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Abstract. Mammalian target of rapamycin (mTOR) is a 
protein serine/threonine kinase that was initially identified 
as the cellular target of rapamycin. This kinase regulates cell 
growth, proliferation, motility and survival, as well as the 
gene transcription and protein synthesis that are activated in 
response to hormones, growth factors and nutrients. Results 
from preclinical studies have indicated that factors antago-
nizing the mTOR pathway exert an antitumor effect on lung 
cancer. Furthermore, primary clinical trials of mTOR inhibi-
tors have demonstrated that the inhibitors may be effective 
against lung carcinoma. The present study explores the asso-
ciation between mTOR and lung carcinogenesis and describes 
the clinical trials of mTOR inhibitors.
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1. Introduction 

Mammalian target of rapamycin (mTOR) is a component 
of the phosphatidylinositol 3‑kinase (PI3K) cell survival 
pathway that monitors the availability of nutrients, mitogenic 
signals and cellular energy and oxygen levels, and therefore is 

significant in the regulation of cell growth and proliferation (1). 
Abnormal activation of the PI3K pathway is considered to 
be involved in numerous cancers, and increased activation 
of this pathway is often associated with resistance to cancer 
therapies (2,3). mTOR acts upstream and downstream of Akt, 
operating at a key junction in the PI3K pathway (4). mTOR 
can form two different multiprotein complexes, mTORC1 and 
mTORC2, that regulate the protein synthesis necessary for cell 
growth and proliferation (4‑6). Targeted molecular therapy has 
an established benefit when combined with platinum‑based 
chemotherapy in phase III randomized trials of patients with 
metastatic non‑small cell lung cancer (NSCLC) (7). Agents 
targeting vascular endothelial growth factor and epidermal 
growth factor receptor (EGFR) mimic several novel targeted 
approaches that improve survival in patients with lung cancer. 
Tyrosine kinase (TK) inhibitors, including erlotinib and 
gefitinib, block the intracellular TK domain of EGFR and 
subsequently cause a blockade of downstream signaling (8). 
During the process of identifying novel agents, studies have 
focused on characterizing relevant signaling pathways down-
stream from surface receptors. A previous study has reported 
that mTOR is a crucial component of such pathways (9).

2. The mammalian target of rapamycin pathway

Ligand‑bound activation of one of the transmembrane 
receptors leads to the activation of PI3K  (10,11). PI3K 
subsequently phosphorylates Akt, which is dephosphory-
lated by PTEN (12,13). Loss of PTEN is connected with a 
diminished prognosis in NSCLC, likely due to the enhanced 
downstream signaling of the PI3K/Akt/mTOR pathway (14). 
The two mTOR complexes, mTORC1 and mTORC2, are each 
involved in cell growth  (15,16). mTORC1, which consists 
of mTOR, Raptor, GβL (mammalian lethal with SEC13 
protein 8) and domain‑containing mTOR‑interacting protein 
(DEPTOR), is partially inhibited by rapamycin (17); it unifies 
multiple signals that indicate the availability of growth factors, 
nutrients and energy in order to promote cellular growth and 
catabolic processes during stress (18,19). Growth factors and 
hormones, such as insulin, use Akt to signal mTORC1, which 
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inactivates tuberous sclerosis complex 2 to prevent inhibition 
of mTORC1 (20). Active mTORC1 exerts numerous down-
stream biological effects, including the translation of mRNA 
by phosphorylating downstream targets, such as 4E‑BP1 and 
p70 S6 kinase, the suppression of autophagy through Atg13 and 
ULK1, ribosome biogenesis, and activation of transcription 
that leads to increased mitochondrial activity or adipogen-
esis (21‑23). mTORC2, which consists of mTOR, Rictor, GβL, 
Sin1, PRR5/Protor‑1 and DEPTOR, promotes cell survival 
through the activation of Akt  (24,25). mTORC2 regulates 
cytoskeletal dynamics, and ion transport and growth by acti-
vating PKCα and phosphorylating SGK1, respectively (26‑28). 
mTOR is a downstream target of EGFR and MET signaling, 
and is therefore considered to be a therapeutically attractive 
target for the treatment of various types of cancer.

3. Preclinical data

Numerous preclinical studies have suggested that mTOR and 
associated kinases are significant in the development of lung 
cancer. In a previous study, a spectrum of murine lung tissue 
was assessed, including normal lung, atypical alveolar hyper-
plasia, adenoma and adenocarcinoma tissues obtained from 
K‑ras mice (29). Immunohistochemical staining for p‑S6 was 
performed, revealing an elevated level of p‑S6 present at each 
stage of the progression of malignancy. Subsequent studies 
have suggested that treatment with mTOR inhibitors leads to 
a reduction in the size and number of early neoplastic lesions. 
Other studies have investigated the activity of mTOR itself 
and the upstream regulator Akt (30). Using tissue microarray 
(TMA) constructs that included >100 specimens from patients 
with NSCLC, positive staining for mTOR was exhibited in 
~74% of tumors. The literature contains data indicating the 
efficacy of TKIs when EGFR mutations are present, and there 
are also studies that have reported an involvement of K‑ras 

mutations in conferring resistance to EGFR‑targeting mono-
clonal antibodies (31‑35). In an analysis of TMA constructs 
containing 37 lung tumors, mTOR activation was identified 
in 89% of tumors bearing K‑ras or EGFR mutations  (36). 
Another preclinical study examined the effect of a combined 
blockade of MEK and mTOR (37) as MEK activation inter-
sects with mTOR activation at a number of levels. There have 
been numerous reports of preclinical data that supports the 
combination of erlotinib with an mTOR inhibitor  (38‑45). 
In one study, 22 cell lines from four tumor types, NSCLC, 
breast, pancreatic and colon tumors, were assessed and it was 
revealed that mutations in PTEN, EGFR, PI3K and K‑ras were 
present in each cell line (46).

4. Clinical trials

Numerous mTOR inhibitors have been revealed to provide 
antitumor effects in lung cancer. A two‑part phase I study 
assessed the antitumor activity, toxicity and pharmacokinetics 
of everolimus, administered weekly in 5‑30  mg doses, at 
increased weekly doses of 50‑70 mg and daily administration. 
In total, 92 patients participated in this study (47), 12 of whom 
suffered from NSCLC and two from SCLC. Compensatory 
tolerance of everolimus doses of ≤70 mg per week or 10 mg 
daily was observed. Toxicities, including stomatitis and 
fatigue, were observed in one patient, dosed at 50 mg per week 
and hyperglycemia was observed in another patient, dosed at 
10 mg per day. Partial responses were observed in four patients 
and four patients exhibited progression‑free survival (PFS) 
of ≥6 months. 

Following this trial, an additional phase II trial enrolled 
patients with NSCLC into two arms: Arm  1 comprised 
patients that exhibited a performance status (PS) <2  and 
had failed <2 cycles with platinum based therapy and arm 2 
comprised patients that had undergone <2 cycles of platinum 

Figure 1. Activation of mammalian target of rapamycin occurs through a complex signaling cascade. mTOR, mammalian target of rapamycin; PI3K, phos-
phatidylinositol 3‑kinase.
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based therapy in combination with an EGFR antagonist. These 
patients were administered everolimus at a dose of 10 mg daily. 
Partial response (PR) was reported in 5.3% of arm 1 patients 
and 2.8% of arm 2 patients. The median PFS was 11.3 weeks for 
arm 1 and 9.7 weeks for arm 2 patients. The observed toxicities 
were stomatitis, cough and dyspnea (48).

Another phase II study investigated patients with SCLC. The 
patients were free from brain metastasis, had relapsed following 
one or two regimens and exhibited a PS <2. Everolimus was 
administered until the disease progressed or until the onset of 
unacceptable toxicity. Of the 16 patients, three exhibited stable 
disease and the remaining patients exhibited progression. 
Everolimus was well tolerated, however, the efficacy of the drug 
was low (49). An additional phase II study assessed the effec-
tiveness of temsirolimus alone in patients with SCLC, following 
treatment with four or six cycles of platinum‑based therapy with 
etoposide or irinitecan (50). Temsirolimus was intravenously 
administered weekly at a dose of 25 mg (arm A) and 250 mg 
(arm B) until disease progression was observed. In 85 patients, 
the overall survival for arm A was 6.6 months and 9.5 months 
for arm B.

Deferolimus, a non‑prodrug rapamycin analogue, was 
administered in a phase  I trial. In total, 32  patients were 
administered with 3‑28 mg of deferolimus daily. The maximum 
tolerated dose was 18.75 mg. Of the five patients with NSCLC 
included in the study, only one exhibited PR (51). An additional 
phase I study assessed treatment with gefitinib and everolimus 
in patients with progressive NSCLC. Gefitinib was administered 
at a dose of 250 mg daily and everolimus was administered at 
a dose of 5‑10 mg daily. Of the eight patients evaluated, two 
exhibited PR (52). Following this, a phase II trial was designed 
for patients who were previous smokers with stage IIIB/IV 
NSCLC (53). The study comprised untreated patients (arm A) 
and patients who had previously received a platinating agent 
and docetaxel (arm B). PR was observed in 17% (arm B) of 
the patients. The toxicities identified were diarrhea, mucositis 
and rash. In another phase I trial, the combination of evero-
limus with erlotinib was investigated. This cohort consisted of 
patients with advanced NSCLC who had previously received 
two chemotherapy regimens and had an ECOG PS<2. Patients 
were excluded from the trial if they had been previously treated 
with an EGFR inhibitor. A standard six and six dose escalation 
design was administered with daily doses of 2.5 and 5 mg and 
weekly doses of 30 and 40 mg of everolimus, combined with 75, 
100 and 100 mg of erlotinib daily. However, the response data of 
this trial were moderate (54).

5. Conclusion

All of the aforementioned preclinical and clinical trials revealed 
significant positive results for the use of mTOR antagonists in 
lung cancer. mTOR expression may be upregulated by numerous 
mechanisms in the pathogenesis of lung cancer. Furthermore, 
preclinical data suggests that this class of mTOR pathway 
antagonists exert an antitumor effect in lung cancer therapy. 
Consistent with this, initial clinical trials of mTOR inhibitors 
suggest that they are effective in NSCLC and small cell lung 
carcinoma therapy. Several phase II and III trials are currently 
in progress. These additional clinical trials are required to assess 
the efficacy of mTOR inhibitors as targeted therapy for NSCLC.
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