
ARTICLE

mTOR coordinates transcriptional programs and
mitochondrial metabolism of activated Treg subsets
to protect tissue homeostasis
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Regulatory T (Treg) cells derived from the thymus (tTreg) and periphery (pTreg) have central

and distinct functions in immunosuppression, but mechanisms for the generation and acti-

vation of Treg subsets in vivo are unclear. Here, we show that mechanistic target of rapamycin

(mTOR) unexpectedly supports the homeostasis and functional activation of tTreg and pTreg

cells. mTOR signaling is crucial for programming activated Treg-cell function to protect

immune tolerance and tissue homeostasis. Treg-specific deletion of mTOR drives sponta-

neous effector T-cell activation and inflammation in barrier tissues and is associated with

reduction in both thymic-derived effector Treg (eTreg) and pTreg cells. Mechanistically, mTOR

functions downstream of antigenic signals to drive IRF4 expression and mitochondrial

metabolism, and accordingly, deletion of mitochondrial transcription factor A (Tfam) severely

impairs Treg-cell suppressive function and eTreg-cell generation. Collectively, our results show

that mTOR coordinates transcriptional and metabolic programs in activated Treg subsets to

mediate tissue homeostasis.
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R
egulatory T (Treg) cells expressing the transcription factor
Foxp3 suppress conventional T-cell responses to establish
self-tolerance, prevent autoimmunity, and maintain tissue

homeostasis1,2. Foxp3 deficiency eliminates Treg-cell development
and function, leading to autoimmune diseases characterized by
excessive T helper 1 (TH1), TH2, or TH17 responses, and germinal
center (GC) B-cell reactions driven by T follicular helper (TFH)
cells3–5. Thymic-derived Treg (tTreg) cells exit the thymus and
populate peripheral tissues, where resting Treg cells [also called
central Treg (cTreg) cells] are activated in response to antigen and
inflammatory cues6–9. These activation signals increase effector
molecule expression and induce transcription factors that define
the selective suppressive functions and tissue localization of
activated Treg cells [also known as effector Treg (eTreg)
cells]5,10–15. Peripherally-derived Treg (pTreg) cells are a devel-
opmentally distinct population of activated Treg cells that arises
from the naive CD4+ T-cell pool and inhibit TH2 or TH17
responses at mucosal sites6,16–19. The transcription factor inter-
feron regulatory factor 4 (IRF4) is expressed in both eTreg and
pTreg cells in vivo and is an essential positive regulator of their
homeostasis and function7,15,17,20–22. IRF4 expression and func-
tion are induced by TCR signals in Treg cells by incompletely
understood mechanisms7,8,22.

Metabolic rewiring is important for T-cell fate decisions, but
the metabolic programs regulating Treg-cell activation and
specialization remain uncertain23. The activation of the mechan-
istic target of rapamycin (mTOR) induces metabolic reprogram-
ming necessary for conventional T-cell activation
and differentiation23,24. In contrast, mTOR appears to antagonize
Treg-cell differentiation and expansion in vitro and suppressive
activity in vivo23,25,26. Mechanistically, inhibition of mTOR
upregulates fatty acid oxidation, which supports mitochondrial
respiration important for Treg-cell differentiation, proliferation,
and survival in vitro27,28. Moreover, low levels of mTOR activa-
tion are needed to prevent excessive glycolysis that can impair
Treg-cell survival and lineage stability23. Although the prevailing
model is that mTOR activation hinders Treg-cell function, Treg

cells have higher basal levels of mTORC1 activation than
conventional T cells29,30, which is essential for Treg-cell function
in vivo30. Thus, mTOR-dependent metabolic programming might
have context-dependent roles in different Treg-subsets or under
distinct physiological conditions.

Here, we show that mTOR orchestrates activation-induced
transcriptional and metabolic signatures that are essential
for Treg-cell activation and function. We find that either
acute or chronic inhibition of mTOR disrupts Treg-cell suppres-
sive activity and leads to uncontrolled conventional T-cell
activation. In line with this observation, mucosal CD4+ T-cell
responses, including TH2 responses, are increased when Treg

cells lose mTOR, associated with a loss of eTreg and pTreg cells
in mucosal sites. Mechanistically, mTOR mediates Treg-cell
activation and suppressive activity by promoting IRF4 expression
and mitochondrial metabolism. Indeed, disruption of mitochon-
drial metabolism severely impairs the suppressive function
of activated Treg cells and their homeostasis in tissues.
Collectively, our results show that mTOR controls peripheral
tolerance by integrating transcriptional and metabolic programs
critical for the homeostasis and suppressive activity of activated
Treg cells.

Results
mTOR promotes activated Treg-cell suppressive activity. Treg

cells activated in vivo have enhanced suppressive activity critical
for immune homeostasis7,8,31,32, yet the molecular events con-
trolling Treg-cell activation remain to be fully defined. To identify

pathways associated with increased suppressive function of Treg

cells, we mined a published dataset of activated Treg cells isolated
from diphtheria toxin (DT)-treated Foxp3DTR mice (DTR,
diphtheria toxin receptor)32. Gene set enrichment analysis
(GSEA) revealed that the hallmark mTORC1 and PI3K-Akt-
mTOR signaling pathways were among the most significantly
(false discovery rate, FDR < 0.05) upregulated gene sets in acti-
vated vs. resting Treg cells (Fig. 1a). Thus, increased Treg-cell
suppressive activity is correlated with enhanced mTOR signaling.
To rigorously test the function of mTOR for the suppressive
activity of activated Treg cells, we activated Treg cells in vitro in the
presence or absence of the mTOR inhibitor, PP242. We found
that acute inhibition of mTOR diminished the ability of activated
Treg cells to suppress conventional T-cell proliferation (Fig. 1b)
and to express the immunosuppressive molecule CTLA4 (Fig. 1c),
indicating a kinase-dependent function of mTOR in Treg-cell
function. Accordingly, the suppressive activity of Treg cells iso-
lated from Cd4CreMtorfl/fl mice was dampened (Fig. 1d). Thus,
mTOR is essential for the suppressive function of Treg cells
in vitro.

To establish a role for mTOR in Treg-cell function in vivo, we
generated female Foxp3Cre/DTRMtorfl/fl mosaic mice. These mice
express a floxed Mtor allele24, whose expression can be deleted by
Cre recombinase driven under the Foxp3 promoter (denoted as
Foxp3Cre)33, resulting in the deletion of mTOR within Treg cells
after they have expressed Foxp3. Acute depletion of DTR-
expressing Treg cells with DT forces the remaining Foxp3Cre-
expressing Treg cells to become activated, expand, and control
immune homeostasis in adult mice34. Upon DT treatment,
Foxp3Cre/DTRMtorfl/fl mosaic mice, but not their respective
Foxp3Cre/DTRMtor+/+ or +/fl controls, developed inflammation
associated with increased organ size and cell number, especially
peripheral lymph nodes (Fig. 1e). Further, there were increased
frequencies of CD44hiCD62Llo effector/memory CD4+ in the
peripheral lymph nodes (Fig. 1f). After DT treatment, Foxp3Cre/
DTRMtorfl/fl mice had a profound enrichment for IL-4-producing
and small but significant increase in IL-17A-producing, but not
IFN-γ-producing, CD4+ T cells in the spleen (Fig. 1g, h). Similar
observations were found in peripheral lymph nodes (Fig. 1g).
Therefore, mTOR signaling is essential for the suppressive
function of activated Treg cells, and its acute deletion in Treg

cells leads to loss of immune homeostasis and the activation of
TH2, and to a lesser extent, TH17 cells.

Treg cells require mTOR to prevent spontaneous auto-
immunity. To determine the effects of long-term deletion ofMtor
on Treg-cell suppressive function in vivo, we next generated mice
bearing a conditional deletion of Mtor within all committed
Foxp3+ Treg cells (denoted as Foxp3CreMtorfl/fl mice). As antici-
pated, Mtor was efficiently deleted within Foxp3-YFP+ Treg cells
from Foxp3CreMtorfl/fl mice (Supplementary Fig. 1a). In contrast
to their littermate controls that remained healthy, Foxp3Cre

Mtorfl/fl mice developed an early-onset lymphoproliferative and
autoimmune disease, indicated by reduced body size and hunched
posture, enlargement of peripheral lymphoid organs, and exten-
sive lymphocyte and/or myeloid cell infiltration in multiple
organs, such as the skin and lung (Fig. 2a–c). This disease ulti-
mately led to the early death of Foxp3CreMtorfl/fl mice (Fig. 2d).
These mice had reduced frequencies of CD44loCD62Lhi naive
CD4+ and CD8+ T cells and increased frequencies of
CD44hiCD62Llo effector/memory phenotype CD4+ and CD8+

T cells (Fig. 2e). There were also significant increases in IFN-γ-,
IL-4-, IL-10-, IL-13-, and IL-17A-producing CD4+ T cells and
IFN-γ-producing CD8+ T cells in mice with mTOR-deficient Treg

cells (Fig. 2f and Supplementary Fig. 1b). Foxp3CreMtorfl/fl mice
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had 5–10-fold and 10–15-fold increases in the frequencies of cells
producing TH2- or TH17-associated cytokines, respectively, while
IFN-γ-producing cells were increased by ~5-fold (Supplementary
Fig. 1c). Within Treg cells, the frequency of IFN-γ-producing cells
was also increased in Foxp3CreMtorfl/fl mice (Supplementary
Fig. 1d). We also found that the frequencies and total numbers of
PD-1+CXCR5+ TFH cells (Fig. 2g) and CD95+GL7+ GC B cells
(Fig. 2h) were increased in Foxp3CreMtorfl/fl mice. We, therefore,
performed immunohistochemistry analysis of GCs, B cells, and
T cells in whole tissue sections. This analysis revealed that PNA+

cells were diffusely distributed in extrafollicular regions, while T
and B cells were markedly increased, in mesenteric lymph nodes
(Supplementary Fig. 1e). Foxp3CreRptorfl/fl mice, which have
impaired mTORC1 signaling30, also had elevated TFH and GC B-
cell responses (Supplementary Fig. 1f), indicating that mTORC1
is essential for the Treg-cell-mediated suppression of spontaneous
GC reactions. To determine if TFH cells produce elevated levels
of IL-4 and/or IL-21 to promote GC reactions35,36, we isolated
CD4+Foxp3-YFP−CD44hiCXCR5−PD-1− non-TFH cells and

CD4+Foxp3-YFP−CD44hiCXCR5+PD-1+ TFH cells from
Foxp3CreMtorfl/fl mice and their littermate controls, and
measured the expression of Il4 and Il21. TFH cells from
Foxp3CreMtorfl/fl mice had increased expression of Il4, but not
Il21, while non-TFH cells had increased expression of both Il4 and
Il21 (Supplementary Fig. 1g, h). Thus, constitutive depletion of
mTOR revealed its essential role for Treg cell-mediated suppres-
sion of conventional T-cell responses in vivo.

mTOR supports Treg-cell suppression of mucosal TH2
responses. Treg cells regulate T-cell responses important for tissue
homeostasis, especially at barrier surfaces like the lung, intestines,
and skin1,2. We found that in the lung of Foxp3CreMtorfl/fl

mice, there were respective 5–10-fold and 10–15-fold increases of
IL-4- and IL-13-producing CD4+ T cells, while the increases in
TH1 and TH17 responses were less pronounced (2–3-fold
increased) (Fig. 3a and Supplementary Fig. 2a). TH2 and TH17
responses were also more elevated than TH1 responses in the
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colon lamina propria (Fig. 3b). Because we found a consistent
increase of TH2 cytokines in both the lung and colon lamina
propria and acute deletion of mTOR led to a profound increase of
TH2 responses (Fig. 1h), we next performed comprehensive
immunohistochemistry analyses of multiple organs in Foxp3-
CreMtorfl/fl mice. Elevated TH2 responses are associated with an
accumulation of eosinophils, alternatively activated M2 macro-
phages, and neutrophils in target tissues16. Indeed, MBP+ eosi-
nophils were increased in the lung (Fig. 3c), as well as the dermis
of the skin (Supplementary Fig. 2b) of mice-bearing mTOR-
deficient Treg cells. Additionally, CD163+ macrophages were
expanded, including Ym1+ M2 macrophages present in the
alveolar space and interstitium of the lung (Fig. 3d). Increased M2
macrophage activation was also evident in the skin (Supple-
mentary Fig. 2c). We also observed an increase of cells positive
for iNOS2, which primarily stains for neutrophils, in the lung
(Fig. 3e) and skin (Supplementary Fig. 2d). TH2 inflammation is

also associated with the accumulation of mucosal mast cells
(MMCs) in the intestines37. Foxp3CreMtorfl/fl mice had an
increase of MCPT1+ interepithelial MMCs and MCPT4+ lamina
propria MMCs in the large and small intestines (Fig. 3f). Alto-
gether, these results underscore an important role for mTOR in
mediating Treg-cell-dependent suppression of effector T-cell
responses, especially TH2-associated events, within mucosal
tissues.

mTOR enforces mucosal tTreg- and pTreg-cell homeostasis.
Recent work shows that tTreg cells present in tissues exhibit TH2-
biased gene signatures and express transcription factors essential
for the suppression of TH2 responses12,38,39. Additionally, the
absence of pTreg cells drives elevated TH2 responses in mucosal
tissues16–18. Therefore, we hypothesized that reduced abundance
of tTreg and/or pTreg cells might account for increased TH2
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responses in the lung and colon of Foxp3CreMtorfl/fl mice.
Neuropilin-1 (Nrp1) and Helios are expressed at higher levels in
tTreg than pTreg cells

40,41. We found that there was a significant
decrease in the frequency of Nrp1+ tTreg and Nrp1− pTreg cells in
the lung of Foxp3CreMtorfl/fl mice (Fig. 4a). Helios staining
revealed a similar reduction in tTreg and pTreg cells in the lung of
Foxp3CreMtorfl/fl mice (Fig. 4b). We tested if these effects were
cell-intrinsic by adoptively transferring an equal ratio of CD45.1+

wild-type bone marrow cells and CD45.2+ Foxp3CreMtor+/fl or
Foxp3CreMtorfl/fl bone marrow cells into irradiated Rag1–/–-reci-
pient mice. This inflammation-free system confirmed that the
reduction of these lung Treg-cell populations was cell-intrinsic
(Fig. 4c). We next examined pTreg and tTreg cell populations in
the colon lamina propria of Foxp3CreMtorfl/fl mice by staining for
either Helios or RORγt, a transcription factor selectively enriched
in pTreg cells isolated from the intestines17,19. Similar to our

observations in the lung, pTreg cells, as well as Helios+ or RORγt–

tTreg cells, were reduced in the colon lamina propria of Foxp3-
CreMtorfl/fl mice (Fig. 4d, e). The reduction of RORγt+ pTreg cells
may also contribute to the increased TH17 cell activation in the
colon lamina propria of Foxp3CreMtorfl/fl mice (Fig. 3b)19. Ana-
lysis of Helios+ and Helios− Treg-cell populations in the colon
lamina propria from mixed bone marrow chimeras verified cell-
intrinsic effects (Fig. 4f). Altogether, these results indicate that the
accumulation of mucosal tissue tTreg and pTreg cells is disrupted
in the absence of mTOR.

To determine the role for mTOR in pTreg-cell maintenance
in vivo, we purified naive Foxp3-YFP−CD4+ T cells from either
Foxp3CreMtor+/fl or Foxp3CreMtorfl/fl mice and adoptively trans-
ferred these cells into Rag1–/– mice (Fig. 4g). In this system, naive
T cells can acquire Foxp3 expression42, and the concomitant
expression of the Cre transgene induces Mtor deletion in pTreg
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cells generated in vivo. The frequency and number of mTOR-
deficient pTreg cells were reduced in mesenteric lymph nodes
(Fig. 4h), while the numbers of donor-derived total CD4+ T cells
were comparable (Fig. 4i). These results indicate that mTOR
promotes the maintenance of pTreg cells in vivo.

Activated Treg cells express GATA3, which is required to
suppress TH2 responses

1,2,11,12,16,38. Therefore, we next examined
if mTOR regulates GATA3 expression in activated Treg cells. We
established an in vitro system where Treg cells from wild-type
mice were stimulated with anti-CD3 and anti-CD28 antibodies in
the presence of TGF-β and IL-6 to mimic the environmental
signals at mucosal sites1,2,12. As expected, compared with IL-2
stimulation, IL-4 strongly upregulated GATA3 expression under
these conditions12. However, IL-4-induced GATA3 upregulation
was diminished upon inhibition of mTOR activity (Fig. 4j). The
frequency of GATA3+ Treg cells was also significantly reduced in
the colon lamina propria (Fig. 4k), a site where these cells are

enriched under steady state11,12. These in vitro and in vivo results
highlight the requirement of mTOR signaling for GATA3
expression in Treg cells.

mTOR promotes eTreg-cell generation. After thymic develop-
ment, peripheral cTreg cells undergo antigen and inflammation-
driven activation and differentiate into eTreg cells that are enri-
ched in tissues, including the lung and colon lamina
propria1,2,7,8,21,22. Although eTreg cells are crucial for immune
homeostasis, the molecular requirements driving their activation
and function are still poorly defined. Our above data indicated
that mTOR-deficient tTreg cells were reduced in the lung and
colon. Moreover, unbiased GSEA showed that
mTORC1 signaling was enriched in CD44hiCD62Llo eTreg cells
compared to CD44loCD62Lhi cTreg cells (Fig. 5a). Given these
results, we next tested whether mTOR regulates eTreg-cell gen-
eration. Because Treg cells isolated from inflammatory

0

10

20

30

*** ***

RORγ t

F
o
x
p
3

18.8 17.5

61.7 1.92

12.2 5.33

80.1 2.36

0

10

20

30

***
***

0

4

8

12 ***

**

***

Foxp3CreMtor+/fl donor (n=3)

Foxp3CreMtor fl/fl donor (n=5)

ns

h i

g

0

2

4

6

a

0

5

10

Foxp3CreMtor +/+ or +/fl

Foxp3CreMtor fl/fl

** ***

b

0

2

4

6 **

***

c d

e f

CD45.2+Foxp3CreMtor+/fl chimera

CD45.2+Foxp3CreMtor fl/fl chimera

*** ***

IL-2:

IL-4:

Butyrate:

N
o
rm

a
liz

e
d
 G

A
T

A
3

+

–

–

+

–

+

–

+

–

–

+

+

ns

* **

ns

0

5

10

Foxp3CreMtor+/+ or +/fl

Foxp3CreMtor fl/fl

**

Vehicle Torin 1
j k

0

2.5

2.0

1.5

1.0

0.5
0.5

1.5

1.0

0

8

6

4

2

0

Naive Foxp3-YFP–CD4+ T cells

from Foxp3CreMtor+/fl or Foxp3CreMtor fl/fl

Donor mice

Foxp3-YFP+ donor-

derived pTreg cells

4 weeks
Rag1–/– mouse

2.5

2.0

1.5

1.0

0.5

0

Foxp3CreMtor +/+ or +/fl

Foxp3CreMtor fl/fl

Foxp3CreMtor+/+ or +/fl

Foxp3CreMtor fl/fl

Foxp3CreMtor +/+ or +/fl

Foxp3CreMtor fl/fl

CD45.2+Foxp3CreMtor+/fl chimera

CD45.2+Foxp3CreMtor fl/fl chimera

Foxp3CreMtor+/fl donor (n=3)

Foxp3CreMtorfl/fl donor (n=5)

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+
 c

e
lls

Foxp3+

Nrp1+
Foxp3+

Nrp1–

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+

 c
e
lls

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+

 c
e
lls

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+

 c
e
lls

Foxp3+

Helios+
Foxp3+

Helios–
Foxp3+

Helios+

Foxp3+

Helios–

Foxp3+

Helios+
Foxp3+

Helios–

Foxp3+

Helios+
Foxp3+

Helios–

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+

 c
e
lls

%
 C

e
lls

 i
n

C
D

4
+
T

C
R

β
+

 c
e
lls

Foxp3Cre

Mtor+/fl

Foxp3Cre

Mtor fl/fl

Foxp3+

RORγt–
Foxp3+

RORγt+

%
 p

T
re

g
 c

e
lls

#
 p

T
re

g
 c

e
lls

 (
×

 1
0

5
)

#
 C

D
4

+
 T

 c
e
lls

 (
×

 1
0

6
)

%
 G

A
T

A
3

+
 T

re
g
 c

e
lls

Fig. 4Mucosal tTreg- and pTreg-cell homeostasis is altered in the absence of mTOR. a, b Quantification of the frequencies of Nrp1+ and Nrp1– (a) or Helios+

and Helios– Treg cells (b) in the lung of Foxp3CreMtor+/+ or +/fl and Foxp3CreMtorfl/fl mice, respectively. c Quantification of the frequencies of Helios+ and

Helios– Treg cells among the CD45.2+CD4+TCRβ+ T cells in the lung of mixed bone marrow chimeras. d Quantification of the frequencies of Helios+ and

Helios– Treg cells in the colon lamina propria of Foxp3CreMtor+/+ or+/fl and Foxp3CreMtorfl/fl mice. e Flow cytometry analysis of Foxp3 vs. RORγt expression

(left) and quantification of the frequencies of RORγt+ and RORγt– Treg cells (right) in the colon lamina propria of Foxp3CreMtor+/+ or +/fl and

Foxp3CreMtorfl/fl mice. f Quantification of the frequencies of Helios+ and Helios– Treg cells among the CD45.2+CD4+TCRβ+ T cells in the colon lamina

propria of mixed bone marrow chimeras. g Experimental schematic for in vivo pTreg maintenance assay. h, i Quantification of frequency and/or number of

donor-derived Foxp3-YFP+ pTreg cells (h) or total CD4+ T cells (i) in Rag1–/– mice 4 weeks after adoptive transfer of naive T cells isolated from

Foxp3CreMtor+/fl and Foxp3CreMtorfl/fl mice. j Quantification of GATA3 expression in Treg cells stimulated under various conditions (with TGF-β and IL-6

included in all the conditions) for 3 days in the presence or absence of Torin 1. k Quantification of GATA3+ Treg cells (Foxp3
+GATA3+ in CD4+TCRβ+)

from the colon lamina propria of Foxp3CreMtor+/+ or +/fl and Foxp3CreMtorfl/fl mice. Error bars show mean ± s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001; ns,

not significant; unpaired, two-tailed Student’s t-test. Data are quantified from five (a, b), eight (c), ten (d), eleven (e), seven (f), three or five (h, i; as

indicated), three (j), or six (k) biological replicates, compiled from five (a, b), four (c, f), eight (d), nine (e), two (h, i), three (j), or six (k) independent

experiments. Numbers indicate percentage of cells in quadrants

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04392-5

6 NATURE COMMUNICATIONS |  (2018) 9:2095 |DOI: 10.1038/s41467-018-04392-5 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


environments could undergo secondary phenotypic changes, we
analyzed cell-intrinsic effects of mTOR deficiency in cTreg and
eTreg cells isolated from healthy, female mosaic mice (designated
as Foxp3Cre/+). There was an increase in the frequency but not
number of Foxp3-YFP+CD44loCD62Lhi cTreg cells and a reduc-
tion in the frequency and number of Foxp3-YFP+

CD44hiCD62Llo eTreg cells in the spleen of Foxp3Cre/+Mtorfl/fl

mosaic mice (Fig. 5b). We also confirmed the reduction of eTreg

cells in the spleen of mixed bone marrow chimeras (Supple-
mentary Fig. 3a). Consistent with elevated mTORC1 signaling in
eTreg cells (Fig. 5a), the frequency and number of eTreg cells were
reduced in the absence of Rptor (Supplementary Fig. 3b). The
number of KLRG1+ Treg cells was also reduced in absence of
mTOR, consistent with a reduction of eTreg cells (Fig. 5c and
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Supplementary Fig. 3c)9. The expression of CD25, a marker
expressed at higher levels on cTreg cells than eTreg cells9, was
increased on mTOR-deficient Treg cells (Fig. 5d and Supple-
mentary Fig. 3d). Moreover, eTreg-cell-associated molecules like
ICOS and CTLA4 were expressed at lower levels in the absence of
mTOR, while the expression of TIGIT or Foxp3 was equivalent
between the control and mTOR-deficient Treg cells (Fig. 5d and
Supplementary Fig. 3d)1,2,9. Activated Treg cells also differentiate
into specialized or tissue-resident Treg-cell populations, including
CXCR5+PD1+Foxp3+ TFR cells that express Bcl6

5,10,13. Both TFR

cells and Bcl6 expression were reduced in the absence of mTOR
(Fig. 5e and Supplementary Fig. 3e). Consistent with our earlier
analysis of mixed bone marrow chimeras, there was nearly a
complete loss of colon Treg cells in Foxp3CreMtorfl/fl mosaic mice
(Fig. 5f). Thus, mTOR is essential for maintaining eTreg cells
in vivo.

Mechanistically, the loss of eTreg cells in the absence of mTOR
could be due to defective survival or reduced activation-induced
differentiation. To test the former, we analyzed the expression of
active caspase-3 in control and mTOR-deficient Treg cells isolated
from mixed bone marrow chimeras and found normal survival of
mTOR-deficient Treg cells (Fig. 5g). Also, the frequency of 7AAD+

cells was similar or reduced in purified CD44loCD62Lhi cTreg cells
activated in the presence of the mTOR inhibitors (Supplementary
Fig. 3f), further indicating that mTOR is not essential for cell survival.

To test the role of mTOR in activation-induced differentiation,
we purified CD44loCD62Lhi cTreg cells from wild-type mice and
activated them for 3 days in the presence or absence of the mTOR
inhibitors, Torin 1 and PP24243. We found that cTreg cells
differentiation into CD44hiCD62Llo eTreg-like cells was impaired
by mTOR inhibition (Fig. 5h). Similarly, the frequency of mTOR-
deficient Treg cells in the spleen and peripheral lymph nodes of
DT-treated Foxp3Cre/DTRMtorfl/fl mice was reduced relative to the
controls (Supplementary Fig. 3g, left panel), but total numbers of
Treg cells were not significantly different (Supplementary Fig. 3g,
right panel), likely due to the increased organ size (Fig. 1e). Thus,
mTOR-deficient Treg cells also fail to appropriately respond to
activation-induced signals in vivo. We also investigated if these
regulatory pathways applied to human cells. In the presence of
the mTOR inhibitors, activated human CD45RAhiCD45ROlo

naive Treg cells had impaired upregulation of CD25 and FOXP3
(Fig. 5i), which are expressed more abundantly in human
CD45RAloCD45ROhi activated Treg cells than naive Treg cells44.
Thus, mTOR activity represents an evolutionarily conserved
pathway for driving eTreg-cell generation.

mTOR links activation signals to IRF4 upregulation. IRF4 is
induced by TCR signals to promote eTreg-cell differentiation and
regulates Treg-cell-mediated suppression of TH2 responses
in vivo7,8,15,21,22. To determine if mTOR induces IRF4 expres-
sion upon activation, we purified control and mTOR-deficient
cTreg cells and activated them for 24 and 48 h before analyzing
IRF4 expression by flow cytometry. IRF4 expression was reduced
at 24 and 48 h after activation (Fig. 6a). Acute mTOR inhibition
with Torin 1 or PP242 also significantly reduced activation-
induced upregulation of IRF4 in cTreg cells (Fig. 6b). Mechan-
istically, mTOR controls IRF4 expression at the post-
transcriptional level, because cTreg cells activated in the pre-
sence of the mTOR inhibitors for 24 or 48 h had increased Irf4
expression compared to the internal controls (Fig. 6c). To show
that the ~20–30% reduction of IRF4 expression was biologically
important, we analyzed gene expression profiles in cTreg cells
activated in the presence or absence of Torin 1 or PP242. Among
the genes that were consistently altered by both inhibitors were
124 IRF4 target genes, including Ccr8 and Eea18,15,21,22 (Fig. 6d).

Also, the loss of IRF4 expression likely accounted for the
impairment of mTOR-deficient Treg cells to express ICOS
(Fig. 5d and Supplementary Fig. 3d), which is induced by IRF4-
dependent mechanisms to drive eTreg-cell differentiation
in vivo9,15. Altogether, these data indicate that mTOR promotes
eTreg-cell differentiation, in part, by modulating IRF4 expression,
which also helps explain how TH2 responses become elevated in
Foxp3CreMtorfl/fl mice.

mTOR orchestrates mitochondrial metabolism in Treg cells.
Metabolism is a crucial determinant of Treg-cell biology

23, but the
mechanisms controlling metabolic rewiring required for the
function of activated Treg cells are not clear. GSEA showed that
cTreg cells upregulated mTORC1 signaling and several metabolic
pathways, including glycolysis, upon activation (Supplementar-
y Fig. 4a), while mTOR inhibitor-treated cTreg cells had a sig-
nificant downregulation of genes in the glycolytic pathway
(Fig. 6e and Supplementary Table 1), including Hk2 (Fig. 6d).
Because IRF4 also promotes metabolic reprograming of conven-
tional CD4+ and CD8+ T cells45, we determined if mTOR signals
via IRF4 to regulate Treg-cell metabolism. We performed func-
tional enrichment analysis of IRF4 targets that were differentially
expressed in cTreg cells activated in the presence of mTOR
inhibitors (Fig. 6d). This analysis revealed enrichments for gly-
colytic and nucleotide metabolism and upstream regulators of
these pathways, including Myc and mTORC130,46,47 (Fig. 6f).
Thus, the mTOR-IRF4 axis supports the upregulation of glyco-
lytic and nucleotide metabolism during cTreg-cell activation.

Besides glycolysis, cTreg cells upregulated genes in the oxidative
phosphorylation pathway in an mTOR-dependent manner
(Fig. 7a and Supplementary Table 1). Indeed, 366 mitochondrial
genes (identified from the MitoCarta 2.0 database48) were
differentially expressed in activated cTreg cells (vs. unstimulated
cells), and 158 of these genes were mTOR targets (Fig. 7b).
Twenty-one mitochondrial genes were putative IRF4 gene targets
(based on IRF4 ChIP-seq analysis22), but only six of these genes
were induced upon cTreg-cell activation. Only one of these IRF4
targets (Mrps28) was upregulated in an mTOR-dependent
manner during cTreg-cell activation (Fig. 7b). These data,
combined with the functional enrichment analysis above, suggest
that mTOR promotes mitochondrial gene expression in a largely
IRF4-independent manner. To further test the effects of mTOR
on the metabolic pathways, we performed metabolomics profiling
using high-resolution mass spectrometry on resting and activated
Treg cells. We found that 54 metabolites were differentially
expressed between Treg cells activated in the presence of Torin 1
vs. DMSO (Fig. 7c). For instance, the expression of the TCA cycle
intermediates isocitrate/citrate, malate, and succinate and the
electron acceptor NAD+ were significantly decreased in Treg cells
activated in the presence of Torin 1 (Fig. 7c). Unbiased metabolite
set enrichment analysis (MSEA) revealed that activated Treg cells
significantly upregulated metabolic pathways associated with
mitochondria-dependent energy production and the biosynthesis
of proteins and nucleotides, such as the citric acid cycle, the
mitochondrial electron transport chain, and pyrimidine biosynth-
esis49 (Supplementary Fig. 4b). The upregulation of these
mitochondria-related metabolic pathways was impaired when
Treg cells were activated in the presence of Torin 1 (Fig. 7d).
Consistent with this observation, Treg cells activated in the
presence of Torin 1 had lower mitochondrial membrane potential
(TMRM), whereas mitochondria number as indicated by
Mitotracker staining was comparable (Fig. 7e). Thus, mTOR
links activation signals to IRF4-dependent and -independent
transcriptional programs to induce metabolic reprogramming
during Treg-cell activation.
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Tfam is essential for eTreg-cell homeostasis and function. We
next genetically defined the importance of mitochondrial meta-
bolism in Treg-cell function in vivo. We conditionally deleted
mitochondrial transcription factor A (Tfam), a nuclear-encoded

transcription factor essential for efficient electron transport chain
activity50,51, in Treg cells by breeding Foxp3Cre transgenic mice
with mice-bearing floxed alleles for Tfam51. Tfam-deficient Treg

cells isolated from Foxp3Cre/+Tfamfl/fl mosaic mice had
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comparable mitochondrial content but less mitochondria-derived
reactive oxygen species (ROS) (Fig. 8a), consistent with reduced
mitochondrial respiratory chain function. We found that Tfam is
critical for Treg-cell function, as Foxp3

CreTfamfl/fl mice developed
a severe inflammatory disease associated with smaller body size,
skin inflammation, alopecia (Fig. 8b), early lethality (Fig. 8c), and
enlargement of the peripheral lymph nodes (Fig. 8d). Further,
there were increased effector/memory T cells (Fig. 8e) and sig-
nificantly enhanced IFN-γ-producing CD8+ T cell and TH1, TH2,
and TH17-cell activation (Fig. 8f) in diseased mice-bearing Tfam-
deficient Treg cells. Tfam-deficient Treg cells also had a propensity
for increased IFN-γ production (Supplementary Fig. 5a). More-
over, the frequency and number of TFH cells were increased

(Fig. 8g). Only the frequency, not the number, of GC B cells was
increased, likely due to a reduction of total B220+ B cells in
Foxp3CreTfamfl/fl mice (Fig. 8h and Supplementary Fig. 5b). Thus,
Tfam deficiency in Treg cells leads to altered immune homeostasis
and development of autoimmunity.

We next analyzed Treg-cell populations in mixed bone marrow
chimeras to determine the cell-intrinsic role of Tfam-dependent
mitochondrial metabolism in eTreg-cell accumulation and
homeostasis. There was a reduction in the frequency and
number of CD44hiCD62Llo eTreg cells (Fig. 8i) and KLRG1+

Treg cells (Fig. 8j) in the absence of Tfam. Further, Tfam-deficient
Treg cells had reduced expression of ICOS and CTLA4 (Fig. 8k),
but not Foxp3 (Supplementary Fig. 5c). However, unlike
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mTOR-deficient Treg cells, CD25 expression was not increased on
Tfam-deficient Treg cells (Supplementary Fig. 5c), and TIGIT
expression was reduced (Fig. 8k). Tfam deficiency also reduced
TFR-cell generation and Bcl6 expression (Fig. 8l). Further, there was
a cell-intrinsic reduction of Tfam-deficient Treg cells within the
colon lamina propria and the lung (Fig. 8m, n). Collectively, these
results indicate that Tfam-dependent mitochondrial metabolism is

critical for the function and homeostasis of activated Treg cells
in vivo.

Discussion
Activated tTreg and pTreg cells are crucial for peripheral T-cell
tolerance and tissue homeostasis. Here, we show that activated
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Treg-cell populations have increased mTOR signaling necessary
for Treg-cell activation and tissue Treg-cell homeostasis.
Mechanistically, mTOR tunes IRF4-dependent transcriptional
programming and mitochondrial metabolism. In the absence of
mTOR, activated tTreg and pTreg cells are severely decreased in
mucosal tissues, associated with excessive TH2, and to a lesser
extent TH1 and TH17 responses, and disrupted tissue home-
ostasis. Further, the homeostasis and suppressive activity of
activated Treg cells is impaired by the loss of mitochondrial
metabolism and consequently leads to autoimmunity (Supple-
mentary Fig. 5d). Thus, our data identify and establish a critical
mTOR-dependent metabolic node that regulates the homeostasis
and suppressive function of activated Treg cells in vivo.

TCR-dependent signals coupled with co-stimulation and
inflammatory cues drive Treg-cell activation and differentiation
into specialized or tissue-resident Treg-cell subsets1,2,7–9,21,22.
Several transcriptional programs are essential for the differ-
entiation and function of activated Treg cells

7,20–22,43,52,53. How-
ever, the upstream signaling pathways driving eTreg-cell
homeostasis are unknown. Here, we show that activation signals
through mTOR are required for Treg-cell activation and function,
thereby establishing the first kinase pathway, to our knowledge,
that links TCR signals and transcriptional programs necessary for
Treg-cell activation. Mechanistically, mTOR promotes the
expression of IRF4 and GATA3, transcription factors that are
essential for Treg-cell-dependent suppression of TH2 respon-
ses7,11,12,15. Moreover, IRF4 also enforces eTreg-cell differentia-
tion and pTreg-cell homeostasis to limit mucosal TH2
responses16,17,20–22. Therefore, by promoting the expression of
IRF4 and GATA3, mTOR maintains activated Treg-cell popula-
tions that facilitate tissue homeostasis. The mTOR-dependent
induction of IRF4 expression in cTreg cells was not tran-
scriptionally regulated, and, in conventional CD4+ T cells54,
occurs independently of the mTOR-4EBP1 translation axis.
Therefore, mTOR likely regulates IRF4 expression at the post-
translational level, such as via SUMOlyation55. A key question
that remains is, why are mucosal tissues more sensitive to the
upregulation of TH2 responses than secondary lymphoid organs
in mice-bearing mTOR-deficient Treg cells? One possibility is that
these sites are enriched for activated tTreg- and pTreg-cell popu-
lations and hence their loss more readily increases TH2 responses
at these sites than in the peripheral lymphoid organs1,2,56. Fur-
ther, recent work shows that tissue Treg cells express high levels of
ST2 (IL-33 receptor)38,39, which induces GATA3 activation that
biases Treg cells toward the TH2 suppressive program39. Thus,
mTOR deficiency and other conditions that decrease GATA3
expression will impair this feed forward loop and disrupt TH2-
like Treg-cell suppressive responses.

Metabolic reprogramming contributes to cell fate decisions.
However, the metabolic programs promoting the homeostasis
and function of activated Treg cells are not completely under-
stood23. Despite the previous work suggesting an inhibitory role
of mTOR for mitochondrial oxidative metabolism in induced Treg

cells in vitro27, we show here that mitochondrial metabolism is
highly induced during Treg-cell activation in an mTOR-
dependent manner, and is essential for activated Treg-cell func-
tion and tissue homeostasis in vivo. Indeed, Treg-specific deletion
of Tfam impairs Treg-cell function, leading to the hyperactivation
of conventional T cells and autoimmunity. Mechanistically,
mitochondrial metabolism could affect eTreg-cell proliferation or
survival within tissues as has been reported in vitro27,28. Of note,
Raptor-deficient Treg cells have reduced mitochondria-related
gene expression30, and Foxp3CreTfamfl/fl and Foxp3CreRptorfl/fl

mice have similar elevations in activated T-cell responses, disease
pathologies, and survival kinetics30. Additionally, deficiency of
Tfam and Raptor impairs TFR cell accumulation57. Thus, our data

suggest a key role for Raptor-mTORC1-induced mitochondrial
metabolism in establishing the fate and function of activated Treg

cells in different microenvironments.
Treg cells must adapt to different environmental cues to acquire

unique suppressive functions, and the appropriate balance of
mTOR and metabolic signaling appears to be linked to this
process. Inactivation of mTORC1 alone or combined with
mTORC2 disrupts Treg-cell suppressive activity30; however,
whether mTORC1-independent functions of Raptor58 or Raptor/
Rictor-independent mTOR complexes play roles in Treg-cell
biology remained unclear. Our results here suggest that mTOR
does act through Raptor and Rictor to promote Treg-cell function.
Compared to Raptor deficiency alone, loss of mTOR or Raptor
and Rictor in Treg cells leads to similar extensions in lifespan30,
which may be due to more limited tissue damage, such as in the
intestines. The balance of mTORC1- and/or mTORC2-induced
metabolic programs may also tune Treg-cell suppression of
effector T-cell responses. For instance, Raptor-deficient Treg cells
have increased mTORC2-Akt activity30, which can upregulate
glycolysis at the expense of mitochondrial metabolism and lead to
inappropriate suppression of TH1 and TFH responses59–61.
Despite being dispensable for Treg-cell suppressive activity30,61,
mTORC2 can promote Treg-cell trafficking to sites of inflamma-
tion and non-lymphoid tissues via upregulating glycolysis or
suppressing Foxo1 activity43,62. Thus, gain of mTORC1 and
concomitant loss of mTORC2 activity could reduce Treg-cell
trafficking to TH1 and TH17 inflammatory sites63–65. mTOR may
also promote trafficking to sites of TH2 inflammation by mod-
ulating Ccr8 expression and/or CCL22/CCR4-induced chemo-
taxis62,66. We, therefore, propose that Treg-cell function is finely
tuned by graded nature of mTOR signaling and metabolic pro-
grams, which are likely influenced by local environmental signals.
This tunable nature of mTOR signaling in Treg cells may offer a
therapeutic strategy to modulate Treg-cell responses to selectively
alter the conventional T-cell responses in autoimmunity, infec-
tious diseases, and cancer.

Methods
Mice. C57BL/6, CD45.1+, Cd4Cre, Foxp3DTR, Rag1–/–,Mtorfl, and Tfamfl mice were
purchased from The Jackson Laboratory. Foxp3Cre mice, from Dr. Alexander
Rudensky, have been described previously33. All genetic models used in this study
were on the C57BL/6 background, and both male and female mice were used for
quantification and analysis, except for histological analysis where only male mice
were used. Mice were generally 4–6-weeks-old unless otherwise indicated. The
number of animals in each group are provided in the figures and/or figure legends.
All mice were kept in specific pathogen-free conditions within the Animal
Resource Center at St. Jude Children’s Research Hospital. The animal protocols
were approved by the Institutional Animal Care and Use Committee of St. Jude
Children’s Research Hospital. Mixed bone marrow chimeras were generated by
adoptive transfer of CD45.1+ bone marrow cells mixed 1:1 with CD45.2+ bone
marrow cells from Foxp3CreMtor+/fl or Foxp3CreMtorfl/fl mice into sub-lethally
irradiated Rag1–/– mice as described30. For the pTreg cell in vivo maintenance
model, CD4+Foxp3-YFP−CD44loCD62Lhi naive T cells from the spleens and
peripheral lymph nodes of Foxp3CreMtor+/fl or Foxp3CreMtorfl/fl mice were pur-
ified on a Synergy or Reflection fluorescence activated cell sorter (Sony Bio-
technology). Then, 0.75 × 106 cells were transferred via retroorbital injection into
sex-matched Rag1–/– mice. The presence of Foxp3-YFP+ Treg cells was evaluated in
the mesenteric lymph nodes 4 weeks later42. Foxp3Cre/DTR mosaic mice were
treated with DT (50 μg kg−1) i.p. three times per week, for a total of four injections.
The mice were euthanized, and tissues were harvested for flow cytometry analysis
11 days following the first DT treatment. Sample sizes were chosen based upon
previous data generated within the laboratory and were selected to maximize the
chance of uncovering statistically significant differences of the mean. No animals
were excluded from analysis.

Flow cytometry. Lymphocytes were harvested form the peripheral lymphoid tissues
by manual disruption or the colon lamina propria as previously described30,67. For
surface marker analyses, cells were stained in PBS containing 2% (wt/vol) BSA and
the appropriate antibodies. The following fluorescent-conjugate-labeled antibodies,
purchased from various commercial sources (Biolegend, BD Biosciences, Thermo
Fisher Scientific, and Sony Biotechnology), were used: anti-CD4 (clone RM4-5),
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anti-CD8 (clone 53-6.7), anti-B220 (clone RA3-6B2), anti-CD62L (clone MEL-14),
anti-CD44 (clone IM7), anti-CD95 (clone Jo2), anti-GL7 (clone GL-7), anti-CD279
(PD-1) (Clone J43), and anti-TCRβ (clone H57-597) antibodies. Biotin-conjugated
anti-CXCR5 antibody (clone 2G8) and PE-labeled streptavidin from BD Biosciences
were used for TFH cell staining. Intracellular staining was performed using the
Foxp3/Transcription Factor Staining buffers (Cat #00-5523-00, Thermo Fisher
Scientific) per the manufacturer’s instructions. The following antibodies were used:
anti-CD152 (CTLA4) (clone UC10-4B9), anti-Foxp3 (clone NRRF-30), anti-RORγt
(clone B2D), anti-GATA3 (clone TWAJ), anti-IRF4 (clone 3E4), anti-Helios (clone
22F6), anti-IL-4 (clone 11B11), anti-IL-10 (clone JES5-16E3), anti-IL-13 (clone
eBio13A), anti-IFN-γ (clone XMG1.2), anti-IL-17A (clone TC11-18H10.1), anti-
human CD25 (clone BC96), anti-human CD45RA (clone HI100), anti-human
CD45RO (clone UCHL1), anti-human CD4 (clone A161A1), and anti-human
FOXP3 (clone 236 A/E7). For intracellular cytokine staining, total splenocytes were
stimulated for 4–5 h with phrobol 12-myristate 13-acetate (PMA) and ionomycin in
the presence of monensin (BD Biosciences). Surface and intracellular staining was
then performed as above. For active caspase-3 staining, surface molecules were
stained before cells were fixed, permeabilized, and stained for intracellular active
caspase-3 using the BD Biosciences active caspase-3 apoptosis kit per the manu-
facturer’s instructions (Cat # 550914). Staining for mitochondrial dyes (MitoSOX,
TMRM, and Mitotracker Deep Red; Thermo Fisher Scientific) was performed as
previously described30.

Histology and immunohistochemistry. Tissues were fixed in 10% (vol/vol)
neutral buffered formalin solution, embedded in paraffin, section, and stained with
hematoxylin and eosin. Blinded samples were analyzed by an experienced
pathologist (P.V.) for the presence of lesions indicative of autoimmune disease. For
the identification of ieMMCs or lpMMCs, tissue sections from the small intestines
and large intestines were respectively stained with primary rat anti-MCPT1
monoclonal antibody (Cat # 14-55303-82, Thermo Fisher Scientific) or goat anti-
MCPT4 antibody (LS-B5958, LifeSpan Biosciences) as described previously37. GCs
were identified by staining with anti-CD3 antibody and peanut agglutinin as
described61.

In vitro Treg-cell suppression assays. For analysis of Treg-cell suppression
in vitro, CD4+CD25hi Treg cells or CD4

+Foxp3-YFP+ Treg cells, isolated from the
lymphoid organs of the respective Cd4Cre- or Foxp3Cre-expressing mice, were co-
cultured with naive CD4+ T cells and irradiated splenocytes as antigen presenting
cells as previously described30. For suppression assays using in vitro activated
Treg cells, CD25

hi Treg cells were sorted from the lymphoid organs of C57BL/6
mice, resuspended in complete Click’s medium containing IL-2 (200 Uml−1), and
activated using anti-CD3 (10 μg ml−1) and anti-CD28 (10 μg ml−1) antibodies for
3 days in the presence of PP242 (500 nM, Tocris Bioscience) or vehicle control. The
live cells were then isolated using Lymphocyte Separation medium and
co-cultured with naive CD4+ T cells and irradiated splenocytes for 3 days, and the
incorporation of [3H]-thymidine was assessed as described30.

Treg-cell cultures. CD4
+Foxp3-YFP+CD44loCD62Lhi cTreg cells were purified and

activated with anti-CD3 and anti-CD28 antibodies in the presence of recombinant
IL-2 for various times in the presence of vehicle, Torin 1 (50 nM) or PP242 (500
nM) before total RNA was harvested using the Qiagen RNeasy micro kit per the
manufacturer’s instructions. Alternatively, cTreg cells were stimulated as above for
1–3 days and analyzed by flow cytometry as previously described43. For analysis of
GATA3 protein expression, CD4+CD25+ Treg cells were isolated from the
mesenteric lymph nodes using the CD25+ Treg-cell enrichment kit (Miltenyi). The
cells were then activated with anti-CD3 (5 μg ml−1) and anti-CD28 (5 μg ml−1)
antibodies for 3 days in the presence of various stimuli and/or Torin 1 (50 nM) as
indicated in the figure: TGF-β (2 ng ml−1), IL-2 (200 Uml−1), IL-4 (20 ng ml−1),
IL-6 (20 ng ml−1), and butyrate (125 μM). The expression of GATA3 in Foxp3+

Treg cells was assessed by flow cytometry.

Human Treg-cell cultures. All human studies were in compliance with the
Declaration of Helsinki. Blood donors were recruited by the Blood Donor Center at
St. Jude Children’s Research Hospital, where they provided written consent for
their discarded blood products to be used for research. This consent form has been
reviewed and approved by the Institutional Review Board at St. Jude Children’s
Research Hospital. We were provided with apheresis rings containing peripheral
blood mononuclear cells (PBMCs) isolated from de-identified donors. Human CD4
+CD25+CD45RA+CD45RO− naive Treg cells were purified from these human
PBMCs, and activated with anti-CD3 (clone OKT3, 5 μg ml−1) and anti-CD28
(clone CD28.2, 5 μg ml−1) for 3 days in the presence of IL-2 and mTOR inhibitors
as above. The expression of human CD25 and human FOXP3 was then analyzed by
flow cytometry.

Metabolomics. CD4+CD25hi Treg cells, isolated from lymphoid organs of C57BL/6
mice, were purified and resuspended in complete Click’s medium. Then, 1.3 × 106

Treg cells were treated with medium alone or immobilized anti-CD3 antibody (10
μg ml−1) and anti-CD28 antibody (10 μg ml−1) for 16 h in the presence Torin 1
(50 nM) or vehicle control. Intracellular metabolites, isolated using methanol
extraction of two technical replicates, were analyzed using the Ultimate 3000

UHPLC (Dionex) coupled to Q Exactive Plus-Mass spectrometer (QE-MS, Thermo
Fisher Scientific) for metabolite profiling. Detailed methods were previously
described68, except that mobile phase A was replaced with water containing 5 mM
ammonium acetate (pH 6.8). Differentially expressed metabolites were identified
by Limma (Bioconductor) and the Benjamini-Hochberg method was used to
estimate the false discover rate (FDR). MetaboAnalyst was used to analyze range-
scale data and provide KEGG pathway analysis of significantly altered metabolic
pathways (log2= 0.5) (www.metaboanalyst.ca/)49.

Gene expression analysis. For mTOR deletion efficiency in Treg cells, quantitative
real-time PCR analysis was performed using Mtor Taqman probes (Thermo Fisher
Scientific, Cat #4351372). For detection of Il4 and Il21, CD4+Foxp3-YFP–

CD44hiCXCR5–PD-1− non-TFH cells or CD4+Foxp3-YFP–CD44hiCXCR5+PD-1+

TFH cells were stimulated for 4 h using plate bound anti-CD3 (5 μg ml−1) and anti-
CD28 (5 μg ml−1) antibodies. Quantitative real-time PCR analysis was performed
using SyBR Green Real-Time PCR Master Mix (Thermo Fisher Scientific) and
primers for Il4 (Forward 5’-GGTCTCAACCCCCAGCTAGT-3’; Reverse
5’-GCCGATGATCTCTCTCAAGTGAT-3’) and Il21 (Forward 5’-GGACCCTTG
TCTGTCTGGTAG-3’; Reverse 5’-TGTGGAGCTGATAGAAGTTCAGG-3’). For
microarray analysis, RNA samples from unstimulated cTreg cells or cTreg cells
activated in the presence of vehicle, Torin 1, or PP242 for 20 h as indicated above
were analyzed with the GeneChip Mouse Gene 2.0 ST Array (Thermo Fisher
Scientific). Differentially expressed transcripts in biological triplicate samples were
identified by ANOVA (Partek Genomics Suite version 6.5), and the Benjamini-
Hochberg method was used to estimate the FDR.

GSEA of hallmark pathways in resting vs. activated Treg cells from these
microarray samples or published datasets (GSE5575332 or GSE610777) was
performed as previously described30. IRF4 targets were identified from ChIP-seq
data22 deposited in GSE98263 and compared against genes that were differentially
expressed in activated cTreg cells treated with or without mTOR inhibitors as above.
IRF4 target genes that were differentially expressed in activated cTreg cells treated
with mTOR inhibitors were subjected to functional enrichment analysis of
metabolism-related pathways, where significance was determined using the Fisher
exact test and Benjamini-Hochberg method (FDR < 0.05).

Statistics. The results in graphs represent the mean ± s.e.m., with the numbers of
mice per group and number of experimental replicates indicated in each figure
legend. The P-values were calculated with unpaired, two-tailed Student’s t-test
assuming equal variance (GraphPad Prism software), where *P < 0.05; **P < 0.01;
***P < 0.001. No specific randomization methods were used in these studies.
Investigators were not blinded to samples except where indicated for histological
and immunohistochemical analysis.

Data availability. Microarray data that support the findings of this study have
been deposited in the Gene Expression Omnibus with the primary accession code
GSE104130. Other data are available from the corresponding author upon request.
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