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Abstract

Activation of non-shivering thermogenesis (NST) in brown adipose

tissue (BAT) has been proposed as an anti-obesity treatment.

Moreover, cold-induced glucose uptake could normalize blood

glucose levels in insulin-resistant patients. It is therefore impor-

tant to identify novel regulators of NST and cold-induced glucose

uptake. Mammalian target of rapamycin complex 2 (mTORC2)

mediates insulin-stimulated glucose uptake in metabolic tissues,

but its role in NST is unknown. We show that mTORC2 is activated

in brown adipocytes upon b-adrenergic stimulation. Furthermore,

mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice)

are hypothermic, display increased sensitivity to cold, and show

impaired cold-induced glucose uptake and glycolysis. Restoration

of glucose uptake in BAT by overexpression of hexokinase II or acti-

vated Akt2 was sufficient to increase body temperature and

improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT

mediates temperature homeostasis via regulation of cold-induced

glucose uptake. Our findings demonstrate the importance of

glucose metabolism in temperature regulation.
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Introduction

Non-shivering thermogenesis (NST) in brown adipose tissue (BAT)

allows mammals to maintain stable body temperature in a cold

environment. Upon cold exposure, norepinephrine (NE) is released

from sympathetic nerves and binds to adrenergic receptors on

brown adipocytes to induce NST. Adrenergic receptor stimulation

induces cAMP production and subsequent induction of lipolysis,

b-oxidation, and mitochondrial uncoupling (Cannon & Nedergaard,

2004). Mitochondrial uncoupling occurs through activation of

uncoupling protein 1 (UCP1). UCP1 is a mitochondrial transmem-

brane protein specifically expressed in brown adipocytes and

brown-like, beige adipocytes. Once activated, UCP1 dissipates the

proton gradient across the inner mitochondrial membrane generated

by the electron transport chain. This uncouples proton flux into the

mitochondria from ATP production, resulting in heat generation

(Klaus et al, 1991; Busiello et al, 2015). To compensate for the loss

of mitochondrial ATP production due to uncoupling, adrenergic

stimulation enhances glucose uptake and glycolysis in BAT (Greco-

Perotto et al, 1987; Vallerand et al, 1990; Hao et al, 2015). Due to

the ability of BAT to burn energy efficiently and to reduce blood

glucose levels, activation of NST has been proposed as an alterna-

tive strategy for weight loss in obese patients (Cypess et al, 2009;

van Marken Lichtenbelt et al, 2009; Virtanen et al, 2009; Clapham &

Arch, 2011) and for normalization of blood glucose levels in insulin-

resistant diabetic patients. Thus, identifying novel regulators of NST

could provide new drug targets for anti-obesity and diabetes

treatments.

The mammalian target of rapamycin (mTOR) signaling network

is a central regulator of cell growth and metabolism (Laplante &

Sabatini, 2012; Dibble & Manning, 2013; Albert & Hall, 2014;

Shimobayashi & Hall, 2014). mTOR is a highly conserved protein

kinase found in two structurally and functionally distinct complexes

named mTOR complex 1 (mTORC1) and mTORC2. mTORC1 is

sensitive to the macrolide rapamycin and contains mTOR, mamma-

lian lethal with sec-13 protein (mLST8), and regulatory associated

protein of mTOR (raptor). mTORC2 is rapamycin insensitive and

contains mTOR, mLST8, mammalian stress-activated map kinase-

interacting protein 1 (mSIN1), and rapamycin-insensitive companion

of mTOR (rictor). mTORC2 is activated by growth factors, such as

insulin and insulin-like growth factor 1 (IGF-1), via phosphatidyl-

inositol 3-kinase (PI3K)-dependent ribosome association (Zinzalla

et al, 2011). mTORC2 downstream targets are members of the AGC

kinase family, such as Akt, serum/glucocorticoid-regulated kinase
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(SGK), and protein kinase C (PKC) (Sarbassov et al, 2005; Jacinto

et al, 2006; Garcia-Martinez & Alessi, 2008; Ikenoue et al, 2008;

Cybulski & Hall, 2009), through which mTORC2 promotes lipogene-

sis, glucose uptake, glycolysis, and cell survival (Manning &

Cantley, 2007; Kumar et al, 2008; Hagiwara et al, 2012; Yuan et al,

2012). Due to its role in mediating lipid and glucose homeostasis,

dysfunction of mTORC2 signaling has been implicated in the devel-

opment of insulin resistance and diabetes. Moreover, a recent study

by Olsen et al (2014) demonstrated that mTORC2 in brown adipo-

cytes in vitro mediates b-adrenergic stimulation-induced glucose

uptake. However, a role for mTORC2 in thermogenesis, and in

particular NST, has so far not been investigated.

Here, we show that b-adrenergic stimulation and cold exposure

activate mTORC2 signaling in brown adipocytes in vitro and

in vivo. We find that mTORC2 in BAT stimulates cold-induced

glucose uptake and glycolysis. Consequently, mice with adipose

tissue-specific inactivation of mTORC2 (AdRiKO mice) are

hypothermic and unable to maintain stable body temperature upon

cold exposure. Restoration of either Akt signaling or glucose meta-

bolism in BAT of AdRiKO mice restored body temperature and

improved cold tolerance. Thus, mTORC2 in BAT is essential for

maintenance of energy homeostasis and body temperature upon

cold exposure.

Results

Norepinephrine activates mTORC2 in vitro via cAMP, PI3K,

and Epac1

To investigate the role of mTORC2 signaling in NST, we first exam-

ined whether mTORC2 is activated by signals that induce thermoge-

nesis. In particular, differentiated brown adipocytes (dBACs) were

treated with NE to induce b-adrenergic signaling. As expected, NE

treatment resulted in stimulation of PKA signaling as suggested by

increased Creb-S133, HSL-S563, and perilipin phosphorylation

(Fig 1A). Importantly, NE also stimulated phosphorylation of the

mTORC2 target Akt at S473, a major readout of mTORC2 activity

(Hresko & Mueckler, 2005; Sarbassov et al, 2005; Cybulski & Hall,

2009) (Fig 1A). Moreover, NE stimulation also induced phosphory-

lation of mTOR at S2481, another indicator of mTORC2 activation

(Copp et al, 2009). These observations suggest that b-adrenergic

stimulation induces mTORC2 signaling, in addition to PKA, in

dBACs.

Next, we investigated the pathway via which NE stimulates

mTORC2. Insulin activates mTORC2 in a PI3K-dependent but

mTORC1-independent manner. We examined whether NE activates

mTORC2 in a similar manner. We stimulated dBACs with NE in the

presence of the pan-mTOR (mTORC1 and mTORC2) inhibitor Torin,

the mTORC1-specific inhibitor rapamycin, or the PI3K inhibitor

wortmannin. Similar to insulin-induced mTORC2 stimulation, NE-

induced activation of mTORC2 was independent of mTORC1, since

pretreatment of dBACs with rapamycin did not prevent induction of

Akt-S473 phosphorylation upon NE stimulation (Fig 1B). In

contrast, inhibition of mTOR with Torin or of PI3K with wortman-

nin prevented Akt-S473 phosphorylation (Fig 1B). Hence, NE-

induced activation of mTORC2 in dBACs is dependent on PI3K and

independent on mTORC1.

NE stimulation leads to an increase in intracellular cAMP, which

is crucial for NE-induced activation of PKA signaling (Cannon &

Nedergaard, 2004). To test whether cAMP is required for NE-

induced activation of mTORC2, we treated dBACs with the cell-

permeable cAMP analogue 8-Br-cAMP. Similar to NE stimulation,

8-Br-cAMP treatment induced Akt-S473 phosphorylation in dBACs

(Fig 1C). 8-Br-cAMP stimulated mTORC2 signaling when mTORC1

was blocked with rapamycin, but was no longer able to induce

Akt-S473 phosphorylation when mTOR or PI3K was inhibited with

Torin or wortmannin, respectively (Fig 1C). Thus, NE induces

mTORC2 signaling via cAMP and PI3K. Importantly, in the presence

of mTOR or PI3K inhibition, NE or 8-Br-cAMP still induced

HSL-S563 phosphorylation (Fig 1B and C), indicating that inhibition

of mTOR or PI3K does not affect PKA signaling.

cAMP has several target proteins, two of which are PKA and

Epac1. Epac1 mediates cAMP-induced activation of mTORC2 in

prostate cancer cells (Misra & Pizzo, 2012) and thus might be

A B
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C

Figure 1. NE activates mTORC2 in vitro via cAMP, PI3K, and Epac1.

A Immunoblot analysis of BAT cells stimulated with norepinephrine (NE) for

the indicated proteins.

B Immunoblot analysis of BAT cells stimulated with NE for 5 min in the

presence of rapamycin (Rapa), Torin, or wortmannin (Wrtm) for the

indicated proteins.

C Immunoblot analysis of BAT cells stimulated with 8-Br-cAMP for 5 min in

the presence of Rapa, Torin, or Wrtm for the indicated proteins.

D Immunoblot analysis of BAT cells stimulated with NE for 5 min in the

presence of Wrtm, H89, or ESI-09 for the indicated proteins.

E Immunoblot analysis of BAT cells stimulated with 8-Br-cAMP for 5 min in

the presence of Wrtm, H89, or ESI-09 for the indicated proteins.

Data information: All experiments were performed in triplicates, and a

representative replicate is presented.
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involved in cAMP-induced stimulation of mTORC2 in BAT. To

investigate whether PKA or Epac1 is required for NE- or cAMP-

induced activation of mTORC2, we stimulated dBACs with NE or

8-Br-cAMP in the presence of the PKA inhibitor H89 or the Epac

inhibitor ESI-09. Treatment of dBACs with H89 efficiently blocked

NE- and 8-Br-cAMP-induced HSL-S563 phosphorylation, suggesting

that PKA signaling is inhibited. ESI-09 treatment slightly reduced

but did not block induction of HSL-S563 phosphorylation by NE or

8-Br-cAMP stimulation (Fig 1D and E). Interestingly, treatment of

dBACs with H89 resulted in hyperphosphorylation of Akt-S473,

suggesting that inhibition of PKA signaling does not impair activa-

tion of mTORC2 (Fig 1D and E). In contrast, treatment with the

Epac inhibitor ESI-09 prevented NE- and 8-Br-cAMP-induced phos-

phorylation of Akt-S473, suggesting that NE activates mTORC2 via

cAMP, Epac1, and PI3K (Fig 1D and E).

Norepinephrine and cold activate mTORC2 in vivo

We next assessed whether NE can stimulate mTORC2 signaling in

BAT in vivo. To this end, we used AdRiKO mice (Cybulski et al,

2009) which are defective in mTORC2 signaling in both BAT and

white adipose tissue (WAT) (Fig EV1A). AdRiKO mice display

increased lean mass and elevated insulin-like growth factor 1 (IGF-1)

levels upon high-fat diet (Cybulski et al, 2009). To avoid

confounding effects due to this growth phenotype, we used young

(10–14 weeks) AdRiKO mice fed a standard diet. Under such condi-

tions, AdRiKO mice are not altered in body weight, body composi-

tion, and circulating IGF-1 levels (Fig EV1B–D). In line with our

in vitro results, treatment of control mice with NE induced phospho-

rylation of the mTORC2 target Akt and of S2481 on mTOR (Fig 2A).

Importantly, AdRiKO mice did not display induction of Akt-S473

phosphorylation in BAT upon NE stimulation (Figs 2B and EV1E).

Hence, functional mTORC2 is required for Akt phosphorylation in

BAT in response to NE. Since NE is released from sympathetic

nerves upon cold exposure, we hypothesized that mTORC2 signal-

ing in BAT could also be induced by cold stress. Similar to the

results obtained with NE stimulation, cold exposure induced Akt-

S473 and mTOR-S2481 phosphorylation in BAT of control mice

(Figs 2C and EV1F). Again, this induction was dependent on func-

tional mTORC2 signaling as Akt-pS473, mTOR-pS2481, and phos-

phorylation of the Akt target FoxO1 were not induced in BAT upon

cold exposure of AdRiKO mice (Figs 2C and EV1F). In contrast to

BAT, mTORC2 signaling was not induced in inguinal subcutaneous

WAT (sWAT) upon cold exposure (Fig EV1G). Taken together,

these data demonstrate that mTORC2 signaling is induced by NE

and cold in BAT but not in sWAT.

As we observed an induction of mTORC2 signaling in BAT

upon NE and cold stimulation, we next investigated whether a

defect in mTORC2 signaling affected temperature regulation.

AdRiKO mice were hypothermic when housed at 22°C, which is a

mild temperature stress for mice (Fig 2D). The hypothermia could

not be accounted for by a reduction in locomotor activity

(Fig EV1H). In contrast, housing AdRiKO mice at thermoneutrality

(30°C) for 2 weeks prevented this hypothermic phenotype

(Fig 2E). Next, we performed an acute cold exposure with AdRiKO

and control mice. In contrast to control mice, AdRiKO mice were

unable to maintain stable body temperature when housed at 4°C

(Fig 2F). Interestingly, when food was provided during acute cold

exposure, AdRiKO mice displayed a less severe loss of body

temperature, but were still unable to maintain stable body temper-

ature in the cold (Fig EV1I). Thus, inactivation of mTORC2 signal-

ing in adipose tissue leads to decreased body temperature and

increased sensitivity to cold stress, in particular under nutrient-

limiting conditions.

Cold-induced muscle shivering also contributes to heat genera-

tion upon acute cold exposure (Cannon & Nedergaard, 2004). To

investigate whether the increased sensitivity to cold stress observed

in AdRiKO mice was due to impaired shivering thermogenesis, we

measured cold-induced muscle shivering in AdRiKO and control

mice after 4-h cold exposure. Interestingly, cold-exposed AdRiKO

mice showed significantly increased cold-induced muscle shivering

compared to control mice (Fig EV1J). The increased shivering could

be a compensatory reaction of the AdRiKO mice to maintain body

temperature upon cold stress.

mTORC2 in adipose tissue is not required for cold-induced lipid

droplet mobilization, mitochondrial uncoupling, and b-oxidation

Thermogenesis upon b-adrenergic stimulation requires mobilization

of lipid stores, induction of b-oxidation, and stimulation of mito-

chondrial uncoupling to generate heat. Since AdRiKO mice are

hypothermic and exhibit increased sensitivity to cold (see above),

we investigated whether AdRiKO mice are defective in lipid mobi-

lization, b-oxidation, or mitochondrial uncoupling in adipose tissue.

There was no difference in BAT and sWAT weights between

AdRiKO and control mice housed at either 22 or 4°C (Fig EV2A and B).

Moreover, there was no discernible difference in the morphology

of lipid droplets in sWAT from AdRiKO mice compared to wild-

type control mice kept at 22°C. Furthermore, both control and

AdRiKO mice were able to mobilize sWAT lipid stores upon cold

exposure (4°C) as suggested by a reduction in the size of lipid

droplets, that is, the appearance of multilocular adipocytes in

sWAT (Fig 3A). In line with this, cold-exposed AdRiKO and control

mice both displayed a significant increase in levels of circulating

free fatty acids (NEFAs) and glycerol (Fig 3B and C). Even though

the increase in circulating NEFAs was slightly less in AdRiKO mice

compared to control mice, AdRiKO mice still displayed a twofold

increase in circulating NEFAs upon cold exposure (Fig 3B). In

BAT, AdRiKO mice housed at 22°C displayed larger lipid droplets

compared to control mice (Fig 3D). However, at 4°C lipid droplet

size in BAT decreased to the same extent in AdRiKO and control

mice (Fig 3D). Despite the difference in lipid droplet size, we did

not observe a significant difference in total triglyceride (TG)

content in BAT upon cold exposure or between control and

AdRiKO mice (Fig 3E). In contrast to this, free fatty acid levels in

BAT were strongly enhanced in the AdRiKO mice upon cold expo-

sure (Fig 3F). These findings suggest that the defect in temperature

regulation in AdRiKO mice is most likely not due to decreased

availability of free fatty acids upon cold exposure.

Since cold-exposed AdRiKO mice display significantly increased

levels of free fatty acids in BAT compared to control mice (Fig 3F),

we hypothesized that this increase in NEFAs might be due to

impaired mitochondrial function, which could lead to accumulation

of NEFAs in BAT. To test this possibility, we first measured induc-

tion of genes involved in mitochondrial uncoupling in BAT upon

cold exposure. Despite the cold-sensitive phenotype of AdRiKO
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Figure 2. NE and cold activate mTORC2 in vivo.

A Immunoblot analysis of BAT from control mice treated with either norepinephrine (NE) or vehicle for 30 min for the indicated proteins (n = 3/group).

B Immunoblot analysis of BAT from AdRiKO and control mice treated with either norepinephrine (NE) or vehicle for 30 min for the indicated proteins (n = 3/group).

C Immunoblot analysis of BAT from AdRiKO and control mice housed at either 22 or 4°C for 2 h for the indicated proteins (n = 6/group, each lane represents a mix of

3 mice).

D Body temperature of AdRiKO and control mice housed at 22°C [n = 11 (control), n = 9 (AdRiKO)].

E Body temperature of AdRiKO and control mice housed at 30°C for 2 weeks (n = 8/group).

F Body temperature loss upon cold exposure of AdRiKO and control mice [n = 20 (control), n = 17 (AdRiKO)].

Data information: Data represent mean � SEM. Statistically significant differences between AdRiKO and control mice were determined with unpaired Student’s t-test

and are indicated with asterisks (*P < 0.05; **P < 0.01; ***P < 0.001). The exact P-value for each significant difference can be found in Appendix Table S2.
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mice, mRNA levels of UCP1, Dio2, and PGC-1a were induced to a

similar extent in BAT of AdRiKO and control mice (Fig 4A), and

UCP1 protein levels in BAT were also similar (Fig 4B). Second,

AdRiKO mice did not exhibit any defect in expression of genes

involved in b-oxidation (Fig 4C). Thus, AdRiKO mice appear normal

for induction of the thermogenic transcriptional program and

expression of b-oxidation genes. Third, we measured expression of

proteins of the electron transport chain in BAT. AdRiKO mice

displayed a slight decrease (22°C) or no change (4°C) in expression

of electron transport chain proteins compared to control mice

(Fig 4D). Fourth, mitochondrial DNA (mtDNA) copy number was

unchanged in BAT of AdRiKO mice (Fig 4E), suggesting that BAT of

AdRiKO and control mice contain a similar amount of mitochondria.

Fifth, EM micrographs of BAT revealed no difference between

AdRiKO and control mitochondria with regard to size, shape, and

cristae structure (Fig 4F). Finally, cold-exposed AdRiKO mice exhib-

ited normal induction of oxygen consumption in BAT (Fig 4G) and

at the whole-body level (Fig 4H). Thus, BAT in AdRiKO mice has

normal mitochondrial function and oxidative metabolism can be

efficiently induced upon cold stress. This suggests that the observed

cold sensitivity of AdRiKO mice does not stem from a mitochondrial

defect.

Despite a similar maximal induction of whole-body respiration

(Fig 4H), AdRiKO mice were unable to maintain an enhanced meta-

bolic rate throughout the duration of the cold exposure time course

(Fig 4I). This inability to maintain an enhanced metabolic rate may

account for the inability of AdRiKO mice to sustain an NST

response.

A B C

D E F

Figure 3. mTORC2 in adipose tissue is not required for cold-induced lipid droplet mobilization.

A Representative H&E staining of sWAT sections from AdRiKO and control mice (n = 5/group).

B Non-esterified fatty acids (NEFAs) in plasma of AdRiKO and control mice (n = 6/group).

C Glycerol in plasma of AdRiKO and control mice (n = 6/group).

D Representative H&E staining of BAT sections from AdRiKO and control mice (n = 5/group).

E Triglycerides (TGs) in BAT of AdRiKO and control mice housed at 22 or 4°C for 8 h (n = 6/group).

F NEFAs in BAT of AdRiKO and control mice (n = 6/group).

Data information: Data represent mean � SEM. Statistically significant differences between AdRiKO and control mice were determined with unpaired Student’s t-test

and are indicated with asterisks (**P < 0.01; ***P < 0.001). Statistically significant differences between temperatures were determined with unpaired Student’s t-test

and are indicated with a number sign (#P < 0.05; ##P < 0.01; ###P < 0.001). The exact P-value for each significant difference can be found in Appendix Table S2.
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mTORC2 in adipose tissue is required for cold-induced glucose

uptake and glycolysis

Glucose uptake and glycolysis are strongly enhanced in BAT upon

cold exposure, to compensate for the loss of mitochondrial ATP

production due to heat-generating mitochondrial uncoupling

(Greco-Perotto et al, 1987; Vallerand et al, 1990; Hao et al, 2015).

Moreover, glucose is also needed for anaplerotic reactions to main-

tain fatty acid oxidation, and to generate glycerol 3-phosphate for

lipid synthesis. mTORC2 is an important regulator of insulin-

induced glucose uptake and glycolysis in WAT, muscle, and liver

(Kumar et al, 2008, 2010; Hagiwara et al, 2012). Thus, reduced

glucose uptake and glycolysis might explain the failure of AdRiKO

mice to maintain an enhanced metabolic rate upon cold exposure

(Fig 4I). To test this notion, we examined cold-induced glucose

uptake in BAT. More specifically, we measured 2-deoxyglucose-

6-phosphate (2DG6P) accumulation in BAT 45 min after injecting

mice with 2-deoxyglucose (2DG). BAT in AdRiKO mice displayed

significantly impaired glucose uptake upon cold exposure (Fig 5A).

Similarly, cold-exposed AdRiKO mice failed to increase glycolysis in

BAT, as indicated by a reduced extracellular acidification rate

(ECAR) in BAT explants (Fig 5B). Thus, mTORC2 signaling is

required to induce glucose uptake and glycolysis in BAT upon cold

exposure.

To further investigate glucose homeostasis in AdRiKO and

control mice, we measured blood glucose and plasma insulin levels.

Both AdRiKO and control mice displayed a significant decrease in

blood glucose upon cold exposure (Fig EV3A). Interestingly, cold-

exposed AdRiKO mice displayed slightly lower blood glucose

compared to cold-exposed control mice (Fig EV3A), despite

impaired glucose uptake into BAT (Fig 5A). This decrease might be

due to increased shivering and muscle activity in AdRiKO mice upon

cold exposure (Fig EV1J). Next, we assessed levels of circulating

insulin. As previously shown (Cybulski et al, 2009), AdRiKO mice

displayed hyperinsulinemia when kept at 22°C (Fig EV3B). Upon

cold exposure, we observed a significant drop in plasma insulin

levels which reached a comparable value in both AdRiKO and

control mice (Fig EV3B). Thus, changes in circulating insulin are

unlikely to explain the defect in cold-induced glucose uptake in BAT

in AdRiKO mice.

To determine whether the absence of mTORC2 in BAT leads

to energetic stress upon cold exposure, which could account for

an inability to sustain NST, we examined AMP-activated protein

kinase (AMPK) signaling. AMPK is activated in response to low

energy levels (Hardie & Hawley, 2001). AdRiKO mice displayed

enhanced phosphorylation of the AMPK targets ACC and raptor

(Figs 5C and EV3C), indicating energy stress in BAT of these

mice. Interestingly, we also observed a higher molecular weight

isoform of AMPK specifically in cold-exposed AdRiKO mice

(Fig 5C).

Next, we investigated how mTORC2 signaling affects glucose

uptake and glycolysis in BAT. mTORC2 signaling has been shown to

mediate insulin-stimulated translocation of GLUT4 to the plasma

membrane (Kumar et al, 2010). Moreover, GLUT1 is involved in

glucose uptake into brown adipocytes upon adrenergic stimulation

(Dallner et al, 2006). To test whether mTORC2 signaling in BAT

affects plasma membrane localization of GLUT1 or GLUT4, we

isolated plasma membrane from AdRiKO and control BAT. The

amount of GLUT1 and GLUT4 in the two plasma membrane frac-

tions was similar (Fig 5D). This suggests that mTORC2 in BAT does

not mediate cold-induced glucose uptake and glycolysis by affecting

localization of glucose transporters. Glucose uptake is also affected

by hexokinases, which phosphorylate glucose to catalyze the first

and rate-limiting step of glycolysis. Of the four different hexokinase

isoforms, hexokinase I (HKI) and hexokinase II (HKII) are the two

dominant isoforms in BAT and are found both in the cytosol and at

mitochondria (Shinohara et al, 1998; Wilson, 2003). Immunoblot

analysis of cytosolic and mitochondrial fractions from BAT of

AdRiKO and control mice revealed no significant difference in the

amount and subcellular localization of HKI and HKII (Fig 5E).

However, while mitochondrial hexokinase activity was similar in

AdRiKO and control mice, cytosolic hexokinase activity was induced

in BAT of cold-exposed control but not AdRiKO mice (Fig 5F and

G). Thus, mTORC2 signaling in BAT stimulates glucose uptake and

glycolysis upon cold exposure via regulation of cytosolic hexokinase

activity. Collectively, the above findings suggest that impaired

glucose metabolism in BAT of AdRiKO mice accounts for the failure

to sustain NST.

Restoration of glucose uptake or Akt signaling suppresses the

thermogenic defect in AdRiKO mice

Our data suggest that AdRiKO mice are hypothermic and sensitive

to cold exposure due to impaired activation of glucose metabolism

Figure 4. mTORC2 in adipose tissue is not required for cold-induced mitochondrial uncoupling and b-oxidation.

A mRNA levels of the indicated genes in BAT of AdRiKO and control mice housed at 22 or at 4°C for 8 h (n = 6/group).

B Immunoblot analysis of BAT from AdRiKO and control mice housed at 22 or at 4°C for 8 h for the indicated proteins (n = 6/group, each lane represents a mix of 3

mice).

C mRNA levels of the indicated genes in BAT of AdRiKO and control mice housed at 22 or at 4°C for 8 h (n = 6).

D Immunoblot analysis of BAT from AdRiKO and control mice housed at 22 or at 4°C for 8 h for the indicated proteins (n = 6/group, each lane represents a mix of 3

mice).

E Mitochondrial DNA content of BAT from AdRiKO and control mice housed at 22 or at 4°C for 8 h (n = 6/group).

F Representative electron micrographs of BAT from AdRiKO and control mice housed at 22 or at 4°C for 4 h (n = 3/group).

G Oxygen consumption rate (OCR) of BAT explants from AdRiKO and control mice housed at 22 or at 4°C for 4 h (n = 7/group).

H Maximal respiration (VO2 max) of AdRiKO and control mice housed at 22 or at 4°C for 8 h [n = 9 (control 22°C), n = 7 (AdRiKO 22°C), n = 8 (control 4°C), n = 8

(AdRiKO 4°C)].

I Respiration (VO2) of AdRiKO and control mice upon cold exposure (n = 8/group).

Data information: Data represent mean � SEM. Statistically significant differences between AdRiKO and control mice were determined with unpaired Student’s t-test

and are indicated with asterisks (*P < 0.05; ***P < 0.001). Statistically significant differences between temperatures were determined with unpaired Student’s t-test and

are indicated with a number sign (#P < 0.05; ##P < 0.01; ###P < 0.001). The exact P-value for each significant difference can be found in Appendix Table S2.
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in BAT. We therefore reasoned that restoring glucose uptake in

BAT could be sufficient to improve temperature regulation. To test

this notion, we overexpressed HKII in BAT of AdRiKO and control

mice via intra-BAT injection of an adeno-associated viral vector

(AAV) expressing HKII. This technique was used previously to

activate glucose uptake specifically in BAT (Jimenez et al, 2013).

To confirm that the transgene was targeted specifically to BAT, we

injected RFP-expressing AAV into the BAT of control mice and

measured RFP expression. RFP was strongly expressed in BAT,

slightly expressed in liver, and not detected in other tissues

(Fig EV4A and B). Intra-BAT injection of an HKII-expressing AAV

resulted in a strong increase in HKII mRNA levels in BAT of both

AdRiKO and control mice (Fig 6A). Overexpression of HKII

enhanced cold-induced glucose uptake in BAT of both AdRiKO

and control mice (Fig 6B). Importantly, restoration of glucose

uptake suppressed the hypothermia (Fig 6C) and improved cold

tolerance (Fig 6D) in AdRiKO mice. Thus, restoration of glucose

metabolism in BAT of AdRiKO mice is sufficient to reverse the

hypothermia and cold-sensitivity caused by inactivation of

mTORC2.

Next we investigated how mTORC2 regulates glucose metabo-

lism and temperature homeostasis in BAT. Akt is a major downstream

effector of mTORC2 and stimulates glucose uptake in skeletal

muscle and liver (Kumar et al, 2008; Hagiwara et al, 2012).

Furthermore, Akt signaling is activated in BAT upon cold exposure

(Fig 2C). Thus, we investigated whether expression of constitu-

tively active Akt2 (Akt2S474D) (Hagiwara et al, 2012) in BAT of

AdRiKO mice could restore glucose uptake and temperature regula-

tion. To this end, we injected AAV expressing Akt2S474D into BAT

of AdRiKO and control mice. This resulted in strong expression of

Akt2S474D in BAT of AdRiKO and control mice, while PKCa and

PKCa-pT638/641 levels were unchanged (Fig 6E). Moreover,

Akt2S474D overexpression did not alter plasma insulin levels in

AdRiKO or control mice (Fig EV4C). Introduction of Akt2S474D

increased body temperature and improved cold tolerance in

AdRiKO mice (Fig 6F and G). Thus, restoration of Akt activity in

BAT of AdRiKO mice improved temperature homeostasis. To

investigate whether restoration of Akt activity also suppressed the

observed defects in glucose metabolism, we measured cold-

induced glucose uptake in BAT of AdRiKO and control mice. Cold-

induced glucose uptake was restored to control levels in BAT of

AdRiKO mice expressing Akt2S474D (Fig 6H). In conclusion, these

findings suggest that mTORC2-Akt signaling regulates BAT glucose

metabolism and thereby NST.

Figure 5. mTORC2 in adipose tissue is required for cold-induced glucose uptake and glycolysis.

A 2-deoxyglucose-6-phosphate (2DG6P) accumulation in BAT of AdRiKO and control mice housed at 22 or at 4°C for 4 h (n = 6/group).

B Extracellular acidification rate (ECAR) of BAT explants from AdRiKO and control mice housed at 22 or at 4°C for 4 h (n = 7/group).

C Immunoblot analysis of BAT from AdRiKO and control mice housed at 22 or at 4°C for 8 h for the indicated proteins (n = 6/group, each lane represents a mix of 3

mice).

D Immunoblot analysis of isolated plasma membranes from BAT of AdRiKO and control mice housed at 22 or at 4°C for 8 h for the indicated proteins (n = 6/group,

each lane represents a mix of 3 mice).

E Immunoblot analysis of mitochondrial and cytosolic fractions from BAT of AdRiKO and control mice housed at 22 or at 4°C for 4 h for the indicated proteins

(n = 6/group, each lane represents a mix of 3 mice).

F Cytosolic hexokinase activity in BAT of AdRiKO and control mice housed at 22 or at 4°C for 4 h [n = 5 (control 22°C), n = 5 (AdRiKO 22°C), n = 7 (control 4°C), n = 7

(AdRiKO 4°C)].

G Mitochondrial hexokinase activity in BAT of AdRiKO and control mice housed at 22 or at 4°C for 4 h [n = 5 (control 22°C), n = 5 (AdRiKO 22°C), n = 7 (control 4°C),

n = 7 (AdRiKO 4°C)].

Data information: Data represent mean � SEM. Statistically significant differences between AdRiKO and control mice were determined with unpaired Student’s t-test

and are indicated with asterisks (*P < 0.05). Statistically significant differences between temperatures were determined with unpaired Student’s t-test and are indicated

with a number sign (#P < 0.05; ##P < 0.01; ###P < 0.001). The exact P-value for each significant difference can be found in Appendix Table S2.

Figure 6. Restoration of glucose uptake or Akt signaling suppresses the thermogenic defect in AdRiKO mice.

A HKII mRNA expression level in BAT of AdRiKO and control mice infected with either AAV9-HKII or AAV9-empty (n = 8/group).

B Cold-induced 2-deoxyglucose-6-phosphate (2DG6P) accumulation in BAT of AdRiKO and control mice infected with either AAV9-HKII or AAV9-empty housed at 4°C for

4 h (n = 8/group).

C Body temperature of AdRiKO and control mice infected with either AAV9-HKII or AAV9-empty housed at 22°C (n = 8/group).

D Body temperature upon cold exposure of AdRiKO and control mice infected with either AAV9-HKII or AAV9-empty. The left panel represents body temperature after

each hour of cold exposure, while the right panel represents body temperature as a bar graph for the 3-h cold exposure time point (n = 8/group). a: significant

difference between AdRiKO and control mice infected with AAV9-empty; b: significant difference between AdRiKO and control mice infected with AAV9-HKII;

d: significant difference between AdRiKO mice infected with AAV9-empty and AAV9-HKII.

E Immunoblot analysis of BAT from AdRiKO and control mice infected with either AAV8-Akt2S474D or AAV8-empty (n = 6/group, each lane represents a mix of 3 mice).

F Body temperature of AdRiKO and control mice infected with either AAV8-Akt2S474D or AAV8-empty housed at 22°C (n = 11/group).

G Body temperature upon cold exposure of AdRiKO and control mice infected with either AAV8-Akt2S474D or AAV8-empty. The left panel represents body temperature

after each hour of cold exposure, while the right panel represents body temperature as a bar graph for the 3-h cold exposure time point (n = 11/group). a: significant

difference between AdRiKO and control mice infected with AAV8-empty; b: significant difference between AdRiKO and control mice infected with AAV8-Akt2S474D;

d: significant difference between AdRiKO mice infected with AAV8-empty and AAV8-Akt2S474D.

H Cold-induced 2-deoxyglucose-6-phosphate (2DG6P) accumulation in BAT of AdRiKO and control mice infected with either AAV8-Akt2S474D or AAV8-empty housed at

4°C for 4 h [n = 7 (control AAV8-null), n = 6 (AdRiKO AAV8-null), n = 6 (control AAV8-AktS474D), n = 6 (AdRiKO AAV8-AktS474D)].

Data information: Data represent mean � SEM. Statistically significant differences between AdRiKO and control mice were determined with unpaired Student’s t-test

and are indicated with asterisks (*P < 0.05; **P < 0.01). Statistically significant differences between viruses were determined with unpaired Student’s t-test and are

indicated with a number sign (#P < 0.05; ##P < 0.01; ###P < 0.001). The exact P-value for each significant difference can be found in Appendix Table S2.
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Discussion

We investigated the role of mTORC2 signaling in the regulation of

thermogenesis and cold-induced glucose uptake. We show that

mTORC2 signaling is activated in brown adipocytes in vitro and

in vivo upon NE stimulation and cold exposure, via cAMP and

Epac1, independently of PKA signaling. We also demonstrate that

mTORC2-Akt signaling in BAT mediates cold-induced glucose

uptake and glycolysis and thereby sustains NST (Fig 7).

We found that mice with inactive mTORC2 signaling in adipose

tissue (AdRiKO mice) fail to maintain a metabolic rate required to

sustain NST and are thus hypothermic and sensitive to cold stress.

This impaired NST response of AdRiKO mice is most likely due to

impaired glucose uptake and glycolysis in BAT, which results in the

inability to maintain energy homeostasis under cold stress. Impor-

tantly, overexpressing HKII specifically in BAT restored glucose

uptake and glycolysis and thereby restored body temperature and

improved cold tolerance. These results reveal the importance of

glucose metabolism in BAT, and its regulation by mTORC2, in the

maintenance of NST. Interestingly, Olsen et al reported that b-adre-

nergic stimulation induced glucose uptake in brown adipocytes

in vitro in an mTORC2-dependent manner (Olsen et al, 2014).

Furthermore, Olsen et al reported that mTORC2 promotes glucose

uptake by stimulating GLUT1 translocation to the plasma membrane

in an Akt-independent fashion (Olsen et al, 2014). In contrast to

these in vitro results, we did not observe a change in GLUT1 plasma

membrane localization in BAT of AdRiKO mice. Moreover, our

in vivo results show that mTORC2 mediates cold-stimulated glucose

uptake and glycolysis in an Akt-dependent manner. AdRiKO mice

displayed a strong decrease in Akt S473 phosphorylation in BAT,

and overexpression of a constitutively active Akt2 mutant

(Akt2S474D) restored glucose uptake and body temperature and

increased cold tolerance in AdRiKO mice. The mechanism by which

mTORC2 regulates glucose uptake might be different in vivo and

in vitro. How does mTORC2-Akt signaling in BAT stimulate glucose

uptake and glycolysis? We found that AdRiKO mice are defective for

induction of cytosolic hexokinase activity in BAT upon cold

exposure, whereas mitochondrial hexokinase activity was unaffected.

Interestingly, it has been proposed that mitochondria-associated

hexokinase utilizes ATP generated by the mitochondria for glucose

phosphorylation (Wilson, 2003). However, upon cold stress, mito-

chondrial ATP production is strongly reduced due to activation of

the uncoupling protein UCP1 (Lindberg et al, 1967; De Meis et al,

2012). Thus, in the context of thermogenesis, cytosolic rather than

mitochondrial hexokinase may account for the increase in glucose

uptake and glycolytic rate. In summary, our data suggest that

mTORC2 in BAT specifically activates cytosolic hexokinase, which is

in turn required for cold-induced glucose uptake and glycolysis and

maintenance of energy homeostasis upon cold stress. Future studies

should address the mechanism by which mTORC2-Akt signaling acti-

vates cytosolic hexokinase.

We observed that mTORC2 signaling is activated in brown adipo-

cytes upon adrenergic stimulation. Similar to insulin-induced activa-

tion of mTORC2, we found that adrenergic stimulation activates

mTORC2 in a PI3K-dependent and mTORC1-independent fashion.

Additionally, we found that adrenergic signaling stimulates

mTORC2 via cAMP and Epac1, independently of PKA signaling.

Interestingly, it has been shown previously that mTORC2 signaling

is activated in prostate cancer cells in an Epac1-dependent fashion

upon cAMP stimulation (Misra & Pizzo, 2012). Thus, induction of

mTORC2 signaling upon adrenergic stimulation seems to occur in

several distinct cell types and could thus represent another major

input for mTORC2 activation in addition to growth factors. Our

results also suggest that mTORC2-Akt signaling in addition to PKA

signaling plays an important role in the NST response.

Loss of mTORC2 impaired temperature homeostasis, but with-

out affecting cold-induced b-oxidation, lipid mobilization, and

mitochondrial uncoupling. This is in contrast to the study of Hung

et al, which found that Myf5 muscle- and BAT progenitor cell-

specific rictor KO (Myf5-rictor KO) mice display increased oxidative

metabolism and uncoupling in BAT (Hung et al, 2014). A possible

explanation for these seemingly discrepant results could be that

Hung et al used a Myf5-driven Cre recombinase to delete rictor at

the pre-adipocyte stage, whereas we used an aP2-driven Cre

recombinase to delete rictor only in mature adipocytes. A defect in

mTORC2 signaling during adipogenesis could affect mature BAT

function and potentially result in changes in oxidative metabolism.

Nevertheless, our results demonstrate that inactivation of mTORC2

signaling in mature adipocytes does not affect lipid mobilization,

mitochondrial function, or oxidative metabolism in BAT. However,

since AdRiKO mice display inactive mTORC2 signaling in both

WAT and BAT, some of the observed phenotypes of AdRiKO mice

might also be due to defects in WAT. Further studies are required

to investigate this possibility.

Taken together, our results demonstrate a novel role for mTORC2

in BAT in the regulation of energy homeostasis and thermogenesis,

through Akt-mediated stimulation of glucose uptake and glycolysis

(Fig 7). NST and subsequent energy dissipation has been proposed

as a novel strategy to treat obesity and decrease the risk of

obesity-associated diseases (Clapham & Arch, 2011). Additionally,

cold-stimulated glucose uptake could be used to normalize blood

glucose levels in insulin-resistant diabetic patients. Our data suggest

that activation mTORC2 in BAT, to stimulate glucose metabolism,

could have synergistic effects with NST activators in the treatment

of obesity.

Figure 7. mTORC2 in BAT is activated by adrenergic stimulation and

mediates temperature homeostasis via regulation of cold-induced

glucose uptake and glycolysis.
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Materials and Methods

Cell culture

SV40T-immortalized C57BL/6 mouse brown pre-adipocytes were

kindly provided by Professor Johannes Klein (Lübeck, Germany)

(Klein et al, 2002). Pre-adipocytes were grown to confluency in

Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich)

supplemented with 20% fetal calf serum (FCS), 4.5 g/l glucose,

2 mM glutamine, 20 nmol/l insulin, and 1 nmol/l triiodothyronine.

Twenty-four hours after reaching confluency, adipocyte differentia-

tion was induced by the addition of 250 lmol/l indomethacin,

500 lmol/l isobutylmethylxanthine, and 2 lg/ml dexamethasone to

the medium for 24 h. Cell culture was continued for five more days

before experiments were performed. All cell culture experiments

were performed in three independent replicates, and a representa-

tive replicate is presented.

Animals

Adipose tissue-specific rictor knockout mice (AdRiKO) were already

described and characterized previously (Cybulski et al, 2009). Mice

were housed at 22°C in a conventional facility with a 12-h light/

12-h dark cycle. For all experiments, male aP2-Cre; rictorLoxP/LoxP

(AdRiKO) and rictorLoxP/LoxP (control) mice between 10 and

14 weeks of age were used. Animals were randomly assigned for

measurements or treatments. Experimental groups were formed

concerning genotype and similarity in age. Animals that became

sick or died during the experiment and those which failed to show a

successful experimental performance were excluded from the analy-

sis. All experiments were performed in accordance with the federal

guidelines for animal experimentation and were approved by the

Kantonales Veterinäramt of Kanton Basel-Stadt.

In vivo norepinephrine stimulation

Mice were starved for 12 h over night prior to norepinephrine

administration. Mice were injected intraperitoneally with 1 mg/kg

norepinephrine and sacrificed 30 min later.

Cold exposure

Mice were housed in single cages with free access to water at 4°C

for a period of 2, 4, 8 or 10 h. For the 4- and 8-h cold exposure, food

was removed specifically during cold exposure. For the 2-h cold

exposure, food was removed 12 h prior to cold exposure and during

cold exposure to allow assessment of mTORC2 signaling. For the

10-h cold exposure, mice had free access to food and water.

Thermoneutrality

Mice were housed in single cages with free access to water and food

at 30°C for a period of 2 weeks.

Locomotor activity, metabolic rate, and body temperature

Locomotor activity and metabolic rate was measured in 30-min

intervals for the indicated time using a comprehensive laboratory

animal monitoring system (CLAMS, Linton Instrumentation and

Columbus Instruments) after 24 h of acclimatization. For determina-

tion of maximal respiration, the highest measured VO2 value for

each mouse was taken. Mice had free access to food and water

during the acclimatization period. For the measurement period, food

was removed. Body temperature was measured using a rectal ther-

mometer (BAT-12, Physitemp).

EMG measurement

To measure cold-induced muscle shivering, mice were housed at

4°C for 4 h and subsequently anaesthetized with isoflurane. Then,

three 29-gauge needle electrodes (two recording electrodes and one

reference electrode placed distally) were placed transcutaneously to

acquire the EMG signal from the scapular muscles. For each mouse,

the EMG signal was recorded for 5 min. The signal was processed

with a low-pass filter of 3 kHz, a high-pass filter of 10 Hz, and a

notch filter of 60 Hz. Data were A/D converted and recorded at a

sampling frequency of 24 kHz (DantecKeypoint). Root-mean-square

(rms) of the EMG signal was calculated.

Ex vivo oxygen consumption and extracellular acidification rate

Oxygen consumption and extracellular acidification rate of BAT

were measured using an XF24 extracellular flux analyzer (Seahorse

Biosciences). Mice were housed in single cages at either 22 or 4°C

for 4 h without food, and subsequently, BAT was collected and cut

in approximately 0.5-lg big pieces. Tissues were washed three times

with Seahorse assay buffer supplemented with 25 mM glucose,

2 mM glutamine, 1 mM sodium pyruvate adjusted to pH 7.4. Subse-

quently, BAT pieces were placed in the center of a Seahorse XF24

islet capture microplate containing 675 ll of Seahorse assay buffer.

After 30-min incubation at 37°C without CO2, oxygen consumption

and extracellular acidification rate were measured 10 times and

normalized to tissue weight. From each mouse, five individual BAT

pieces were used for measurement.

BAT triglyceride and free fatty acid measurement

For the free fatty acid measurement, the crude lipid fraction was

extracted from BAT of mice housed at either 22 or 4°C for 8 h using

choroform:methanol (2:1). From this fraction, the amount of free fatty

acids was determined using a commercial kit [HR Series NEFA-HR(2)]

and normalized to tissue weight. For triglyceride measurement, the

crude lipid fraction was further purified on a solid-phase extraction

column (UPTI-CLEAN NH2-S 100 mg/1 ml SPE Colums, Interchim).

Subsequently, amount of triglycerides was determined using a

commercial kit (TG PAP BioMérieux) and normalized to tissue weight.

RNA isolation and RT–PCR

Total RNA from BAT of mice housed at either 22 or 4°C for 8 h was

isolated with TRIzol reagent (Sigma) and RNeasy kit (Qiagen)

followed by cDNA synthesis using iScript cDNA synthesis kit (Bio-

Rad). Semiquantitative real-time PCR analysis was performed using

fast SYBR green (Applied Biosystems) on a StepOnePlus Real-Time

PCR System (Applied Biosystems). Relative expression levels were

determined by normalizing to either RPL0 or TBP expression using
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the DDCT method. The sequence for the primers used in this study

can be found in Appendix Table S1.

mtDNA copy number determination

Total DNA was isolated from BAT of mice housed at either 22 or

4°C for 8 h by incubating the tissue in PBND buffer containing

0.1 mg proteinase K at 57°C over night, followed by proteinase K

inactivation at 95°C for 10 min. DNA was subsequently purified

using a standard chloroform/phenol/isoamyl alcohol precipitation.

mtDNA was determined in relation to the genomic DNA by qRT–

PCR using primers against the D-loop region for mtDNA and against

the single-copy nuclear gene Ndufv1 for genomic DNA. The

sequence for the primers used can be found in Appendix Table S1.

Protein isolation and Western blot

For norepinephrine or 8-Br-cAMP stimulation and subsequent

Western blot analysis in cells, cells were starved for 16 h in DMEM

supplemented with 1% FCS, 4.5 g/l glucose, and 2 mM glutamine.

Cells were pretreated for 30 min with DMSO, 100 nM rapamycin,

125 nM Torin, 100 nM wortmannin, 10 lM ESI-09, or for 2 h with

20 lM H89 and subsequently stimulated with 1 lM of nore-

pinephrine or 1 mM 8-Br-cAMP for 5 min unless indicated other-

wise. Subsequently, cells were harvested in cold RIPA buffer

containing 50 mM Tris–HCl (pH 7.5), 2 mM EDTA, 2 mM EGTA,

150 mM NaCl, 1% NP-40, 0.5% Na-Deoxycholate, 0.1% SDS,

protease inhibitors (Roche), and phosphatase inhibitors (Sigma-

Aldrich). For protein isolation from adipose tissue, tissue was

homogenized in lysis buffer containing 100 mM Tris–HCl (pH 7.5),

2 mM EDTA, 2 mM EGTA, 1% Triton X-100, protease inhibitors

(Roche), and phosphatase inhibitors (Sigma-Aldrich). Protein

concentration was determined by Bradford assay, and equal

amounts of protein were separated on SDS–PAGE followed by

transfer onto a nitrocellulose membrane (Whatman). The following

antibodies were used to detect the proteins of interest: Akt (Cell

Signaling, cs-4685), Akt-pS473 (Cell Signaling, cs-9271), mTOR

(Cell Signaling, cs-2972), mTOR-pS2481 (Cell Signaling, cs-2974),

Creb (Cell Signaling, cs-9196), Creb-pS133 (Cell Signaling, cs-9197),

actin (Millipore, MAB1501), AMPK (Cell Signaling, cs-2532), AMPK-

pT172 (Cell Signaling, cs-2535), raptor (Cell Signaling, cs-2280),

raptor-pS792 (Cell Signaling, cs-2083), ACC (Cell Signaling, cs-3662),

ACC-pS79 (Cell Signaling, cs-3661), perilipin (Cell Signaling, cs-9349),

HSL (Cell Signaling, cs-4107), HSL-pS563 (Cell Signaling, cs-4139),

PKCa (Cell Signaling, cs-2056), PKCa-pT638/641 (Cell Signaling, cs-

9375), Mitoprofile (MitoSciences, MS604), HKI (Cell Signaling, cs-

2024), HKII (Cell Signaling, cs-2867), GLUT1 (Abcam, ab-40084),

GLUT4 (Novus Biologicals, NBP2-22214), Na/K-ATPase (Cell Signal-

ing, cs-3010), EEA1 (Abcam, ab2900), Rab11 (Millipore, 05-853),

UCP1 (Abcam, ab-10983), GAPDH (Cell Signaling, cs-2118), and rictor

(Cell Signaling, cs-2114). Antibodies were diluted 1:1,000, except for

actin, ACC, and ACC-pS79, which were diluted 1:10,000. Band intensi-

ties were quantified using ImageJ software.

2-deoxyglucose (2-DG) uptake

For 2-DG uptake measurement in BAT, mice were housed in single

cages at 22 or 4°C for 4 h without food. Subsequently, mice were

treated with 32.8 lg/kg of 2-DG (Sigma) and sacrificed 45 min later.

BAT was harvested and lysed in 10 mM Tris–HCl (pH 8.1). 2-DG

uptake was measured by quantifying 2-DG6P accumulation in BAT

using a commercial kit (Cosmo Bio Co, LTD.) following the manu-

facturer’s instructions. Values were normalized to tissue weight.

Isolation of plasma membrane

Plasma membrane and cytosol were isolated from BAT of mice

housed at either 22 or 4°C for 8 h by differential centrifugation. For

Western blot analysis, the soluble cytosolic and microsomal fraction

obtained during plasma membrane isolation was used for compari-

son. Equal amounts of protein were loaded from each fraction.

Isolation of crude mitochondria

Crude mitochondrial and cytosolic fractions were isolated from fresh

BAT of mice that were housed in single cages at 22 or 4°C for 4 h

without food by differential centrifugation.

Hexokinase activity

Hexokinase activity of crude mitochondrial and cytosolic fractions

was determined using a commercial kit (Abcam), following the

manufacturer’s instructions. Equal amount of protein was used for

activity determination.

Histology and immunostainings

BAT and sWAT of mice housed at either 22 or 4°C for 8 h were fixed

over night in 4% paraformaldehyde in PBS at 4°C, dehydrated,

embedded in paraffin, and cut into 5-lm-thick sections. Sections

were stained with H&E (Merck) to perform general histology. For

immunostainings, the following antibody was used: RFP (ab62341,

Abcam). DAPI was used to stain nuclei.

Electron microscopy

BAT of mice housed at either 22 or 4°C for 4 h was fixed in 3%

paraformaldehyde/0.5% glutaraldehyde, followed by fixation in 1%

osmiumtetroxid and subsequent embedding in epon. Tissue was cut

into 60- to 70-nm-thick sections, and images were taken with a

Morgagni 268(D) TEM (FEI).

Blood analysis

Free fatty acids and glycerol in plasma of mice housed at either 22

or 4°C for 8 h were determined using commercial kits (HR Series

NEFA-HR(2) and Cayman). Plasma triglycerides were measured

using a biochemical analyzer (Cobas c 111 analyzer, Roche). Blood

glucose was measured from tail vain using a glucose meter (Accu-

check, Roche). Plasma insulin was determined using a commercial

kit (Crystal Chem).

Recombinant AAV vector production and delivery

AAV vector production and delivery into BAT were carried out

as described by Jimenez et al (Jimenez et al, 2013). Briefly,
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single-stranded AAV vectors were produced through triple transfec-

tion of HEK293 cells and subsequent purification on a CsCl gradient.

AAV vectors used were as follows: AAV8-CAG-RFP, AAV8-

CAG-humanAkt2S474D, and AAV9-CMV-HKII. Non-coding plasmids

carrying the CAG or CMV promoter and a multicloning site (AAV8-

CAG-empty, AAV9-CMV-empty) were used to produce null particles.

For intra-BAT AAV administration, mice were anaesthetized with

isoflurane and a longitudinal incision was performed at the inter-

scapular area to expose the BAT. Each lobe of the BAT was injected

twice with 10 ll of viral solution to distribute the vector in the

entire depot. Each mouse received 2 × 1011 viral genomes dissolved

in 0.001% Pluronics F68 in PBS. Mice were allowed to recover from

the surgery for 2 weeks before experiments were performed.

Data analysis

Sample size was chosen according to our previous studies and

published reports in which similar experimental procedures were

described. No blinding of investigators was done. All data are

expressed as mean � SEM. To determine statistically significant

differences between groups, normal distribution was assumed

and unpaired Student’s t-test was used. */#P < 0.05, **/##P < 0.01,

***
/###P < 0.001.

Expanded View for this article is available online.
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