore grids to conduct the dynamic simulations and
evaluate the proposed architecture performance. In comparison to Refs. [25,26,36], the
proposed MA technique also uses the MTDC system in-depth, but apart from a conventional
solution, we also compare it with state of the unconventional art techniques. Furthermore,
the design process is automated, requiring relatively little input from the designer, reducing
the reliance on the designer’s experience.

Under the circumstances above, the main contribution of this article is:

• The optimized P.I. controller parameters are achieved using multi-objective MA, em-
ployed in the outer and inner control layers;

• The proposed architecture addresses three control problems simultaneously: optimiza-
tion, steady-state stability, and controller robustness under dynamic operations;

• Apart from numeric comparisons in terms of ITEA, MA-based optimized parameters
were compared with classical-P.I. and PSO-P.I., and tested for dynamic and steady-state
stability performances under the following conditions:

(1) Wind power variation;
(2) AC grid load demand variation;
(3) Ultimate permanent VSC disconnection.

• The proposed control architecture and a robust DC fault protection scheme can pave
the path to an MTDC system based on VSCs in the future.

The rest of the paper is laid out as follows: the employed test grid’s structure and
mathematical modeling are presented in Sections 2 and 3. The in-depth controller evalua-
tion is offered in Section 4, and an optimization theory is presented in Section 5. Section 6
deals with the implementation and execution. Section 7 is allocated for multi-objective
optimization, followed by Section 8 with the results and simulations. Finally, Section 9
contains the conclusion.

2. Test System under Study

A four-terminal, VSC-based MTDC test grid is presented in Figure 1. Transmission
lines are linked through positive and negative DC-link voltage. The DC inductor (100 mH)
is connected at each end of the transmission line to exhibit a practical DC scheme. Each
transmission line is 100 km long, and the DC test grid rating is presented in Table 1.
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Figure 1. A four-terminal, VSC-based MTDC test grid.

Since the test system under study has a VSC-based control framework, the general
implementation of the proposed algorithm for the VSC station is shown in Figure 2. The
proposed algorithm aims to improve the transient and steady-state response with the help
of the P.I. controller’s parameter regulation. Meanwhile, a simple steady-space state model
of the MTDC grid helps to describe the system’s dynamic response. This can help in
choosing the optimal limits and the correct parameters. For state-space analysis, simplified
circuit modeling is required. The circuit modeling explained in the following sub-section
helps in the state-space analysis for the proposed test system.
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Table 1. Parameters of VSC-based MTDC Test Grid.

Parameters Impedance Nominal Voltage (kV) Values

AC Network 0.002 + j0.01 p.u 220 1000 MW
Wind Farm 0.001 + j0.015 p.u 33 1000 MW

DC Link
L = 0.50 × 10−3 H/km
R = 0.10 × 10−3 Ω/km
C = 2.31 × 10−7 F/km

±250 100 km DC link b/w
all VSC Terminals

DC capacitor Two series capacitors of
1400 uF ±250
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Figure 2. Optimization of the VSC-based control framework using the proposed algorithm.

Equivalent Circuit Model

Nodes and branches are connected to obtain an equivalent model. A four-terminal
MTDC grid with two off-shore wind farms and two on-shore grids is presented in Figure 3.

The variable constraints shown in Figure 3 are:

• R1 and R3 represents branch resistance on-grid transmission lines.
• L1, L2, and L3 represents branch inductances on-grid transmission lines.
• IL1, IL2, IL3, IC1, IC2, ICm+p+1 and ICm+p+2 are currents flowing through different induc-

tors and capacitors.
• C1, C2, Cm+n+1 and Cm+n+2 represents the equivalent capacitances of the capacitors,

which are connected in parallel to the grid.
• E1, E2, Em+n+1 and Em+n+2 represents the voltages across the capacitors, which are

parallel to the current sources.
• P1, P2, Pm+n+1 and Pm+n+2 represents the power supplied by the different converters

which are connected to the respective grids.
• I1, I2, Im+n+1 and Im+n+2 represents currents from current sources within the HVDC grid.
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3. State-Space Representation of Four Terminal MTDC Test Systems

The dynamic performance of the MTDC grid can be described using a set of first-order
differential equations. These differential equations are acknowledged as the representation
of state-space and are represented in Equations (1)–(3) [11,36].

The state-space model representing the dynamic is:

dx1

dt
= Ax + Bww + Buu, (1)

where x denotes state vector, dx1
dt represents derivative of the state vector at state point x1,

u indicates vector of a controlled input, w represents a vector of a non-controlled input.
Bu represents controlled input values in a matrix, Bw represents non-controlled input in a
matrix. A represents a state of matrix, Bu represents controlled input values in a matrix,
Bw represents non-controlled input in a matrix. The non-controlled output equation is:

z = Czx, (2)

where z represents a non-controlled output vector. Cz represents controlled output values
in a matrix. The controlled output equation is:

y = Cyy, (3)

where y represents controlled output vector and Cy represents controlled output vector
in a matrix. The equivalent circuit presented in Figure 3 is for the test model illustrated
in Figure 1. Thus, applying a first-order differential equation to the four-terminal MTDC
system results in Equations (4)–(14) [11,36].

dV1

dt
=

1
C1

IC1 , (4)

dV2

dt
=

1
C2

IC2 , (5)

dV3

dt
=

1
C3

IC3 , (6)

dV4

dt
=

1
C4

IC4 . (7)

V1 and V2 represent the voltages that are input to the controller. V3 and V4 represent the
reference voltages for V1 and V2, which are to be maintained. Equations (4)–(7) represent
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the derivative for these voltages. IC1 is the current at capacitor C1. IC2 is the current at
capacitor C2. IC3 is the current at capacitor C3.

dIL1

dt
=

1
L1

(
−R1 IL1 + V1 −V3

)
, (8)

dIL2

dt
=

1
L2

(
−R2 IL2 + V1 −V2

)
, (9)

dIL3

dt
=

1
L3

(
−R3 IL3 + V2 −V4

)
, (10)

IC1 = I1 − IL1 − IL2 , (11)

IC2 = I2 − IL3 + IL2 , (12)

IC3 = −I3 + IL1 , (13)

IC4 = −I4 + IL3 . (14)

For further variables information, please refer to the text under Figure 3. Equation (15)
shows enough variables to define the system’s state, including four capacitors and three inductors.

x =
[
VC1 VC2 VC3 VC4 IL1 IL2 IL3

]T . (15)

The input and output of the state-space model are defined in the following matrices.

w = [I1 I2]
T , u = [I3 I4]

T , z = [V1V2]
T , y = [V3V4]

T . (16)

Since wind farms inject all the available active power to the grid sides, a rush of
current is expected, so the droop control at the mainland VSC station helps to control and
stabilize the DC voltage. In Equation (16), w is a vector of currents and u is the control input
containing vector currents of grid sides 1 and 2, respectively. The matrices for state-space
representation are expressed in Equations (17)–(21).

A =



0 0 0 0 −1/C1 −1/C1 0
0 0 0 0 0 1/C2 −1/C2
0 0 0 0 1/C3 0 0
0 0 0 0 0 0 1/C4

1/L1 0 −1/L1 0 −R1/L1 0 0
1/L2 −1/L2 0 0 0 −R2/L2 0

0 1/L3 0 −1/L3 0 0 −R3/L3


, (17)

Bw =



1/C1 0
0 1/C2
0 0
0 0
0 0
0 0
0 0


, (18)

Bu =



0 0
0 0

−1/C3 0
0 −1/C4
0 0
0 0
0 0


, (19)
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Cz =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
, (20)

Cy =

[
0 0 1 0 0 0 0
0 0 0 1 0 0 0

]
. (21)

4. Control Structure Based on State-Space Analysis

This section describes the methodology used to optimize the VSC station’s control pa-
rameters using state-space analysis. The analysis in the previous section helps to choose the
proper control parametric values, which can improve the system’s dynamic response. The
subsequent section studied the VSC control structure and gave the optimized parametric
values, using state-space analysis to confirm the results.

4.1. Control Structure of VSC Based HVDC Grid

The control diagram shown in Figure 4 represent the controller for the off-shore wind
farms (wind farm 1 and wind farm 2). A controller uses a P.I. controller to fix the voltages
at 50 Hz. Then, the P.I. controller minimizes the error, i.e., the difference between actual
and reference RMS voltages at the terminals of wind farms, represented in Equation (22).

Error = VWF −V∗WF. (22)

VWF is the actual RMS voltage, and VWF
* is the reference RMS voltage.
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The control diagram illustrated in Figure 5 presents the improved proportional droop
control, which allows for the coordination of DC voltage between grid side 1 and grid
side 2. Vg,ref, and Pref are the DC reference voltage and active power per unit. ‘K’ shows
the slope of droop characteristics, and the DC voltage at the grid side converter, with zero
power, is represented by Vg per unit.

The control scheme in Figure 6 shows the control structure of the VSC-based multi-
terminal HVDC system. The differential quadrature (d-q) method regulates the active or DC
voltage or AC voltage, or reactive power. The d-components are in charge of DC voltage or
active power control, whereas the q-components are responsible for AC voltage or reactive
power regulation. Meanwhile, the parametric values of the three-phase line, such as current
and voltage, convert into two dimensions, rotating the d-q referenced frame for simplicity
by applying the Clark-transformation equation. Further, three-phase line parametric values
are synchronized via a phase-locked loop (PLL) for abc to d-q transformation. During
transformation, the outer controller generates referenced currents for the inner controller,
whereas the inner current controller defines the VSC’s reference voltage for the d-q frame.
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In doing so, the compensating term Lwid is used to decouple the d and q-axis components.
These two-axis components are then fed into the d-q to abc transformation platform to
perform inverse park transformation. Finally, the resulting PWM is provided to MMC at
the grid side.
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4.1.1. Outer Control Layer

Considering the inclusive dq frame, the outer controller controls the AC and DC
voltage, reactive and active powers at the point of common coupling (PCC). The q-channel
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controls the AC voltage or reactive power, whereas the d-channel controls the DC voltage
or active power, as presented in Figure 6 and expressed as:

P = vdid + vqiq, (23)

Q = vqid − vdiq, (24)

where id represent the d-axis current and iq represent the q-axis current.
The AC grid phasor voltage is synchronized with PLL, the d-axis of current vector

control. Therefore, vq = 0. Note that the d-axis component of the common bus voltage is
denoted by vd, while the q-axis component of the common bus voltage is represented by vq.

P = vdid, (25)

Q = −vdiq. (26)

The d–q axis currents regulate the reactive and active power using Equations (25) and (26).
The AC voltage controller injects the proper amount of reactive power to control the
AC voltage magnitude at the PCC, such that it resembles the given reference voltage.
Likewise, the q-axis current regulates the AC voltage. The DC-link voltage is maintained at
a predetermined reference value by exchanging an appropriate active power with the AC
system. Thus, the d-channel current regulates the DC-link Voltage.

4.1.2. Inner Current Control

After receiving reference currents values, the inner current controller is accountable
for processing these values and maintaining the reference voltage at the VSC output side.
The relationship between the voltage at the VSC side (vg) and the voltage at PCC (ec) are
presented as:

ec − vg = R× ic + L× dic

dt
. (27)

L and R represent the inductance and resistance between the VSC station and the PCC,
while the AC current (ic) is towards the VSC converter. By taking Park transformation:

ed − vd = R× id −ωL× iq + L× did
dt

, (28)

eq − vq = R× iq −ωL× id + L×
diq
dt

, (29)

ω is the AC system’s angular frequency at the PCC; the layout of the ICC control is
presented in Figure 7. The reference signals (vd,ref and vq,ref) are transformed back to the
abc-frame to generate IGBTs switching.
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5. P.I. Controller Optimization Based on Mayfly Algorithm

The performance of a VSC-based MTDC system depends on the precise tuning of the
P.I. parameters. Thus, the optimal tuning of P.I. controllers is of prime importance. This
paper proposes a MA meta-heuristic technique to optimize the P.I. controller’s parameters.
MA offers benefits, such as a fast convergence and low susceptibility to becoming stuck
at a locally optimal point. MA finds an application in engineering optimization problems,
such as an optimal feature selection to reduce the training time for machine learning
algorithms [29]. The Mayfly algorithm is explained below.

5.1. Mayfly Optimization Algorithm

Mayflies are insects associated with Ephemeroptera, a portion of a cluster of insects
recognized as Palaeoptera. These insects primarily emerge during May in the U.K. and
are identified as Mayfly. Juvenile insects devote various years developing as marine
nymphs until they are ready to emerge as adult Mayflies at the water’s surface. Most male
adults perform a bridal dance that includes specific down and up movements, creating a
pattern by gathering swarms above the water surface to fascinate the female mayflies. The
mating process starts when female mayflies attract these swarms. The mating continues
for only a few seconds; afterward, they lay eggs on the water surface, and the cycle
lasts. A more comprehensive explanation of the above procedure is presented in the
work of Guo et al. [34] and Majumdar et al. [35]. The MA mechanism is presented in a
subsequent section.

5.1.1. Movement of Male Mayflies

The male Mayfly’s position is modified as;

XT+1
i = XT

i + VT+1
i , (30)

where XT
i represents the current position of male Mayfly, and the updated position, XT+1

i is
achieved by adding the velocity, VT+1

i at the current position. The male Mayflies develop a
good speed a few meters above the water surface. The male Mayfly’s velocity is updated as:

VT+1
kj = G ∗VT

kj + b1 ∗ e−βr2
p ∗
(

pbestkj − XT
kj

)
+ b2 ∗ eβr2

G ∗ (Gbestj − XT
kj). (31)

Here, VT
kj is the kth Mayfly velocity in j dimension at time T, XT

kj shows the same
Mayfly’s position at time T. β indicates a static visibility constant used to restrict the
visibility of a Mayfly to others. b1 and b2 are a positive fascination constant that measures the
social and cognitive constituents’ participation, respectively. G represents the gravitational
coefficient. pbestk is the leading optimal position that a specific kth Mayfly visited, and
Gbestj is the jth constituent of the best male Mayfly’s position. Lastly, rg is the Cartesian
distance between Gbest and Xk, while rp is the Cartesian distance between pbestk and Xk.
pbestk is updated as:

pbestk =

{
XT+1

k
i f f it

(
XT+1

k

)
< f it (pbestk)

, (32)

where f it
(
XT

k
)

offers the fitness value of the position that examines the solution’s equality. Hence:

|Xk − xk| =

√√√√ n

∑
j=1

(
Xkj − xkj

)2
, (33)

where xk denotes pbestk or Gbest Xkj indicates the jth element’s position of kth Mayfly.
Note that the best Mayflies must do a nuptial dance at a specific time, which offers a
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stochastic component to the algorithm. The mathematical illustration of this nuptial dance
is as follows:

VT+1
kj = G ∗VT

kj + D ∗ r. (34)

D is the nuptial dance coefficient, r is an arbitrary value ∈ (−1, 1). This coefficient
gradually decreases as follows: Ditr = D0 ∗ δitr. itr shows the current number of iterations,
D0 is the starting value of the nuptial dance coefficient, and δ is an arbitrary value ∈ (0, 1).

5.1.2. Movement of Female Mayflies

The male Mayflies attract the female Mayflies for mating. The female Mayfly’s position
is modified as:

YT+1
i = YT

i + VT+1
i , (35)

where YT
i indicates the present position of female Matfly at time T and the updated position,

YT+1
i , is achieved by adding the velocity, VT+1

i with the current position. The fascination
procedure amid female and male Mayflies depends on the quality of fitness function: that is,
the best male attracts the best female Mayflies. The female Mayfly’s velocity is updated as:

VT+1
kj =

G ∗VT
kj + b2 ∗ e−βr2

m f ∗
(

XT
kj −YT

kj

)
i f f it (Yk) > f it (Xk)

G ∗VT
kj + f L ∗ r else i f f it (Yk) ≤ f it(Xk)

(36)

In Equation (36), YT
kj is the kth female Mayfly’s position in j dimension at time t, VT

kj is

the jth element of the kth female Mayfly’s velocity, XT
kj is the jth component of kth male

Mayfly’s position at time t. G is the previously defined gravity coefficient in (31). β and b2
are the formerly defined visibility coefficient and fascination constant, respectively. rm f is
the Cartesian distance between female and male Mayflies expressed in Equation (33). r is
an arbitrary value ∈ (−1, 1), and Fl is the random walk coefficient at the moment when
the female is not fascinated by a male Mayfly, Flitr = Fl0 ∗ δitr.

5.1.3. Mating of Mayflies

The crossover maneuver indicates the mating operation amid two Mayflies. This
is achieved by choosing a male Mayfly and then a female Mayfly based on their fitness
function—the best male breeds with the best female. Two offspring are generated because
of this crossover, given as:

o f f spring1 = (1− uo ∗ f emale) + uo ∗male, (37)

o f f spring2 = (1− uo ∗male) + uo ∗ f emale. (38)

A female is the female parent Mayfly, and the male is the male parent and uo is the
arbitrary value between 1 and 0. The offspring’s initial velocities are fixed as zero.

5.1.4. Mayfly’s Mutation

The mutation of newly produced offspring enhances the exploration ability of the
algorithm. A typically dispersed varying number is added to the variable of offspring:

o f f spring′m = o f f springm + q. (39)

where q is the random value of the normal distribution.
The block diagram of the MA is presented in Figure 8. The MA parameters are

initialized in the first step, containing both female and male Mayflies’ populations and
velocities. These parameters are interrelated to the ambiguous constraint of a given problem.
The particle performance is evaluated under the initially generated position by examining
the performance index. In this case, the performance index is based on the integral time
absolute error (ITAE) of the parametric inputs chosen for the inner and outer controller.
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While optimizing, the position is updated after each iteration, and the stopping criterion is
based on the given iteration index, which is 10 in this case.
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tion, the proposed algorithm’s parameters are tabulated in Table 2.
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Table 2. MA parameters.

Parameters Values

The size of the population 20.0
Max number of iterations 10.0

The relative weightage for fitness value (γβ) 0.80
The positive-attraction constant (b1 and b2) 3.0, 3.50

Co-efficient (β) 0.10
Gravitational co-efficient (G) 0.980

Crossover random values 0.950
Acceptance rate 0.80

Range and rate of pitch adjustment 2.0 and 0.3

6. Multi-Objective Optimization of VSCs Using MA

The proposed MA algorithm can formulate a multi-objective optimization function to
optimize the P.I.-controller parameters of the VSC station. The VSC essential control loops
OCL and ICC are optimally tuned in a parallel application.

6.1. ICC Tuning Using MA

The core component of the VSCs controller is the inner current control layer. The
MA-based multi-objective function is crucial to improving the P.I. control parameters for
optimal gains. The schematic diagram of the MA scheme is shown in Figure 10. The
characterized ICC objective function is formulated as:

Minimize : OICC =

T∫
0

t.
∣∣∣id − id,re f

∣∣∣dt. (40)
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6.2. OCL Tuning Using MA

The OCL control parameters are optimally tuned in parallel with the ICC control
parameters in a multi-objective function. The schematic diagram of the proposed MA
algorithm for the OCL is illustrated in Figure 11. The characterized objective function is
formulated as follows:

Minimize : OOCL =

T∫
0

t.
∣∣∣P− Pre f

∣∣∣dt. (41)
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7. Execution of the Multi-Objective Function

The multi-objective function (OBJ-FN) helps to minimize the simultaneous multi-
objective problems. This research article aims to achieve a fast response from the MTDC
system under dynamic conditions by optimizing the multi-objective function. Primarily,
fundamental constrained problems are individually optimized, and afterward, the best
compound solution is obtained by an active set methodology. Secondarily, a weighted
sum strategy is employed with the MA technique for parallel tuning of the OCL and ICC
controllers’ corresponding objective functions. Figure 12 shows the schematic diagram
of this optimized procedure. The selection criteria for weights are user-defined, and an
autonomous generated set of values [37]. In the weighted sum approach, multi-objective
problems are assumed as a compound objective function that can be expressed as:

OBJ − FN = ∑
m=1

wmFm(x) m = 1, 2, (42)

where wm indicates non-zero weight values.
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The optimization aim of the multi-objective problem is obtained with the minimization
of Equation (42). The purpose of this is to deliver a composition comprising two distinct
objective functions: Equations (40) and (41). The compromised solution is determined by
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each objective function’s weight, while the weight selection describes each component’s
importance in Equation (43). Therefore, the objective function may be re-expressed as:

OBJ − FN = w1OICC + w2OOCL. (43)

The weights of w1 and w2 are allocated and interrelated as:

w2 = 1− w1.

w1 ranges 0→1.

Constraints for Optimization

A conventional technique is based on classical tuning [26,38]. The classical tuning
approach for the inner controller is based on the following two points:

1. The closed-loop bandwidth of the inner-controller should be 1/5 times less than the
switching angular frequency;

2. The inner-controller should be at least 10 times faster than the outer-controller to
attain an oscillatory free response.

Therefore, the P.I. parameters of the inner controller are selected based on the technique
of [26]. Meanwhile, similar steps are adopted to tune the outer controller. This is based
on the fact that the inner controller should be 10 times faster than the external controller.
Based on the above limitation provided for the P.I. controller parameters, the mathematical
constraints for the optimization problem are expressed as follows:

At first, the kp and ki constraint for the inner current controller is expressed as:

kp ≤ αICLp.u, (44)

ki ≤ αICRp.u, (45)

where αIC denotes the closed-loop bandwidth for the ICC. Meanwhile, the switching is set
to 2 kHz in this work. This is illustrated as:

αIC ≤
2× 2× π

5
=

4× π

5
= 2.5k rad/s. (46)

Thus, for the outer current controller (OCC), we have:

αOC ≤
1
10

= 0.1αIC. (47)

Further, based on the study proposed in [38], we have derived the kp and ki constraint
for the OCC as:

kp ≤ αOCCp.u, (48)

ki ≤ α2
OCCp.u, (49)

where αOC denotes closed-loop bandwidth for the OCL. The proposed MA algorithm is
executed and implemented in the subsequent section following the constraint modeling.

8. Simulation Results

The proposed MA algorithm aims to optimize the time response of the grid parameters
under dynamic scenarios. First, input features were extracted multiple times in PSCAD,
with each simulation having a runtime of 8 s. Second, input features were fed into the
proposed algorithm to obtain optimized results to assess the validity and flexibility. Ac-
cordingly, the performance index of the proposed algorithm is shown in Figure 13. As
the number of iterations increased, the algorithm evolved towards minimization, which
provided optimal values for the inner and outer loops. The optimized control parame-
ters for the inner and outer controllers are shown in Table 3. Under the notion between
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Equations (44) and (49), the obtained conventional control parameters are presented in
Table 4. Meanwhile, the entire process was implemented on a personal computer with
specific features: an Intel-Core i5 processor with a speed of 3.2 G-Hz. Next, different
scenarios were generated in the test grid to address the proposed algorithm’s effectiveness
against conventional and non-conventional optimal techniques to assess the performance
of the optimal parameters [20].
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Table 3. MA optimized parameters.

Controller
PSO Tunes P.I.

Kp Ti = 1/Ki

Inner Controller 0.7686 17.7610
Outer Controller 0.7686 75.2660

Table 4. Classical parameters.

Controller
PSO Tunes P.I.

Kp Ti = 1/Ki

Inner Controller 0.5193 14.9551
Outer Controller 0.1052 33.1312

8.1. Scenario I: Comparison with the Conventional Technique

In this scenario, the stability margin of the proposed and conventional control pa-
rameters is observed under the time domain. There are some constraints to follow when
finding gains for the controllers [25]. Usually, the hit and trial model is utilized to find
the conventional gains while considering the constraints as limits [25]. With this in mind,
and following the computation in Section 7, the time response is based on MA and classi-
cal tuned control parameters tested for the ramping of wind-farm power. At first, wind
farm 1 power increases from 0.4 p.u to 0.51 p.u, while wind farm 2 remains constant. This
sudden change caused a rise in DC-link voltage from 1.071 p.u to 1.079 p.u. Second, the
power of wind farm 2 decreases from 0.725 p.u to 0.625 p.u, respectively. From Figure 14,
the Mayfly parameters clearly show significant improvements compared to the classically
tuned parameters. Comparatively, the stability margin along a rising time is much better
than in conventional settings.
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The demand change at the grid side is studied to further test the proposed algo-
rithm’s robustness. At t = 3.0 s, the load demand decreased from −0.7 to −0.55 p.u. at grid 
side 2. This sudden change in demand also causes fluctuations in grid side 2. However, 
optimized grid parameters, particularly the MA-based controller, manage to settle down 
quickly. A graphical comparison between the Mayfly and classically tuned parameters is 
shown in Figure 15. The visual observation indicates that the proposed algorithm per-
forms much better; it stabilizes the DC voltage and power profile faster than the classical 
technique. 
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The demand change at the grid side is studied to further test the proposed algorithm’s
robustness. At t = 3.0 s, the load demand decreased from −0.7 to −0.55 p.u. at grid side 2.
This sudden change in demand also causes fluctuations in grid side 2. However, optimized
grid parameters, particularly the MA-based controller, manage to settle down quickly. A
graphical comparison between the Mayfly and classically tuned parameters is shown in
Figure 15. The visual observation indicates that the proposed algorithm performs much
better; it stabilizes the DC voltage and power profile faster than the classical technique.
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8.2. Scenario 2: Comparison with the Unconventional Technique

The proposed algorithm was tested alongside PSO to obtain the proposed technique’s
desirable effects on the test grid. For enumeration, the PSO algorithm was set up under the
same testing scenarios as the Mayfly algorithm, and its parameters are presented in Table 5.

Likewise, the aim was to minimize the objective function defined in Equation (42). The
fitness function values using PSO optimization are shown in Figure 16, and the obtained
controller parameters are given in Table 6. It is essential to highlight that, in earlier iterations,
the PSO’s performance index is better than a Mayfly. However, the Mayfly algorithm’s
convergence rate and speed for the later iterations improve the performance more than the
PSO. Further, the active power profile obtained by Mayfly, PSO, and classical tunning is
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shown in Figure 17. The results exhibit significant improvements and a faster rising time
for Mayfly than the PSO and classical tuning.

Table 5. PSO parameters.

Parameters Values

Max number of iterations 10.0
Values of particle 4.0

Weights (w1 and w2) 0.850 and 0.150
Initial population 15.0
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Table 6. PSO-based P.I. controller parameters.

Controller
PSO Tunes P.I.

Kp Ti = 1/Ki

Inner Controller 0.7705 18.7910
Outer Controller 0.7705 73.2270

To present a meaningful numerical evaluation of the efficiency of Mayfly and PSO
controllers, they are compared in terms of minimizing the integral time multiplied by
absolute error (ITAE) measurements of (10), (11), and (13) in Table 7. Apart from PSO,
recent techniques, such as Harris hawks optimization [39] and the water cycle algorithm
(WCA) [40], claim to perform better in DC micro-grids but need further investigation. For
example, in Ref. [40], the multi-objective approach is missing to address related problems
such as load variation. Similarly, in Ref. [41], the outlined method’s performance is evalu-
ated for a linearized model of a single VSC-based HVDC system. Ultimately, a switching
model of a point-to-point VSC HVDC system is built to demonstrate its use. Therefore, it
also needs further investigation for the MTDC system.

Table 7. Comparison of P.I. parameters’ efficiency in terms of ITEA.

Controller Section
ITEA

Mayfly Classical PSO

Inner Controller 8.4002 × 10−6 4.7208 × 10−4 8.8013 × 10−6

Outer Controller 7.6101 × 10−5 1.7640 × 10−3 7.7074 × 10−5

Objective Function 6.8521 × 10−6 - 6.9221 × 10−6

8.3. Scenario 3: Fault Scenario

In this scenario, the stability performance of the MTDC is evaluated under a three-
phase permanent fault at VSC 3 station side. For evidence, a three-phase permanent fault is
introduced at time t = 3.0 s. The fault characteristics of the permanent fault include a fault
resistance of 0.01 Ω situated at the fault location F1 (According to Figure 1). Just before the
fault event, the total power generated by the MMCs at the wind side was 1.2 p.u, and the
grid side shared that power according to their droop control characteristics. However, when
the fault occurred at grid side 2 (MMC-3), all generated power was quickly shifted towards
grid side 1, and the power at grid side 2 reduced to zero. The graphical representation
clearly shows that wind side grids show a slight fluctuation in their power and quickly
return to their original state when the instant fault occurs.

Meanwhile, grid side 1 quickly attained the power levels required for the supply. It
is indicated from Figure 18a–d that Mayfly controllers achieve better responses than their
predecessors. For example, when comparing the proposed algorithm, PSO, and classical
model in Figure 18a, it is clear that the MA-based model attains stability faster than the
other two. Similarly, in Figure 18c, the steady-state response for the MA-based model is
better, and the unwanted transient settling is also fast. Meanwhile, the DC power profile
quickly achieves the desired output levels, thanks to optimum regulated settings.

The fault current is also less severe in the Mayfly controllers at the gird side 2, as shown
in Figure 19. Moreover, this phenomenon puts less strain on the HVDC grid components.
In HVDC, protection is an important issue that needs consideration. Suppose this optimal
technique is placed with robust fault detection and the hybrid circuit breaker. The time
response would be better, but the stability margin would also improve.
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9. Conclusions

This scientific paper proposes the use of the Mayfly algorithm, a multi-objective
model based on a meta-heuristic optimization technique, to optimally tune the VSC control
parameters in the MTDC system. The simultaneous optimization of the VSC control
framework, i.e., OCL and ICC control parameters, using the proposed multi-objective MA
technique, reduces the computational cost and improves dynamic performance. Meanwhile,
the optimized parameters are embedded in a four-terminal, VSC-based MTDC test system
in PSCAD/EMTDC to evaluate control performance. A comparison of the proposed scheme
with the classical and PSO algorithm is also presented under the same environment. The
results verify that the proposed algorithm’s ITEA is superior to the classical and PSO models.
Under three states: (i) wind-farm power variations, (ii) AC grid-load demand variations,
and (iii) permanent VSC disconnection, the simulation test bench is evaluated for classical,
PSO, and the proposed multi-objective MA technique. According to the simulation results,
the anticipated multi-objective MA algorithm improved the VSC-based control framework
under steady-state and dynamic operations compared to other controllers. The stability
margin and rise time were greatly improved at both off-shore and on-shore stations.

In future work, the proposed algorithm will be verified using real-world data and
implemented on a microprocessor relay with detailed DC line modeling. It will also be
compared with recent techniques such as improved teaching–learning-based optimization
(ITLBO), Grey Wolf Optimizer (GWO), Model Predictive Control (MPC), and Harris hawks
optimization (HHO) models. Moreover, an optimized multi-objective P.I.-controller for
multiple VSCs would be developed considering the wind uncertainty.
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